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CONCENTRATION ESTIMATES FOR FINITE
EXPANSIONS OF SPHERICAL HARMONICS ON
TWO-POINT HOMOGENEOUS SPACES
VIA THE LARGE SIEVE PRINCIPLE

PHILIPPE JAMING AND MICHAEL SPECKBACHER

ABSTRACT. We study the concentration problem on compact two-point
homogeneous spaces of finite expansions of eigenfunctions of the Laplace-
Beltrami operator using large sieve methods. We derive upper bounds
for concentration in terms of the maximum Nyquist density. Our proof
uses estimates of the spherical harmonics basis coefficients of certain
zonal filters and an ordering result for Jacobi polynomials for arguments
close to one.

1. INTRODUCTION

The large sieve principle is a family of inequalities for trigonometric polyno-
mials which has become a standard tool in analytic number theory, see e.g.
[15]. In the same article, Montgomery mentions on p. 562 that Bombieri
(in an unpublished work) derived the following inequality with similar ar-

guments.
K

Let t € [0,1] and f(t) = Zake%ikt. If p is a positive measure and

k=1
0 <9 <1, then

1
| 1R (o) < (5 42571 - sup ule.t+ ) / )Pt
0

t€0,1]

In particular, if p is given by xq(t) dt, for Q C [0, 1] measurable, then

1
(12 [irwra<s pe.g)- [iroRa
where the so called mazimum Nyquist density is given by
(1.3) p(QLK)=K- sup [QN[t,t+1/K]|
t€[0,1]

Donoho and Logan [5] first observed that (1.2) gives a particularly strong
concentration estimate if the set 2 is “sparse”. If only a small portion
of © is contained in any interval of length 1/K, then it follows that the
energy of f cannot be well concentrated on 2. This lead them to derive
similar inequalities for functions in the LP-Paley-Wiener spaces on the real
line, p € {1,2}. Recently, this idea has been adapted for concentration

2010 Mathematics Subject Classification. 43A85; 22F30; 33C55; 33C45; 42C10;
Key words and phrases. large sieve inequalities; concentration estimates; two-point
homogeneous spaces; eigenfunctions of Laplace-Beltrami operator; Jacobi polynomials.
1



2 PHILIPPE JAMING AND MICHAEL SPECKBACHER

problems of time-frequency distributions [1, 2] and finite spherical harmonics
expansions on the 2-sphere [23].

A common approach to study concentration problems was introduced by
Landau, Slepian and Pollak [13, 14, 22] in a series of papers nowadays known
as the “Bell-Lab papers”. This approach has been frequently adapted and
applied to various function spaces. In the context of this paper, we refer to
[3, 21] for a treatment of the Bell-Lab theory of finite expansions of spherical
harmonics on the 2-sphere. We would also like to mention that measures
that allow for an inequality like in (1.1) have been studied in a multitude
of contributions and are commonly referred to as Carleson measures. For a
result concerning Carleson measures on compact manifolds, see [20].

It is the main purpose of this article to generalize the results in [23]
from the 2-sphere to general two-point homogeneous spaces. A compact
Riemannian manifold M with metric d(-,-) is called two-point homogeneous
if for every four points 1, x92,y1,y2 € M satisfying d(z1,2z2) = d(y1,v2),
there exists an isometry I : M — M such that I(z;) = y;, @ = 1,2. These
spaces were fully characterized by Wang [24], see also [4, 7, 9, 10, 12]. We
recall the full list of these spaces in Section 3.1 but note that they include
the sphere in R? as well as the real projective spaces.

Let Hj be the k-th eigenspace of the Laplace-Beltrami operator on M
associated to the eigenvalue \g, k € N' (N = Ny or 2Nj depending on M).
Then L*(M) = @j,c - Hi, where L?(M) is equipped with the invariant Haar
measure v. We define the space of finite spherical harmonics expansions by

Sk= € H
keN k<K
Let © C M be measurable, and 1 < p < co. We study the concentration
problem

(1.4) /ny(m)ypdy(x)gA,,(Q,K)-/Myf(x)ypdu(x), fe Sk,

and seek for simple estimates of A\,(€2, K) in terms of a maximum Nyquist
density adapted to two-point homogeneous spaces. Here, the interval [¢,t +
1/K] in (1.3) is replaced by the geodesic cap ! centered at y which is given
by

Cs(y) :== {x eM: cos (’yd(x,y)) > 5},
where v (given in Section 3.1) depends on the length of the closed geodesics
only. The mazimum Nyquist density is defined as

120 Cye 0y (9)]
1.5 p(Q,K):=sup ———————
(15) ( ) yEM ‘CtK(M) ()]

where tx (M) depends on K and M only and is the largest zero of a Jacobi

polynomial Pl(f’ﬁ ), where the values of @ and 8 depend on M only. The
explicit expression can be found in (3.20).

Our main contribution is the following estimate in terms of the maximum
Nyquist density. See Theorem 4.4 for a more detailed account of the result.

We could as well consider geodesic balls B(y,r) = {z € M : d(z,y) < r}. Note that
Cs(y) = B(y,y *arccos §) or equivalently B(z,7) = Ceosr(z). It turns out that caps are
more convenient here.
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Theorem. Let M be a two-point homogeneous space, |1 be a o-finite mea-
sure, @ C M be measurable, and tx(M) < § < 1. For K € N and every
f € Sk, it holds

/ (@) dp(z) < Dieg - sup p(Co(y)) - / (@) dv(z),
M M

yeM

and
(16) /Q F@)P dvle) < Ak - p(Q K) /M (@) dv(z),

where Ag and Dy 5 are given explicitly in (4.37) and (4.35) respectively.

We will also show that Ax converges to a constant given in Lemma 4.5
when K — oo.

In the case of the 2-sphere, we exactly recover the results from [23]. We
also derive LP-estimates for 1 < p < oo via interpolation and duality argu-
ments in Theorem 4.6.

We conclude this introduction by mentioning the fact that concentration
properties of eigenfunctions of the Laplacian on Riemannian manifolds have
been extensively studied (see e.g. [25] and references therein). Our result
here is of a slightly different nature to most results so far. Our main contri-
bution is when the set € is sparse in the sense that p(€2, K') is much smaller
than the measure of 2. Note also that our result (1.6) applies to functions
f that are linear combinations of eigenfunctions of the Laplace-Beltrami op-
erator for different eigenvalues rather than to the more common situation of
a single eigenfunction. On the other hand, when f is a single eigenfunction
of the Laplace-Beltrami operator, there seems to be no improvement in the
concentration bound (1.6) obtained through our method of proof.

The remaining of this paper is organized as follows: we start with a section
of preliminaries on Jacobi polynomials and the incomplete Beta function.
Section 3 is then devoted to two point homogeneous manifolds and their
spherical harmonics. Once this is done, we can conclude with the proof of
the main theorem in Section 4.

2. PRELIMINARIES

2.1. Jacobi Polynomials. For «, 5 > —1, consider the Jacobi weight
wa,s(t) = (1 =) (1 +1)°.

The Jacobi polynomials PT(LO"B), n € Ng = {0,1,...}, are then a family of
orthogonal polynomials in ija 5 (—1,1) satisfying the orthogonality relations

1
(2.7) / PB) (1) PP (H)wq p(t) dt
—1

29D+ a+ DI(n+ B +1)
nl@2n+a+B+D)I(n+a+B+1) "
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where n,m € Ny, and 6, ,, denotes the Kronecker delta. Note for future use
that, by parity,

1
28) [ PEOOPLS W) dr

0

4°T(2n + a + 1)? 5
(2n)!(4n + 2a + DI'(2n +2a + 1) ™™
The Jacobi polynomials are explicitly given by

(@) () . _ L tat ) ~ (n F(”—i—m—i—a—i—ﬂ-ﬁ-l)(t—l)m
P, (t)-—n!F(n+a+ﬁ+1)Z<m> T(m+adtl) 5

m=0
or by the Rodrigues Formula

e = U0 e S oo vt -2}

2nn

Jacobi polynomials satisfy the following symmetry relation
(2.9) PR (—t) = (=1)" PP (8).

Throughout this paper we are only concerned with o > —% anda > (6 > —1.
In that case, one has [19, 18.14.1]

F'n+a+1)
2.10 PP ()] < PlP) (1) = —————=.
(2.10) P 0] < D) =
By [19, 18.9.15], the derivative of PP satisfies

d 1 a
(2.11) SPOOE) = S+ a+ B+ DR ),

d
which implies that 'EP,(LO"@ (t)| < not2

Like all orthogonal polynomials, Jacobi polynomials satisfy a three term
recurrence relation, see e.g. [19, 18.2.8],

(212) PP () = (Ant + Bo) PO (1) — CoP)(1),  n=1,2,...

)

with P{*? (1) = 1, and PL? (1) = L((a+B+2)t+a—B), and A, B,,C, €
R. Although we do not need there explicit expressions in this paper, note
that they are given by A, = a,/d,, By, = by/dy, Cp, = ¢,/d,, with

an = (2n+a+8)2n+a++1)2n+a+B+2)

by = (2n+a+B+1)(a®—p?)

= (n+a)n+B)Cn+a+f+2)

d, = 2n+1)(n+a+B+1)2n+a+pB).

We will however need that a,,c,,d, > 0 and that P,ga’ﬁ)(l) > 0.
It follows from general theory of orthogonal polynomials that all zeros of

P{*? lie in the interval (—1,1), see e.g. [19, 18.2(vi)]. Further, it is known

19, 18.2(vi)] that the zeroes of PT(LO"B) and P'%?) interlace. That is, if we
n+1

write t; 5, for the k-th zero of P}ﬂ’ﬁ),

tn+1,1 < tn,l < tn+1,2 <0 < 75n+1,n71 < 7fn,n < 75n+1,n+1-
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Let us write 6, 1 := arccos(ty, ). If either o, B € [ 5 ;] or a+3 > —1, and
a>—1/2, then the following asymptotic behavior follows from [19, 18.16.6,
18.16.7, and 18.16.8]

(2.13) g = 222 +0 (n7?),

where j, ., denotes the m-th positive zero of the Bessel function of the
first kind J,. Note that throughout this paper we will only have to deal
with situations where «, 8 > —1/2. Consequently, at least one of the two
conditions above will always be satisfied. Taking the cosine of both sides
yields

Jai
(2.14) b =1-355+0(n" %).
The Mehler-Heine formula [19, 18.11.5] describes the asymptotic behavior

of P,(La’ﬁ ) at arguments approaching 1

( 8) 22 L
Precise lower bounds for ¢, , have been obtained recently in [17, 18]. We are
rather interested in an upper bound which can be derived from the Euler-
Rayleigh technique. A simple computation derived from those in [17, 18]
shows that

a+1
nn+a+pB+1)
We conclude this section with the following lemma that describes a certain

monotonicity property of Jacobi polynomials. It was already shown for the
special case of Legendre polynomials in [23, Lemma 2.1].

(2.16) tnn <1 —

Lemma 2.1. Let n > 1 be fized and t € [ty p,1). For k=1,...,n, one has

AP R
IO IEY

(2.17)

consequently P,ga’ﬁ) (t) = 0.

Proof. We show (2.17) by induction with respect to n. For n = 1, we only
have to consider £ = 1. But Pl(a’ﬁ) (t) = 3((a+ B+ 2)t +a— f) so that

ty = 225% while 7 (1) = 1. As o + 5 +2 > 0, it follows that P\
(a,8)

is an increasing linear function and thus 0 < 1]}0" ﬂ)((?) < 1on [t;1,1) and
1

(2.17) is true.
We now assume that (2.17) holds for & < n. It follows from (2.12) that
there exist A,, B, and C,, so that

(c,B) (a,3) (o,B)
Py ()~ = BT 5 Py ()

(;}3) = (Ant + Bn) (a,m( ) Cn (a,/ls) » n=1L2
Pn+1 (1) Pn (1) Pnfl (1)
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The coefficients are expressed in terms of ay,b,,c,,d, and the values of
Jacobi polynomials at 1. We only need to notice that

— (avﬁ) ~ P(aﬁ) 1
A, = P7(1)>0 and ancn (L)

el A,
d, P (1) d, P (1)

Setting t = 1 in the above equation, it follows that 1 = gn + En —C). We
therefore have for every ¢ € [t +1n+1,1) C [tnn, 1)

RO PPy~ PP
= (Ant+ B — G
P (1) Py(1) P27 (1)

. PP~ P
< (An+ By) (m() Cotgy
Py (1) P (1)

since Zn > 0. Using the induction hypothesis and the fact that 5’n >0 we
get

a,f «, a, Q,
B0 7 4 5yl g PO RO

This implies (2.17) with £ = n + 1 and the inductive proof is complete.
Since t,, 5, is the largest zero of P*?) and P,ga’ﬁ)(l) = 1, it follows that
Pr(f"ﬁ) (t) >0 for t € [tyn,1). Consequently, for k =1,...,n, we have

PP PP
PP )~ P

= 0.

O

2.2. Incomplete Beta Functions. For a,b > 0, the beta function is given

by
[ 14, D(a)I'(b)
B((Z,b) —A t 1(1—t)b 1dt— m,

and for = € (0, 1), the incomplete beta function is defined as

B.(a,b) := / 71 — )’ de.
0

It satisfies the following relation [19, 8.17.7]

a

B.(a,b) = %F(a, 1—bja+1;z)

where F' = o F} denotes the hypergeometric function. As the series defining
F converges absolutely for arguments with absolute value less than 1, it
follows that

a

B.(a,b) = % + O(z'19), as z — 0.
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Let 0 > 0. The size of a geodesic cap will depend on

1
/5 (1= +8)dt = 227 By 5 (@ +1,6+1)

(2.18) = w +O((1-6)"2).

3. Two-PoINT HOMOGENEOUS SPACES

3.1. Classification of Two-Point Homogeneous Spaces. In this paper
we consider two-point homogeneous spaces, or, in other terminology, com-
pact globally symmetric spaces of rank 1. A compact Riemannian manifold
M with metric d(-,-) is called two-point homogeneous if for every four points
x1,T2,y1,y2 € M satistying d(x1,z2) = d(y1,y2), there exists an isometry
I : M — M such that I(xz;) = y;, ¢ = 1,2. A full classification of the
two-point homogeneous spaces was given by Wang [24]. The complete list
of two-point homogeneous spaces is given by

(i)  the d-dimensional sphere sS4, d=1,2,3,...,
ii) the real projective space P4(R), d=2,3.4,...,
iii) the complex projective space P4(C), d=4,6,8,...,
iv) the quaternion projective space P4(H), d=8,12,16,...,
v) the Caley projective space P6(Ca).

The superscripts denote the dimension of the corresponding spaces over the
reals. For further reading on this topic, see e.g. Cartan [4], Gangolli [7],
and Helgason [10, 9].

Each space M can be considered as the orbit space of some compact
subgroup H of the orthogonal group G, that isM = G/H. Letn: G — G/H
be the natural mapping and e be the identity of G. The point n := 7(e)
is called the north pole of M. On any such manifold there is an invariant
Riemannian metric d(-,-), and an invariant Haar measure dv.

The geometry of these spaces is in many respects similar. For example, all
geodesics in a given one of these spaces are closed and have the same length
2L. Here L is the diameter of M, i.e., the maximum distance between any
two points. A function on M is called zonal if it only depends on the distance
of its argument from 7. Since the distance of any point of M from 7 is at
most L, it follows that a zonal function can be identified with a function on
[0, L].

Two-point homogeneous spaces admit essentially only one invariant sec-
ond order differential operator, the Laplace-Beltrami operator A. The eigen-
values of A are given by

Ne=—k(k+atB+1), keN,

where V' = 2N (the even integers) when M = P4(R) and ' = Ny otherwise,
and «, 3 are given in (3.20). The corresponding eigenspaces Hy, are of finite
dimension dj, := dim Hy, invariant and irreducible under G and satisfy

L*(M) = P H.

keN
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Let 6 be the distance of a point from 7 and (0, u) € [0, L] x M+ be a geodesic
polar coordinate system, where w is an angular parameter. In this coordinate
system the geodesic component Ay of the Laplace-Beltrami operator A has
the expression

1 d d
3.19 Ag = — | sin(y6/2 0
( ) 0 sin(y6/2)7 sin(y0)r do <Sm(7 /2)7 sin(79)" d9>
where the parameters o and p depend on M and can be found in the following
list [10, p. 171]

(i) St o =0, p=d v=n/L, d=1,2,3...,
i) PYR): o =0, p=d y=m/2L, d=2,3,4...,
(i) PYC): o=d—-2, p=1, y=x/L, d=4,6,8...,
(iv) PYH): o=d—4, p=3, ~v=mxn/L, d=38,12,...,
(v) P(Ca): o=35, p="1, v=m/L.
Next, define
d—2 -1
(3.20) a=—5, and = 'OT
Note that o, 8 > —1/2, and in particular
d _
a+f= ++3 > —1
Further, after a change of variables ¢t = cos(7y - #), (3.19) can be written as
1 d d
! (1—t)0‘(1+t)5dt<( AT

This is just the Jacobi operator, and its eigenfunctions are the Jacobi poly-
nomials P,ga’ﬁ). It follows that the functions {P,ga’ﬁ)(cos(’y d(-,n))) }k N
€

form an orthogonal basis of the space of zonal functions. Here we note that
the real projective spaces are different due to the identification of antipodal
points on S¢ so that only even polynomials appear.

The orthogonality of the Jacobi polynomials also implies that the measure
v factors as follows

dv = dvt (1 — cos(v0))*(1 + cos(y8))Psin(y6) d6.
Let us make the following definition
Y 0,1 if M =PAR).

As we have assumed that v is normalized, it thus follows that

1:/ dv = / dvt / — cos(70))%(1 + cos(v0))"ysin(~0) do
M ML

— /W duvt /I(l—t)o‘(1+t)5dt.

If M # P4(R), it follows by (2.7) that the measure of the non-geodesic part
M is equal to

I'a+B8+2)
20+ FHIT (o + DT + 1)

(3.21) vt(Mt) = =27 (@t B(a 41,8+ 1)
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Moreover, by (2.8) we have
I'2a+2)

(3.22) vHPYR)) = FTaTi? =

47°Bla+1,a+1)7"

3.2. Addition Formula. Let {YJ } , be an orthonormal basis for Hj.
Then the following addition formula can be found in [12]

(3.23) Z Y (2)Y (y) = Dp(M) P (cos(yd(z,y))).

For the proof of our main result we need explicit expressions of Dy (M) and
dj, which we calculate as follows:
First, Setting x =y, the addition formula immediately implies

dp = 21 Z/yw )| dv(z) /Z\Y] )| dv(z)

- / DR () dv(a) = DR (1) v()
(3.24) = DAM)P,E "”(1),
as v is normalized. Note that for every y € M
(325) B (cos(ydlom) e = /OB iz, o).

Now, taking the squared absolute value of both sides in (3.23) and integrat-
ing with respect to dv(z), yields

dy, ‘
SV = Dy / P (cos(yd(z, ) 2 dv(z)
j=1 M

= D MOIE Ny

as the measure v is G/H-invariant. If we then integrate this equation with
respect to y, it follows that

(3.26) dj, = Dk(M)le(Ml)HP,ga’ﬁ)||%aa i
Comparing (3.24) and (3.26) and using (2.10) and (2.7) then yields
P(avﬁ) 1
Dp(M) = 5( )
v L (ML) P ||

5 (Im)
2k +a+pB+1)T (/<:+a+5+1)r(ﬁ+1)
T(k+8+1(a+8+2)
Consequently, we conclude that dimension of the eigenspace corresponding
to the eigenvalue Ay is given by
dp = Dy(M)P7 (1)
Ck+a+pB+DI(k+a+B+1)I(E+a+1)I(B+1)
Rl (o + 5+ 2) F'k+p+1)I'(a+1)
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The following relation, which we infer from (3.24) and (3.26) will be useful
later

P ()
MR sy

1/2
(3.27) 4/ =

3.3. Zonal Functions and Convolutions. For a given point y € M, we
define the space of zonal functions with respect y by

ZP(M,y) == {f € LP(M) : f(z) = F(cos(yd(z,y)))}-
Hence every zonal function f can always be identified with a function F'
defined on Iyj.

As P,ga’ﬁ)(cos(fyd(-,y))) is in the linear span of the basis elements Y}
for every y € M by the addition formula, it follows that the space of zonal
functions in Hy is at least one dimensional. In the following lemma we show
that it is exactly one dimensional.

Lemma 3.1. For k € N, y € M and Z2(M,y) := Hx N Z%(M,y), one has
dim ZZ (M, y) = 1.
Proof. Equation (3.23) implies that dim Z2(M,y) > 1. Moreover,

Z2(M,y) 2 P 22 (M.y) 2 €D span{P™” (cos(vd(-,y)))}.
keN keN

Let us assume to the contrary that there exist f € Z,% (M, y), such that
f L P (eos(yd(-y))):

Then, as all the spaces Hy are orthogonal, one has also
f L PP (cos(vd(-,y)))

for every n € N and consequently

0= (f, B (cos(yd(,y)))reqy = v (M NEPSD) 2, nEN.

It is obvious that {P,(La’ﬁ )}ne A~ is an orthogonal basis for L ,(In) whenever
M # P4(R). If M = P4(R), then, since o = 8 and Pég’a)(—t) = PQ(g’a) (t) by
(2.9), it follows that {P,ﬁo"“)}nemo is an orthogonal basis for the subspace of

all even functions in L2 _(—1,1) and thus also for L2__(0,1). This finally
shows that f = 0. U

As the addition formula holds for arbitrary orthonormal bases and since
every Hj contains a one dimensional subspace of zonal functions, we may
choose the first basis element of each Hj, to be

vig) — B (eostyd(a,m)
k - 3
1P (cos(yd(,m) 2

where 1 € M denotes the north pole. Let us denote the basis coefficients of
. ivd
the orthonormal basis {{Y}/ i1 tken by

(3.28) Flhk ) = /M F (@)Y (@) dpa(x).
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Let g € Zq(M, n) and G its corresponding function on Iy. For f € LP(M)

and 1 —|— = 11) + 3 L we define convolution by

/ f(y)G(cos(yd(z,y))) dv(y), x € M.
Then Young’s convolution inequality states that

1f =+ 2llr < 1 lIpllgllq-

Like in the euclidean case, this notion of convolution admits a convolution
theorem, .e. convolution amounts to a multiplication operator in the do-
main of the basis coefficients of Y]’l‘C This result is known in the special case

of M = S% see e.g. [6, 11, 16].

Theorem 3.2. Let f € L*(M), and g € Z%(M,n), then for every k €
N, jedj,...,dx}, it holds

(Fxg) (ks §) = ()™ - F(k, 5) - Gk, 1).

Proof. For simplicity, we assume that g = Y;!. Then g(k,j) = d;1, and by
(3.23), (3.25) and (3.26) we obtain

(Fro)k.g) = / (f *g)(x)Yg'(x) dv(z)

_ D (cosryd(@.) 55
_ () dv(z) dr(y)
f o HP @ (costrdtm) [ ¢ ’

M>\/ui<Mi>HP,§“ﬂ>H%(IM)
dy ‘
x /M /M ) W @) V) avla) )
= ()2 /M F@Y7 () dvly) = (d) 2 - ik, ) - Gk, 1).

The general result then follows once we recall that dim Z,’?(M) = 1, for
k € N, by Lemma 3.1 and a density argument. O

4. LARGE SIEVE ESTIMATES
Let 0 € Iy and y € M. The geodesic cap centered in y is defined by
Cs(y) :={x e M: cos(vd(z,y)) = d}.

It is easy to see, after a change of variables, that the measure of Cs(y) is
independent of y € M and given by

(4.29) Cs(y)| = v(Cs(y)) = 2P U (M) By_gy o + 1, 8+ 1).

Let K € N. We denote the space of K-finite functions, that is the set of
finite expansions of eigenfunctions of the Laplace-Beltrami operator by

SkM):= & H

keN, k<K
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In the following, we will give concentration estimates for functions from
Sk (M). The main idea is to construct a certain optimal zonal function that
is supported on a geodesic cap, i.e. that belongs to

Z{(M,n) = {g € ZP(M,n) : supp(g) C Cs5(n)}

The following lemma can be shown exactly as in [23, Lemma 3.1]. For the
convenience of our readers we reproduce the proof here.

Lemma 4.1. Let p be a positive o-finite measure on M, and let 1 < p,q < oo
be conjugate exponents. If g € ZI(M,n) \ {0}, then

aso) [ipans s WIS o up cst), 5 e s,
M nesean 1P *gllp ye

Proof. We may assume that convolution with ¢ is invertible on Sy (M).
Otherwise, the first supremum in (4.30) is infinite. Let G' be the function
on Iy that corresponds to g. Since supp(g) C Cs(n), we may write

G(cos(’y d(x,y))) = G(cos(’y d(x,y))) “ XCs(y) (x), z,y € M.

If f* € Sk (M) is the unique function such that f = f* g, then by Holder’s
inequality we have

p

asy [ ipau= | ' | PG (costy dm, ) ey (@) dvio)| dita)

p

< [ [ 15 0P ( [ 16(costr ) avts))” dnta).

From the invariance of the Haar measure v, we infer that for every x € M,

| 16(costr a1 dvta) = [ 16 (costy dln )7 du(z) = gl

Substituting this into (4.31) and changing the order of integration, we obtain

/ fPde < gl / P WP 1(Cs(y)) dv(y)
M M

< gllg - 117115 - sup p(Cs(y))
yeM
[EadiFaEdlE
= . ~[LFIE - sup p(Cs(y))
£ * gllp Poyem
|121IpllglG
< AIFID - sup p(Cs(y))
heSx (M Hh*gllp b yeM
as claimed. O

We denote the best constant in (4.30) by

p p
(4.32) T,(K,5) = inf sup [12llllgllg _
9eZI(Mm) heswem) I1h*gllb

For p = 2 we can explicitly calculate T5(K, ).
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Theorem 4.2. Let M be a two-point homogeneous space and K € N. If
txx <0 <1, then gis = Xcsm) -PI((O"ﬁ)(cos('y d(-,n)) is a minimizer for
the extremal problem (4.32), and the minimum is given by

1 P(a,ﬁ)(t)z -1
(4.33) Ty(K,5) = (#(Mi) / K p(t) dt) .
6

P12
Remark 4.3. According to (2.16), it is enough to have
1
T M <5< 1.

nn+a+pg+1)

Proof. First, we simplify the extremal problem (4.32). Let g € ZZ(M,n) \
{0}. Using the convolution theorem (Theorem 3.2) and Parseval’s identity,
we observe that the quantity we intend to minimize is

—1

K dg
11131913 (k)P - [g(k,
sup T2 5 = sup [lglBlAlE [ D0
hesk [1h*gll3 heSik k=0 j=1
h#0 h#0
s ) o3
- o Tl 1)
K dg R
since Parseval’s relation gives ||hlj3 = Z Z \h(k, 7)|?

k=0 j=1
Next, as g = g - x¢;s, from Cauchy-Schwarz we get that

[9(k, D) = 1{g - xcsm)> Y00l = (95 Xes ) - Ye,0) | < llgll2liXe, o) - Yaill2-

Further, equality occurs for g a constant multiple of gx s := xc;(y) * Yk,1- It

follows that ) )
st T R—

geZ3(M,n) he;fx [h*gl3 — 0<k<K [|gr,sll3

(c,8)

On the other hand, as § > tx i > tp the largest zero of P, "', we have
gr,s = 0. Therefore
h2| g2 20 112
lnf Sup M = lnf Sup M
geZ2(Mn) hese 17+ gll3 9e220Mm) nesy |1 * 913
h#0 550 h+£0
d
— lnf max MH%
ge22(M,n) 0<k<K |g(k,1)|
g/o

But, if g € ZZ(M,n)\ {0} with g > 0, we may write g(z) = G(cos(yd(z,n)))
with G > 0. Then

g(k,1 1
<gc§k)1/)2 - <dk>1/z/Mg<w)Ykl<w> dv(x)
1

B (1)

/MG(cos(’yd(x,n)))P,ga’B)(cos(*yd(x,n))) dv(x)

TR Rt Sl U1

We,5(t) dt.
5 PR )’
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Since tx x < 0 < 1, it follows from Lemma 2.1 that

(aﬁ ~
g(k,1 1 / P (t) g(K, 1)
Lv G(t)——=—wa,p(t)dt = .
<d> Ay P (dx) 172
Therefore
h 2 2 d 2
e wop BB gl
gez2(Mm) hesy Ih*gll3  gez2oam) 19K, 1))
h#0 9=0

and we have already seen that the function that realizes the minumum is
gxk,s for which the minimum is

hl|2 g2 d
i sup IBIOIS _dx
geZI(M 777)h€725'1< Hh*gHz HQK,5H2

It remains to notice that
1
9613 = VL(ML)/J P (4) 20 5(t)dt.

From this, we deduce that

1 —1
e = PP () [P 0t

HQK,5H2

which is precisely T»(K, J). O

We are now able to state our main theorem.

Theorem 4.4. Let M be a two-point homogeneous space, o be given by
(3.20), p be a o-finite measure, Q2 C M be measurable, and tg g < 9§ < 1.
For K € N and every f € Sk, it holds

(4.35)
1 p(ef) 42 -1
[P ans (vee) [ 2w swar) 113 sup et
) PK’ (1)2 yes?
Consequently,
(4.36) (2, K) < Ak - p(Q, K),
where
(4.37)
Lopedy !
AK = 2a+6+1B(1*tK,K)/2(a + 1,,8 + 1) </ Wwa’ﬁ(t) dt s

and By (a,b) is the incomplete beta function.

Proof. Combining Lemma 4.1 and Theorem 4.2 gives (4.35). Taking pu =
xadv in (4.35) and using (4.29) and (1.5), we obtain for f € Sk with
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1fll2 =1

/ Pdr < Ty(E txx) - sup |20 Cop o (1)
Q yeM

N

22 (M) Bty )o@+ 1, B4+ 1) - Ty(K, e )

X sup 12N CtK,K(y)|
yeM |CtK,K (y)|

20+A+lp a+1,6+1
- 00 LIED o k),

1 PP
ftK,K P}?’ﬁ)u)z Wa,B (t) d

which implies (4.36). O

Lemma 4.5. If « and (3 are given by (3.20), then

1 a1 )" 1
4.38 lim Ag = —— [2&) ———
( ) K—oo K Oé+1< 2 > Ja+1(]a71)2

where J, is the Bessel function of the first kind, and jo1 is the smallest
positive zero of the Bessel function J,.

Proof. For simplicity, let us write Px = Pl(f’ﬁ ),

-2

Recall that by (2.13) we have tgx = 1 — ;‘;(12 + O(K~3). Let us first
only consider the integral in (4.37) times the factor (1 — tx x) 17*. The
squared Jacobi polynomial can be rewritten using Taylor’s theorem with the

remainder in the Lagrange form

1 PK(t)2
tK, K PK(1)2

P Pr(L-s(t—tkk)
_/0 PK(1)2 S (2—8(1—tK7K))BdS

(1—trr) 7 (1—)*1+t)at

2 2
1PK(1—;°‘T’128+hKS> 5
2 —s(1—
/0 Pr(1)? s*(2—s(1—tg,k))"ds

Sa(2 — 8(1 — tK7K))ﬁ ds,

ji,l 2 d
/1 Pic(1= 55 5) " + 2hues Pic(66) & Pic(&,)
~Jo Pr(1)?

2K2 2K?2
By (2.10) and (2.11) we have that

, .
where &, € [1 —dadg 1 2o s+th], and hyr = O(K~3) in view of (2.14).

d — —3+ata+2—2a -
g - |1 Piclloo - | g Piclloc - Prc(1) 7% = O(K 3 etet22e) — O(K ),

As |PI(<Q #) )< PI((O"B )(1), it follows that we may apply the dominated con-
Pr(1) |
K«

vergence theorem. Therefore, it follows from the observation that
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1 and the Mehler-Heine formula (2.15) that the integral converges to
2ﬁ+2a 1 . ) 2ﬁ+2a Ja,1 )
/ Ja(]a,l\/g) ds = 2(atD) 2/ SJa(S) ds
0 0
a,l

2ﬁ+2a ja,l
= s (Jals)® = Jac1(5)Jata(s)) .

a,l

200
ja,l

2f+2 , .
= ——5aJa-10ja1)Jat1(ja,1)
ja,l
9B+2a .
= Tja—i—l(ja,l)zy

a,l

where we have used that
2a
—Ja-1(2)Jat1(2) = Ja+1(2)2 - 7‘104(2)‘]04—1—1(2’);

see e.g. [19, 10.6.1]. Note that the anti-derivative of the function sJ,(s)? is
given in [8, 5.54.2].

It remains to study the convergence of the remaining factors defining Ay .
In particular, we have by (2.18) that

28

gatp+1 'B(l—tK,K)/z(Oé +1,8+1)-(1— tK,K)_l_O‘ _ e + O(K—Q(OH-Q)),

which concludes the proof O

Using interpolation with the trivial inequality Ao (€2, K) < 1 when 2 <
p < oo and duality when 1 < p < 2, we can extend (4.36) to the case
1 <p<oo.

Theorem 4.6. Let Q C M be measurable and 1 < p < oco. For K € N, it
holds

fQ /7o min(p—1,1)
M, K)= sup S < (A -p(Q K 1)
5 resi\joy Jgz |fIP do ( (@, K))

As the proof of this theorem works exactly as in [23, Theorem 3.5], we
omit it here.
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