E. Cosserat and F. Cosserat, Théorie Des Corps déformables

A. Hermann, , 1909.

C. Kafadar and A. Eringen, Micropolar media-I: The classical theory, Int. J. Eng. Sci, vol.9, pp.271-305, 1971.

V. Eremeyev, L. Lebedev, and H. Altenbach, Foundations of Micropolar Mechanics, 2013.

V. Eremeyev, On the material symmetry group for micromorphic media with applications to granular materials, Mech. Res. Commun, vol.94, pp.8-12, 2018.

V. Eremeyev and W. Pietraszkiewicz, Material symmetry group and constitutive equations of micropolar anisotropic elastic solids, Math. Mech. Solids, vol.21, pp.210-221, 2016.

V. Eremeyev and W. Pietraszkiewicz, Material symmetry group of the non-linear polar-elastic continuum, Int. J. Solids Struct, vol.49, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00835636

L. Schwartz, D. Johnson, and S. Feng, Vibrational modes in granular materials, Phys. Rev. Lett, vol.52, 1984.

A. Misra and P. Poorsolhjouy, Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics, Math. Mech. Complex Syst, vol.3, pp.285-308, 2015.

P. Poorsolhjouy and A. Misra, Granular micromechanics based continuum model for grain rotations and grain rotation waves, J. Mech. Phys. Solids, vol.129, pp.244-260, 2019.

E. Turco, In-plane shear loading of granular membranes modeled as a Lagrangian assembly of rotating elastic particles, Mech. Res. Commun, vol.92, pp.61-66, 2018.

R. Abreu, C. Thomas, and S. Durand, Effect of observed micropolar motions on wave propagation in deep Earth minerals, Phys. Earth Planet. Int, vol.276, pp.215-225, 2018.

I. Giorgio, M. De-angelo, E. Turco, and A. Misra, A Biot-Cosserat two-dimensional elastic nonlinear model for a micromorphic medium, Contin. Mech. Thermodyn, 2019.

E. F. Grekova and R. Abreu, Isotropic linear viscoelastic reduced Cosserat medium: An acoustic metamaterial and a first step to model geomedium, New Achievements in Continuum Mechanics and Thermodynamics

. Springer, , pp.165-185, 2019.

V. Sadovskii and O. Sadovskaya, Modeling of elastic waves in a blocky medium based on equations of the Cosserat continuum, Wave Motion, vol.52, pp.138-150, 2015.

I. Giorgio, U. Andreaus, F. Dell'isola, and T. Lekszycki, Viscous second gradient porous materials for bones reconstructed with bio-resorbable grafts, Extrem. Mech. Lett, vol.13, pp.141-147, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01306433

A. Madeo, D. George, T. Lekszycki, M. Nierenberger, and Y. Rémond, A second gradient continuum model accounting for some effects of micro-structure on reconstructed bone remodelling, C. R. Mécanique, vol.340, pp.575-589, 2012.

H. Sato, M. Fehler, and T. Maeda, Seismic Wave Propagation and Scattering in the Heterogeneous Earth, vol.496, 2012.

N. Kaina, F. Lemoult, M. Fink, and G. Lerosey, Negative refractive index and acoustic superlens from multiple scattering in single negative metamaterials, Nature, vol.525, pp.77-81, 2015.

M. R. Haberman and M. D. Guild, Acoustic metamaterials, Phys. Today, vol.69, pp.42-48, 2016.

E. F. Grekova, Reduced enhanced elastic continua as acoustic metamaterials, Dynamical Processes in Generalized Continua and Structures, pp.253-268, 2019.

C. Chesnais, C. Boutin, and S. Hans, Effects of the local resonance on the wave propagation in periodic frame structures: Generalized Newtonian mechanics, J. Acoust. Soc. Am, vol.132, pp.2873-2886, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00853842

A. A. Vasiliev and I. S. Pavlov, Auxetic properties of hiral hexagonal Cosserat lattices composed of finite-sized particles, Physica Status Solidi

V. I. Erofeev, I. S. Pavlov, A. V. Porubov, and A. A. Vasiliev, Dispersion properties of a closed-packed lattice consisting of round particles, In Generalized Models and Non-Classical Approaches in Complex Materials, vol.2

. Springer, , pp.101-117, 2018.

F. Dell'isola, I. Giorgio, and U. Andreaus, Elastic pantographic 2D lattices: A numerical analysis on the static response and wave propagation, Proc. Est. Acad. Sci, vol.64, 2015.

E. Barchiesi, M. Spagnuolo, and L. Placidi, Mechanical metamaterials: A state of the art, Math. Mech. Solids, vol.24, pp.212-234, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02453434

D. Vescovo, D. Giorgio, and I. , Dynamic problems for metamaterials: Review of existing models and ideas for further research, Int. J. Eng. Sci, vol.80, pp.153-172, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00947477

F. Dell'isola, P. Seppecher, J. J. Alibert, T. Lekszycki, R. Grygoruk et al., Pantographic metamaterials: An example of mathematically driven design and of its technological challenges, Contin. Mech. Thermodyn, vol.31, pp.851-884, 2019.

A. Figotin and J. Schenker, Hamiltonian structure for dispersive and dissipative dynamical systems, J. Stat. Phys, vol.128, pp.969-1056, 2007.

A. Madeo, P. Neff, I. D. Ghiba, L. Placidi, and G. Rosi, Band gaps in the relaxed linear micromorphic continuum, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Und Mech, vol.95, pp.880-887, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01082378

I. Münch, P. Neff, A. Madeo, and I. D. Ghiba, The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless, ZAMM-J. Appl. Math. Mech./Z. Angew. Math. Und Mech, vol.97, pp.1524-1554, 2017.

R. Mindlin and H. Tiersten, Effects of Couple-Stresses in Linear Elasticity, Technical Report, 1962.

A. Misra and P. Poorsolhjouy, Granular micromechanics based micromorphic model predicts frequency band gaps, Contin. Mech. Thermodyn, vol.28, pp.215-234, 2016.

M. G. El-sherbiny and L. Placidi, Discrete and continuous aspects of some metamaterial elastic structures with band gaps, Arch. Appl. Mech, vol.88, pp.1725-1742, 2018.

S. Minagawa, K. Arakawa, and M. Yamada, Diamond crystals as Cosserat continua with constrained rotation, Phys. Status Solidi (a), vol.57, pp.713-718, 1980.

P. A. Gourgiotis and D. Bigoni, The dynamics of folding instability in a constrained Cosserat medium, Philos. Trans. R. Soc. Math. Phys. Eng. Sci, vol.375, 2017.

W. H. Lee, H. Igel, and M. D. Trifunac, Recent advances in rotational seismology, Seismol. Res. Lett, vol.80, pp.479-490, 2009.

R. Abreu, J. Kamm, and A. S. Reiß, Micropolar modelling of rotational waves in seismology, Geophys. J. Int, vol.210, pp.1021-1046, 2017.

I. Karachevtseva, E. Pasternak, and A. Dyskin, Wave propagation in geomaterials in the presence of rotation-induced negative stiffness, Proceedings of the EGU General Assembly Conference Abstracts, vol.19, p.17404, 2017.

R. Teisseyre, J. Suchcicki, K. P. Teisseyre, J. Wiszniowski, and P. Palangio, Seismic rotation waves: Basic elements of theory and recording, Ann. Geophys, vol.46, pp.671-685, 2003.

A. Dyskin and E. Pasternak, Slow waves in blocky rock mass, Proceedings of the 9th Australasian Congress on Applied Mechanics (ACAM9), p.226, 2017.

A. Eringen, Linear theory of micropolar viscoelasticity, Int. J. Eng. Sci, vol.5, pp.191-204, 1967.

E. Grekova, M. Kulesh, and G. Herman, Waves in linear elastic media with microrotations, part 2: Isotropic reduced Cosserat model, Bull. Seismol. Soc. Am, vol.99, pp.1423-1428, 2009.

P. Curie, Sur la symétrie dans les phénomènes physiques, symétrie d'un champ électrique et d'un champ magnétique, vol.3, pp.393-415

E. F. Grekova, Plane waves in the linear elastic reduced Cosserat medium with a finite axially symmetric coupling between volumetric and rotational strains, Math. Mech. Solids, vol.21, pp.73-93, 2016.

L. Ostrovskii and A. Potapov, Introduction to the Theory of Modulated Waves, 2003.

Y. F. Wang, Y. S. Wang, and V. Laude, Wave propagation in two-dimensional viscoelastic metamaterials, Phys. Rev. B, p.92, 2015.

M. J. Frazier and M. I. Hussein, Viscous-to-viscoelastic transition in phononic crystal and metamaterial band structures, J. Acoust. Soc. Am, vol.138, pp.3169-3180, 2015.