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Abstract

It is common to assume in empirical research that observables and unobserv-
ables are additively separable, especially, when the former are endogenous.
This is done because it is widely recognized that identification and estimation
challenges arise when interactions between the two are allowed for. Starting
from a nonseparable IV model, where the instrumental variable is independent
of unobservables, we develop a novel nonparametric test of separability of un-
observables. The large-sample distribution of the test statistics is nonstandard
and relies on a novel Donsker-type central limit theorem for the empirical dis-
tribution of nonparametric IV residuals. Using a dataset drawn from the 2015
US Consumer Expenditure Survey, we find that the test rejects the separability
in Engel curves for most of the commodities.
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1 Introduction

It is common to assume in empirical research that observables and unobservables are
additively separable, especially when the former are endogenous. This is done be-
cause it is widely recognized that identification and estimation challenges arise when
interactions between the two are allowed for.1 However, the economic theory and con-
siderations often may lead to nonseparable models. Prominent examples are demand
functions, where price or income effects might be heterogeneous in unobserved pref-
erences; production functions, where observed input choices may be heterogeneous
in input choices unobserved by the econometrician; labor supply functions with het-
erogeneous wage effects; wage equations, where the returns to schooling might vary
with unobserved ability; or more generally, treatment effect models, where causal
effects may be heterogeneous in unobservables.

Since a fully nonparametric estimation of the nonseparable model is more chal-
lenging and, at the same time, the separability may rule out the heterogeneity of
marginal effects due to unobservables, detecting separability is desirable in empirical
applications. If the separability is rejected, then the more sophisticated nonseparable
models should not be neglected, while if it turns out that the structural relation is
separable, then the conventional empirical practice is well-justified.

Despite the significant efforts focused on understanding the identification and the
estimation of nonseparable IV models and the popularity of separable IV models in
the empirical practice, little work has been done on developing formal testing proce-
dures that could discriminate empirically between the two. Lu and White (2014) and
Su, Tu, and Ullah (2015) are notable exceptions that develop separability tests un-
der the conditional independence restriction and additional identifying restrictions
imposed by the nonseparable model. The conditional independence restriction is
different from the mean-independence restriction imposed by the separable nonpara-
metric IV model and does not allow justifying the separable nonparametric IV model
that we are interested in here. Other recent specification tests for the nonseparable
model include a monotonicity test of Hoderlein, Su, White, and Yang (2016), an
endogeneity test of Fève, Florens, and Van Keilegom (2018), and a specification test
for the quantile IV regression of Breunig (2020).

1The nonparametric identification of nonseparable models with endogeneity and independent
instrumental variables under different sets of additional restrictions attracts significant attention; see
Chernozhukov and Hansen (2005), Chernozhukov, Imbens, and Newey (2007), Florens, Heckman,
Meghir, and Vytlacil (2008), Torgovitsky (2015), and D’Haultfœuille and Février (2015) among
others. The nonparametric estimation of the nonseparable model may lead to a difficult nonlinear
ill-posed inverse problem; see Carrasco, Florens, and Renault (2007), Horowitz and Lee (2007),
Gagliardini and Scaillet (2012), and Dunker, Florens, Hohage, Johannes, and Mammen (2014).
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In this paper, we design a novel fully nonparametric separability test. Our test
does not rely on the specific identifying restrictions imposed by the nonseparable
model, such as the monotonicity or the rank similarity. The test is based on the
insight that the structural function in the separable model can be estimated us-
ing the nonparametric IV approach.2 If the separable model is correct, then the
nonparametric IV residuals should approximate unobservables independent of the
instrumental variables in the nonseparable IV model. This intuition suggests that it
should be possible to detect the separability with the classical Kolmogorov-Smirnov
or Cramér-von Mises independence tests between the nonparametric IV residuals and
the instrumental variable. To the best of our knowledge, no such test is currently
available in the literature, and it is not known whether the empirical distribution of
the nonparametric IV residuals satisfies the Donsker property.

Formalizing this intuition is far from trivial, since the regression residuals are
different from the true regression errors and the nonparametric IV regression is an
example of an ill-posed inverse problem and requires regularization. Moreover, the
empirical distribution function of the nonparametric IV residuals is a non-smooth
function of the estimated nonparametric IV regression. The weak convergence of
the empirical distribution of regression residuals in the parametric linear case is a
classical problem in statistics; see, e.g., Durbin (1973), Loynes (1980), and Mammen
(1996). The extension to the nonparametric regression is more complex, and it is
remarkable that the empirical distribution of nonparametric regression residuals still
converges weakly as was shown in Akritas and Van Keilegom (2001).3 The limiting
Gaussian process often has a covariance function contaminated by the uncertainty
coming from the fact that residuals are different from the true regression errors.4

The additively separable nonparametric IV regression differs from the problems
discussed above in two important directions. First, its finite-sample and the asymp-
totic performance depend both on the smoothness of the regression function and the
smoothing properties of the conditional expectation operator. Second, it features
an additional dependence between the endogenous regressor and the regression error

2See Florens (2003), Newey and Powell (2003), Hall and Horowitz (2005), Blundell, Chen, and
Kristensen (2007), and Darolles, Fan, Florens, and Renault (2011).

3Note that the weak convergence of the empirical process based on estimated nuisance parameters
is more difficult to achieve than the asymptotic distribution of a low-dimensional parameter in
the presence of nonparametric or high-dimensional nuisance components; see, e.g., Chernozhukov,
Chetverikov, Demirer, Duflo, Hansen, Newey, and Robins (2018) for a recent treatment of the latter
and further references.

4Interestingly, Einmahl and Van Keilegom (2008) show that the independence empirical process
based on the nonparametric regression residuals may lead to a distribution-free test, cf., Blum,
Kiefer, and Rosenblatt (1961).
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that cannot be neglected in large-sample approximations. We show that the empiri-
cal distribution of the nonparametric IV residuals satisfies the Donsker property. To
obtain this result, we rely on the insight that the Tikhonov regularization in Sobolev
spaces, studied recently in Florens, Johannes, and Van Bellegem (2011), Gagliar-
dini and Scaillet (2012), Carrasco, Florens, and Renault (2014), and Gagliardini and
Scaillet (2017),5 provides a natural link between the modern empirical process theory
and the theory of ill-posed inverse problems. Interestingly, our test statistics have
nonstandard limiting distributions that are not free from the nonparametric nuisance
components. We find in Monte Carlo experiments that the standard bootstrap fails,
and we use the subsampling to compute the critical values.

The paper is organized as follows. In Section 2, we present two motivating exam-
ples, where economic considerations lead to nonseparable models with endogeneity
and introduce our separability test. In Section 3, we characterize the large sample
approximation to the distribution of the residual-based independence test statistics
and introduce a resampling procedure to compute its critical values. The results of
Section 3 follow to a large extent from a more fundamental result on the uniform
asymptotic expansion and the Donsker CLT of the empirical distribution of the non-
parametric IV residuals presented in Section 4. The latter provides all the main
insights to the problem in a simplified setting. We report on a Monte Carlo study in
Section 5 which provides insights about the validity of our asymptotic approxima-
tions in finite samples. In Section 6, we test the separability of Engel curves for a
large set of commodities and find that the separability is rejected most of the time.
Conclusions appear in Section 7. All technical details and proofs are collected in the
Appendix. In Appendix A.1, we discuss the regularization of the nonparametric IV
regression in Sobolev scales. Appendix A.2 provides proofs of all results stated in
the main part of the paper.

2 Separability of unobservables

2.1 Two motivating examples

The instrumental variable models with additively separable unobservables constitute
a workhorse of the modern empirical practice. At the same time, the economic
theory often suggests that unobservables may be functionally related to observables
and that the economic effects may be heterogeneous in unobservables; see, e.g.,

5See also Blundell, Chen, and Kristensen (2007), who consider sieve regularization in Sobolev
spaces without the Tikhonov penalization. It is an open question whether the sieve nonparametric
IV estimator admits uniform asymptotic expansions similar to ours.
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Heckman (2001) or Imbens (2007). Structural economic modeling typically leads to
nonseparable unobservables as illustrated below.

Example 2.1 (Demand function). Consider a random utility maximization problem

Q = argmax
q∈RJ : P>q=I

U(q, ε),

where U(., .) is a utility function, Q is a vector of demanded quantities, ε is an indi-
vidual preference variable, unobserved by the econometrician, P is a vector of prices,
and I is an income. The solution to this optimization problem leads to the nonsep-
arable demand functions Qj = Φ(P, I, ε) for each good j = 1, . . . , J , see Brown and
Walker (1989) for more details and Hoderlein and Vanhems (2010) for the welfare
analysis based on the nonseparable model. The nonseparable demand functions may
lead in turn to the nonseparable Engel curves.

Example 2.2 (Production function/frontier). Simar, Vanhems, and Van Keilegom
(2016) consider a production process with unobserved heterogeneity that leads to the
production function/frontier φ such that Y = φ(Z, ε) − U , where Y is an output,
Z are observed inputs, ε is an environmental factor, and U ≥ 0 is a measure of
inefficiency. In this example, the nonseparable model is generated by the fact that
the environmental factor is taken into account along with other input choices by firms
and, at the same time, the former is not observed by the econometrician.

2.2 Separability test

Let (Y, Z,W ) be observed random variables admitting a nonseparable representation

Y = Φ(Z, ε), ε ⊥⊥ W,

where Y is a scalar outcome, Z ∈ Rp are regressors, ε is a scalar unobservable,6

W ∈ Rq is a vector of instrumental variables, and Φ : Rp ×R → R is a structural
function. We assume that W are valid instrumental variables satisfying the exclusion
restriction, ε ⊥⊥ W , and the relevance condition, W 6⊥⊥ Z.

A separability test in this setting can be developed using different approaches.
For instance, one could nonparametrically identify and estimate the nonseparable
model and check the separability, e.g., with a derivative-based statistics. This ap-
proach corresponds to the principle behind the Wald test for parametric models.

6The multidimensional unobservables ξ ∈ Rr can be easily accommodated using the index
structure ε = ξ>γ for some γ ∈ Rr, where ξ may contain product terms to allow for functional
interactions between the unobserved components.
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Alternatively, since the nonparametric identification and estimation of the separable
model is easier, one could estimate the separable model and check the independence
condition of the nonseparable model. This approach corresponds to the principle
behind the Rao’s score test in the parametric setting and is the one adopted in this
paper.

In the nonparametric IV regression, (Y, Z,W ) admit a separable representation

Y = ϕ(Z) + V, E[V |W ] = 0

for some structural function ϕ : Rp → R and unobservable V . The mean-independence
IV restriction implies that the nonparametric IV regression solves the functional
equation

E[Y |W ] = E[ϕ(Z)|W ].

Formally, we are interested in testing the null hypothesis

H0 : Φ(Z, ε) = ψ(Z) + g(ε), for some measurable ψ, g

against the alternative hypothesis, denoted H1, that this is not the case.
To test H0, we assume that the distribution of (Z,W ) is such that the conditional

expectation operator φ 7→ E[φ(Z)|W ] is injective on the space of square-integrable
functions. Let ϕ be the solution to E[Y |W ] = E[ϕ(Z)|W ] and put U , Y − ϕ(Z).
Note that U is a well-defined random variable and that E[U |W ] = 0, even if the
model is nonseparables. Under H0,

Y = ψ(Z) + g(ε)

for some functions ψ, g and ε ⊥⊥ W . By the independence property, E[Y |W ] =
E[ψ(Z) + Eg(ε)|W ], whence we can identify ϕ(Z) = ψ(Z) + Eg(ε) and U = g(ε) −
Eg(ε) by the uniqueness of ϕ. Since ε ⊥⊥ W , under H0, we obtain a testable impli-
cation that U ⊥⊥ W . Note that under the alternative hypothesis when the model
is nonseparable, we have U = h(Z, ε), for some non-degenerate function h of (Z, ε),
which is typically not independent of W , since W are not independent of Z (relevance
condition).

Therefore, we can reduce the problem of testing the separability of unobservables
to the problem of testing the independence between the instrumental variables W
and the nonparametric IV residual U . Our test relies on the completeness condition
commonly used in the nonparametric IV literature, cf., Babii and Florens (2017) and
references therein, and does not require identifying the nonseparable model; see, e.g.,
Chernozhukov and Hansen (2005).
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3 Large sample distribution

3.1 Distribution of statistics

Under the mean-independence IV condition, the structural function ϕ solves the
ill-posed functional equation

r(w) , E[Y |W = w]fW (w) =

∫
ϕ(z)fZW (z, w)dz , (Tϕ)(w),

where T : L2(Rp) → L2(Rq) is an integral operator. We focus on the Tikhonov-
regularized estimator ϕ̂ solving the penalized least-squares problem

ϕ̂ = arg min
φ∈Hs

∥∥∥T̂ φ− r̂∥∥∥2

+ αn‖φ‖2
s, (1)

where (T̂ , r̂) are kernel-smoothed estimators of (T, r), computed using a sample
(Yi, Zi,Wi)

n
i=1, (Hs, ‖.‖s) is a Sobolev space, and ‖.‖ is the L2 norm, see Appendix A.1

for more details.
Following the discussion in Section 2, we consider the independence test between

the nonparametric IV residuals and the instrumental variables. Since the nonpara-
metric IV estimator ϕ̂ is consistent for ϕ, the difference between the estimated resid-
uals Ûi = Yi − ϕ̂(Zi) and the nonparametric IV regression error Ui = Yi − ϕ(Zi)
should become negligible asymptotically. The test-statistics can be built around the
following residual-based independence empirical process

Gn(u,w) =
√
n
(
F̂ÛW (u,w)− F̂Û(u)F̂W (w)

)
,

where F̂ÛW is the empirical distribution function of (Ûi,Wi)
n
i=1 and F̂Û and F̂W are

corresponding marginal empirical distribution functions. We will also use fUZW to
denote the joint density of (U,Z,W ).

The Donsker central limit theorem cannot be applied directly to the process Gn,
since the process is based on the pseudo-observations Ûi. Moreover, the empirical
distribution function depends on residuals in a non-smooth way. Using residuals
instead of the true regression errors leads to the parameter uncertainty problem,
and as the following result shows, it affects the large-sample distribution of the
independence empirical process.

Theorem 3.1. Suppose that Assumptions A.1.1, A.1.2, and A.2.1 are satisfied.
Then uniformly over (u,w) ∈ R×Rq

Gn(u,w) =
1√
n

n∑
i=1

{
1{Ui≤u,Wi≤w}−1{Ui≤u}FW (w)−1{Wi≤w}FU (u)+FUW (u,w)+δi(u,w)

}
+oP (1),
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with
δi(u,w) = Ui

(
T (T ∗T )−1g(u,w, .)

)
(Wi),

g(u,w, z) =

∫ w

fUZW (u, z, v)dv − fUZ(u, z)FW (w).

Note the parameter uncertainty problem disappears when U ⊥⊥ (Z,W ), in which
case g = 0. Heuristically, this explains why the endogeneity in the IV model leads to
the independence empirical process that behaves differently from the one in a simpler
nonparametric conditional mean regression, cf., Einmahl and Van Keilegom (2008).

As a consequence of Theorem 3.1, we obtain the following Donsker-type central
limit theorem.

Corollary 3.1. Suppose that assumptions of Theorem 3.1 are satisfied. Then under
the null hypothesis

Gn  G in L∞(R×Rq),

where (u,w) 7→ G(u,w) is a tight centered Gaussian process with uniformly contin-
uous sample paths and the covariance function

(u,w, u′, w′) 7→ E
[ (

1{U≤u,W≤w} − 1{U≤u}FW (w)− 1{W≤w}FU (u) + FUW (u,w) + δ(u,w)
)
×

×
(
1{U≤u′,W≤w′} − 1{U≤u′}FW (w′)− 1{W≤w′}FU (u′) + FUW (u′, w′) + δ(u′, w′)

) ]
.

Corollary 3.1 allows us to characterize a large-sample approximations to the distri-
bution of the Cramér-von Mises and the Kolmogorov-Smirnov test statistics, defined
as

Tn,2 =

∫∫
|Gn(u,w)|2dF̂ÛW (u,w) and Tn,∞ = sup

u,w
|Gn(u,w)|.

To describe the behavior of both statistics under the alternative hypothesis, put also

d2 =

∫∫
|FUW (u,w)− FU(u)FW (w)|2dFUW (u,w)

d∞ = sup
u,w
|FUW (u,w)− FU(u)FW (w)|.

Corollary 3.2. Suppose that assumptions of Theorem 3.1 are satisfied. Then under
the null hypothesis

Tn,2
d−→
∫∫
|G(u,w)|2dFUW (u,w) and Tn,∞

d−→ sup
u,w
|G(u,w)|,

while under the alternative hypothesis Tn,2
a.s.−−→∞, provided that d2 > 0 and Tn,∞

a.s.−−→
∞, provided that d∞ > 0.
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The asymptotic distribution in both cases is not pivotal, in contrast to the non-
parametric regression without endogeneity cf., Einmahl and Van Keilegom (2008).
While obtaining the distribution-free statistics is possible in simpler residual-based
testing problems, see Escanciano, Pardo-Fernández, and Van Keilegom (2018); these
methods do not seem to extend naturally to our setting. Therefore, the bootstrap
seems to be an attractive alternative that can be used to obtain critical values of our
separability test. Note that for the Kolmogorov-Smirnov statistics, one could also use
the bootstrap approximations of Chernozhukov, Chetverikov, and Kato (2014) and
Chernozhukov, Chetverikov, and Kato (2016) instead of the weak convergence argu-
ments. Interestingly, as we discuss in the following section, the naive nonparametric
and the multiplier bootstrap do not work.

3.2 Critical values

The asymptotic distributions in Corollary 3.1 are nonstandard and depend on several
nuisance nonparametric components. This calls for resampling methods to compute
the critical values. As can be seen from the proof of Theorem 3.1, our uniform
asymptotic expansion relies on the differentiability of the CDF. This leads to a de-
pendence of the asymptotic distribution on the probability density function fUZW
in Corollary 3.1; see also the proof of Theorem 4.1 and Corollary 4.1. Such uniform
asymptotic expansion cannot be obtained in the same way for the bootstrapped
statistics since in the bootstrap world the empirical distribution function is not dif-
ferentiable.

The lack of smoothness of the empirical distribution function suggests that the
standard bootstrap procedures may fail in approximating the asymptotic distribu-
tion of the test statistics. The problem of a similar nature occurs with the bootstrap
of the cube-root consistent estimators; see, e.g., Babii and Kumar (2019) and ref-
erences therein. Another complication with the bootstrap is that we typically need
to resample from the distribution obeying the constraints of the null hypothesis and
that the validity of the bootstrap has to be established case-by-case.7

Consequently, we suggest relying on the subsampling or the m out of n bootstrap
to compute the critical values of the test. The resampling procedure is as follows:

1. Draw a sample of size m from (Yi, Zi,Wi)
n
i=1 without replacements (subsam-

pling) or with replacements (m out of n bootstrap), wherem = mn is a sequence

7Note that the (smoothed) residual bootstrap, cf., Neumeyer and Van Keilegom (2019), does
not preserve the dependence between the endogenous regressor and the unobservables and does not
mimic the data generating process of the IV regression under the null hypothesis. In Section 5, we
find in Monte Carlo experiments that the standard nonparametric bootstrap does not work.
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such that mn →∞ and mn/n→ 0 and as n→∞.

2. Compute the Kolmogorov-Smirnov or the Cramér-von Mises statistics using
the simulated sample.

3. Repeat the first two steps many times and compute the critical values using
empirical quantiles of the statistics over all simulated samples.

An attractive feature of the subsampling is that it is valid for general hypothesis
testing problems; see Politis, Romano, and Wolf (2001), Theorem 3.1., and there is
no need to show its validity in each specific application. An adaptive data-driven
rule to select mn is considered, e.g., Bickel and Sakov (2008).

4 Nonparametric IV regression residuals

In this section, we investigate the behavior of the empirical distribution function of
the nonparametric IV residuals. The uniform asymptotic expansion and the Donsker
central limit theorem obtained in this section are fundamental to our results in the
previous section and illustrate all the main issues. Let ∂u be a partial derivative with
respect to the variable u (corresponding to U). We impose the following conditions
on the distribution of the data and tuning parameters.

Assumption 4.1. (i) ‖∂ufUZ‖∞ <∞ and supu ‖fUZ(u, .)‖κ <∞ with κ > 2a; (ii)

hn → 0 and αn → 0 are such that α
4a
b+a
n nh2q

n →∞, α
2(a+c)
b+a

n nhqn →∞, α
− 4a

b+a
∨1

n nh4t
n →

0, α2
nn → 0, αnnh

p+2q
n → ∞ nh2b

n /αn → 0, and h2t−p−q
n /αn → 0 with c > p/2,

t > q/2, 2s = b− a, b ≥ a and a, b, t, p, q are as in Assumptions A.1.1 and A.1.2.

Assumption 4.1 (i) requires the existence of a uniformly bounded partial deriva-
tive of the joint density fUZ in the unobservable variable and a sufficient degree of
the Sobolev smoothness. The former is standard in the residual-based specification
testing literature, while the latter is standard in the semiparametric literature, where
a sufficient smoothness of nonparametric components is typically needed to achieve
the parametric convergence rate. Given that the strength of the instrument is char-
acterized by the smoothness of the joint density of the regressor and the instrument
fZW , this condition in a sense rules out the extreme endogeneity cases.

Assumption 4.1 (ii) is satisfied whenever the smoothness indices b, t are sufficiently
large compared to a, p, q. To illustrate that conditions on tuning parameters are not
contradictory, suppose for simplicity that p = q = c = 1 and that hn ∼ n−c1 and
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αn ∼ n−c2 for some c1, c2 > 0. Then for b and t large enough, the binding conditions
are c1 < 1/3 and c2 ∈ (1/2, 1− 3c1).

We are interested in the behavior of residual-based empirical distribution function

√
n(F̂Û(u)− FU(u)) ,

√
n

(
1

n

n∑
i=1

1(−∞,u](Ûi)− Pr(U ≤ u)

)
,

where Ûi = Yi − ϕ̂(Zi), i = 1, . . . , n are the nonparametric IV residuals.
The following result shows that the residual empirical process admits a convenient

uniform asymptotic expansion.

Theorem 4.1. Suppose that Assumptions 4.1, A.1.1, and A.1.2, are satisfied. Then
uniformly over u ∈ R

√
n(F̂Û (u)−FU (u)) =

1√
n

n∑
i=1

{
1(−∞,u](Ui)− FU (u) + Ui

[
T (T ∗T )−1fUZ(u, .)

]
(Wi)

}
+oP (1).

The influence function of the empirical distribution of residuals in the nonpara-
metric IV model differs substantially from the one in the nonparametric conditional
mean regression, cf., Akritas and Van Keilegom (2001). One common feature is that
the latter depends on the marginal density of regression errors fU , while the former
features the joint density of unobservables and endogenous regressors fUZ . This is
probably not surprising given that the two are statistically dependent under the en-
dogeneity. In our case, the influence function also depends on the integral operator
T defining an ill-posed nonparametric IV model.

As a consequence of Theorem 4.1, we obtain the following Donsker-type central
limit theorem.

Corollary 4.1. Suppose that assumptions of Theorem 4.1 are satisfied. Then

√
n(F̂Û − FU) H in L∞(R),

where H is a tight centered Gaussian process with uniformly continuous sample paths
and the covariance function

(u, u′) 7→ FU(u ∧ u′)− FU(u)FU(u′)

+ E
[
U2
[
T (T ∗T )−1fUZ(u, .)

]
(W )

[
T (T ∗T )−1fUZ(u′, .)

]
(W )

]
+ E

[
1(−∞,u](U)U

[
T (T ∗T )−1fUZ(u′, .)

]
(W )

]
+ E

[
1(−∞,u′](U)U

[
T (T ∗T )−1fUZ(u, .)

]
(W )

]
.
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Although the nonparametric IV residuals are coming from the estimation of an
ill-posed inverse problem, the empirical distribution still converges to the true dis-
tribution at the square-root n speed. The estimation of residuals, however, affects
the asymptotic distribution in a more complicated way than in the case of the non-
parametric conditional mean regression.

5 Monte Carlo experiments

To evaluate the finite-sample performance of our separability test, we simulate sam-
ples as follows

Y = sin(Z + θε) + ε,

where Z
W
ε

 ∼ N

0
0
0

 ,

 1 0.9 0.3
0.9 1 0
0.3 0 1


The degree of separability is governed by θ ∈ R. The separable model corresponds
to θ = 0, while any θ 6= 0 corresponds to the alternative nonseparable model. Note
that under H1, the nonparametric IV regression does not estimate consistently the
nonseparable structural function (z, e) 7→ sin(z + θe), which depends on unobserv-
ables. The nonparametric IV regression estimates instead the function z 7→ ϕ(z)
solving the functional equation E[Y |W ] = E[ϕ(Z)|W ]. The difference between the
two functions is precisely what gives the power to our test.

We set the number of Monte Carlo replications and the number of bootstrap
replications to 1, 000 through all our experiments. We use the sixth-order Epanech-
nikov kernel to compute r̂ and T̂ as in Eq. A.1. The bandwidth parameter is
computed using Silverman’s rule of thumb, while the regularization parameter is
computed using the data-driven method of Centorrino (2016). Lastly, we use the
adaptive rule of Bickel and Sakov (2008) to estimate the size of the subsample.
The rule consists of choosing m̂j = arg minmj∈M supx |F ∗m(x) − F ∗m+1(x)|, where

M = {bqjnc : j = 0, 1, 2, . . . , 5}, F ∗m denotes the empirical distribution of the simu-
lated statistics using a subsample of size m, bac is the greatest integer less or equal
to a, and q = 0.5.

We look at the distributions of the Kolmogorov-Smirnov statistics, computed as

Tn,∞ = sup
u,w
|Gn(u,w)|
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and at the Cramér-von Mises statistics, computed as

Tn,2 =

∫∫
|Gn(u,w)|2dF̂ÛW (u,w).

Figure 1 shows the distribution of the test statistics under the null hypothesis
and the two alternative hypotheses for different sample sizes. The two distributions
are sufficiently distinct once the alternative hypothesis is sufficiently separated from
the null hypothesis.

In Figure 2, we plot the power curves when the level of the test is fixed at 5%. The
test controls the size, and the power of the test increases once alternative hypotheses
become more distant from the null hypothesis. The Cramér-von Mises test seems to
have a higher power for the class of considered alternatives. The same figure also
indicates that the test is consistent in the sense that its power becomes closer to one
as the sample size increases under H1.

In Figure 3, we explore the performance of the bootstrap. We plot the exact
finite sample distribution of both test statistics and the distribution of bootstrapped
statistics under H0. In panels (a) and (b), we plot the distribution of the naive boot-
strap, drawing a sample of size n randomly with replacements from (Yi, Zi,Wi)

n
i=1. In

panels (c) and (d), we plot the distribution of the m out of n bootstrap.8 The naive
bootstrap mimics neither the distribution of the Kolmogorov-Smirnov statistics nor
the distribution of the Cramér-von Mises statistics. The m out of n bootstrap, on
the other hand, seems to mimic relatively well the finite sample distributions of both
statistics.

6 Testing separability of Engel curves

Engel curves are fundamental for the analysis of consumers’ behavior and have impli-
cations for the aggregate economic outcomes. An Engel curve describes the relation-
ship between the demand for a particular commodity and the household’s budget.
Interesting applications of the estimated Engel curves include a measurement of wel-
fare losses associated with tax distortions in Banks, Blundell, and Lewbel (1997), an
estimation of the growth and the inflation in Nakamura, Steinsson, and Liu (2016),
or an estimation of the income inequality across countries in Alm̊as (2012). Follow-
ing Blundell, Chen, and Kristensen (2007), modern empirical practice focuses on the
separable nonparametric IV approach to the estimation of Engel curves.

8In our experience, the difference between the m out of n bootstrap and the subsampling is
negligible for all practical purposes.
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Figure 1: Finite-sample distribution under H0 and two alternatives.
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Figure 2: Power of the test.

We draw a dataset from the 2015 US Consumer Expenditure Survey; see Babii
(2020) for the estimated Engel curves with the uniform confidence bands using this
dataset. We restrict our attention to married couples with a positive income during
the last 12 months. The dependent variable is a share of expenditures on a partic-
ular commodity while the endogenous regressor is a natural logarithm of the total
expenditures. Following Blundell, Chen, and Kristensen (2007), we instrument the
expenditures using the gross incomes.

In Table 1, we compute the value of the test statistics and the quantiles of order
0.9, 0.95, and 0.99 of the m out of n bootstrapped distribution, where m is selected
adaptively; see Section 5 for more details on the practical implementation of the
test. We report results for both the Kolmogorov-Smirnov (KS) and the Cramér-von
Mises (CvM) tests. Remarkably, the null hypothesis is rejected in all instances at
a 10% significance level and for all commodities, except for the Insurance (KS test)
and the Entertainment (CvM test) at a 5% significance level. This suggests that a
substantial heterogeneity in unobservables might be present in Engel curves.9

9Note that we assume throughout the paper that the nonseparable model is correct in the sense
that the instrumental variable is independent of the unobservables. Under the model misspecifica-
tion our empirical result suggests that the conventional approach to nonseparable modeling should
be reconsidered; see, e.g., Masten and Poirier (2016) for the recent advances.
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Figure 3: Distribution of the test statistics and the distribution statistics obtained
from m out of n bootstrap under H0. Sample size: n = 1, 000.
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Table 1: Testing separability of Engel curves

Kolmogorov-Smirnov Cramér-von Mises
Tn,∞ 0.9 0.95 0.99 Tn,2 0.9 0.95 0.99

Food home 1.895 1.166 1.247 1.473 0.719 0.258 0.309 0.430
Food away 0.847 0.644 0.704 0.811 0.086 0.049 0.057 0.078

Clothing 1.010 0.847 0.921 1.086 0.159 0.084 0.102 0.153
Tobacco 1.176 0.722 0.784 0.883 0.266 0.054 0.065 0.087
Alcohol 1.290 0.708 0.760 0.851 0.351 0.060 0.070 0.102

Trips 0.988 0.675 0.748 0.880 0.202 0.053 0.065 0.098
Entertainment 0.808 0.711 0.780 0.946 0.065 0.056 0.070 0.105

Gas and oil 2.731 0.927 0.989 1.110 1.410 0.803 0.849 0.927
Personal care 0.989 0.794 0.881 1.052 0.127 0.083 0.107 0.149

Health 1.899 0.802 0.867 0.979 0.597 0.086 0.101 0.133
Insurance 1.003 0.967 1.047 1.246 0.221 0.129 0.159 0.228

Reading 1.405 0.694 0.761 0.872 0.365 0.059 0.069 0.104
Transportation 1.198 0.770 0.841 0.965 0.264 0.073 0.088 0.126

7 Conclusion

This paper offers a new perspective on the separability of unobservables in economic
models with endogeneity. Starting from the nonseparable model where the instru-
mental variable is independent of unobservables, our first contribution is to develop a
novel fully nonparametric test of the separability of unobservables. The test is based
on the estimation of a separable nonparametric IV regression and the verification of
the independence restriction imposed by a more general nonseparable IV model.

To obtain a large sample approximation to the distribution of our test statis-
tics, we develop novel uniform asymptotic expansions of the empirical distribution
function of nonparametric IV residuals. We show that, despite the uncertainty com-
ing from an ill-posed inverse nonparametric IV regression, the empirical distribution
function of residuals and the residual-based independence empirical process still sat-
isfy the Donsker central limit theorem. In contrast to the nonparametric regression
without endogeneity, we find that the parameter uncertainty affects the asymptotic
distribution of the residual-based independence test, which is nonstandard. In our
Monte Carlo experiments, we find that the bootstrap fails in approximating the dis-
tribution of our test statistics under the null hypothesis; hence we rely on the m out
of n bootstrap (or subsampling) procedure to compute its critical values.

Using the 2015 US Consumer Expenditure Survey data, we find that the test
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rejects the separability of Engel curves for most of the commodities at the commonly
accepted significance levels. This indicates that there might be heterogeneity in
unobservables and that the nonseparable modeling of Engel curves may be beneficial.

The paper offers several directions for future research. First, it might be inter-
esting to test the separability of unobservables in other structural relations that are
commonly estimated using the additively separable models in the empirical practice,
such as the production function, the labor supply function, or the wage equation.
Second, given the plethora of the residual-based specification tests for regression
models without endogeneity, our results could also be used to develop similar tests
for econometric models with endogeneity; see, e.g., Dette, Neumeyer, and Keilegom
(2007) for a heteroskedasticity test, Pardo-Fernández, Van Keilegom, and González-
Manteiga (2007) for a test of the equality of regression curves, and Escanciano,
Pardo-Fernández, and Van Keilegom (2018) for more general semiparametric speci-
fication tests.
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APPENDIX

A.1 Tikhonov regularization in Sobolev scales

The asymptotic theory developed in this paper relies heavily on the empirical process
theory. Our first insight is that the regularization in Sobolev spaces provides a
natural link between the empirical process theory and the theory of the regularization
of ill-posed inverse problems. Consequently, we focus on the Tikhonov-regularized
estimator penalized by the Sobolev-norm. The idea of the penalization by derivatives
in the ill-posed inverse literature dates back to the original work of Tikhonov (1963);
see Florens, Johannes, and Van Bellegem (2011), Gagliardini and Scaillet (2012), and
Carrasco, Florens, and Renault (2014) for the recent developments in econometrics.
Another attractive feature of the regularization in Sobolev spaces is that it allows
us to overcome the saturation effect of the classical Tikhonov regularization, cf.,
Darolles, Fan, Florens, and Renault (2011).

Let (L2(Rp), ‖.‖) denote the space of functions square-integrable with respect to
the Lebesgue measure. Let 〈x〉s , (1 + |x|2)s/2 be a polynomial weight function
with s ∈ R, where |.| is a Euclidean norm on Rp. Consider the operator Lsf =
F−1(〈.〉sFf) defined for all f such that ‖〈.〉2Ff‖ <∞, where F is a Fourier transform
on L2(Rp) with scaling (2π)−p/2. The self-adjoint operator L generates a Hilbert scale
of Sobolev spaces

Hs(Rp) =
{
f ∈ L2(Rp) : ‖f‖s , ‖Lsf‖ <∞

}
;

see Krein and Petunin (1966) for more details on Banach and Hilbert scales.
Consider an ill-posed inverse problem Tϕ = r, where ϕ ∈ L2(Rp) is a structural

function of interest and T : L2(Rp) → L2(Rq) is an operator. We impose the
following assumption on T and ϕ.

Assumption A.1.1. For some a, b > 0

(i) Operator smoothing: ‖Tφ‖ ∼ ‖φ‖−a for all φ ∈ L2(Rp).

(ii) Parameter smoothness: ϕ ∈ Hb(Rp).

Assumption A.1.1 (i) restricts smoothing properties of the operator T . Roughly
speaking, the action of the operator T increases the Sobolev smoothness by a. The
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number a is called the degree of ill-posedness, since the more the operator T smooths
out features of the function, the harder it is to recover it. Assumption A.1.1 (ii)
restricts the smoothness of the structural function ϕ and is standard in the theory
of nonparametric estimation.

Our first result is a risk bound in the Sobolev norm for the Tikhonov-regularized
estimator in Eq. 1, where T̂ and r̂ are some estimators of T and r such that T̂ ∗T̂ is
a bounded linear self-adjoint operator. The problem in Eq. 1 admits the closed-form
solution

ϕ̂ = L−s(αnI + T̂ ∗s T̂s)
−1T̂ ∗s r̂,

where T̂s = T̂L−s and T̂ ∗s is the adjoint operator to T̂s. The following result can be
understood as the extension of Carrasco, Florens, and Renault (2014), Proposition
3.1 to the case of unknown operator.

Theorem A.1. Suppose that Assumption A.1.1 is satisfied with s ≥ (b − a)/2 and
that ‖T̂ − T‖2 .P αn. Then for every c ∈ [0, s]

‖ϕ̂− ϕ‖2
c .P α

− a+c
a+s

n

∥∥∥r̂ − T̂ϕ∥∥∥2

+ α
b−c
a+s
n .

Proof. Decompose
ϕ̂− ϕ = In + IIn + IIIn + IVn + Vn,

with

In = L−s(αnI + T ∗s Ts)
−1T ∗s (r̂ − T̂ϕ)

IIn = L−s(αnI + T ∗s Ts)
−1(T̂ ∗s − T ∗s )(r̂ − T̂ϕ)

IIIn = L−s
[
(αnI + T̂ ∗s T̂s)

−1 − (αnI + T ∗s Ts)
−1
]
T̂ ∗s (r̂ − T̂ϕ)

IVn = L−s(αnI + T̂ ∗s T̂s)
−1T̂ ∗s T̂sL

sϕ− L−s(αnI + T ∗s Ts)
−1T ∗s TsL

sϕ

Vn = L−s(αnI + T ∗s Ts)
−1T ∗s TsL

sϕ− ϕ.

For the first term, by Engl, Hanke, and Neubauer (1996), Corollary 8.22

‖In‖2
c =

∥∥∥(αnI + T ∗s Ts)
−1T ∗s (r̂ − T̂ϕ)

∥∥∥2

c−s

.
∥∥∥(T ∗s Ts)

s−c
2(a+s) (αnI + T ∗s Ts)

−1T ∗s

∥∥∥2 ∥∥∥(r̂ − T̂ϕ)
∥∥∥2

. sup
λ

∣∣∣∣∣λ
2s+a−c
2(a+s)

αn + λ

∣∣∣∣∣
2

. α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ∥∥∥2

.
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Similarly,

‖IIn‖2
c =

∥∥∥(αnI + T ∗s Ts)
−1(T̂ ∗s − T ∗s )(r̂ − T̂ϕ)

∥∥∥2

c−s

.
∥∥∥(T ∗s Ts)

s−c
2(a+s) (αnI + T ∗s Ts)

−1
∥∥∥2

‖T̂ ∗ − T ∗‖2
∥∥∥r̂ − T̂ϕ∥∥∥2

.P α
− 2a+s+c

a+s
n αn

∥∥∥r̂ − T̂ϕ∥∥∥2

. α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ∥∥∥2

.

Since Lsϕ ∈ Hb−s and s ≥ (b − a)/2, by Engl, Hanke, and Neubauer (1996),

Corollary 8.22, there exists a function ψ ∈ L2(Rp) such that Lsϕ = (T ∗s Ts)
b−s

2(a+s)ψ.
Then

‖Vn‖2
c =

∥∥(αnI + T ∗s Ts)
−1T ∗s TsL

sϕ− Lsϕ
∥∥
c−s

=
∥∥αn(αnI + T ∗s Ts)

−1Lsϕ
∥∥2

c−s

.
∥∥∥αn(T ∗s Ts)

s−c
2(a+s) (αnI + T ∗s Ts)

−1(T ∗s Ts)
b−s

2(a+s)ψ
∥∥∥2

≤ sup
λ

∣∣∣∣∣αnλ
b−c

2(a+s)

αn + λ

∣∣∣∣∣
2

‖ψ‖2

= O

(
α

b−c
a+s
n

)
.

Next, decompose

‖IIIn‖2
c =

∥∥∥[(αnI + T ∗s Ts)
−1 − (αnI + T̂ ∗s T̂s)

−1
]
T̂ ∗s (r̂ − T̂ϕ)

∥∥∥2

c−s

=
∥∥∥(αnI + T ∗s Ts)

−1(T̂ ∗s T̂s − T ∗s Ts)(αnI + T̂ ∗s T̂s)
−1T̂ ∗s (r̂ − T̂ϕ)

∥∥∥2

c−s

. R1n +R2n

with

R1n =
∥∥∥(T ∗s Ts)

s−c
2(a+s) (αnI + T ∗s Ts)

−1T ∗s (T̂s − Ts)(αnI + T̂ ∗s T̂s)
−1T̂ ∗s (r̂ − T̂ϕ)

∥∥∥2

.
∥∥∥(T ∗s Ts)

s−c
2(a+s) (αnI + T ∗s Ts)

−1T ∗s

∥∥∥2 ∥∥∥T̂s − Ts∥∥∥2

α−1
n

∥∥∥r̂ − T̂ϕ∥∥∥2

.P α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ∥∥∥2
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and

R2n =
∥∥∥(T ∗s Ts)

s−c
2(a+s) (αnI + T ∗s Ts)

−1(T̂ ∗s − T ∗s )T̂s(αnI + T̂ ∗s T̂s)
−1T̂ ∗s (r̂ − T̂ϕ)

∥∥∥2

≤
∥∥∥(T ∗s Ts)

s−c
2(a+s) (αnI + T ∗s Ts)

−1
∥∥∥2 ∥∥∥T̂ ∗s − T ∗s ∥∥∥2 ∥∥∥r̂ − T̂ϕ∥∥∥2

.P α
− 2a+c+s

a+s
n αn

∥∥∥r̂ − T̂ϕ∥∥∥2

.P α
− a+c

a+s
n

∥∥∥r̂ − T̂ϕ∥∥∥2

.

Lastly, decompose

‖IVn‖2
c =

∥∥∥αn [(αnI + T̂ ∗s T̂s)
−1 − (αnI + T̂ ∗s T̂s)

−1
]
Lsϕ

∥∥∥2

c−s

.
∥∥∥(αnI + T̂ ∗s T̂s)

−1
(
T̂ ∗s T̂s − T ∗s Ts

)
αn(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥2

c−s

≤ 2S1n + 2S2n

with

S1n =
∥∥∥(αnI + T̂ ∗s T̂s)

−1T̂ ∗s

(
T̂s − Ts

)
αn(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥2

c−s

.
∥∥∥(αnI + T̂ ∗s T̂s)

−1T̂ ∗s

∥∥∥2 ∥∥∥T̂ − T∥∥∥2 ∥∥αn(αnI + T ∗s Ts)
−1Lsϕ

∥∥2

−s

.
∥∥∥αn(T ∗s Ts)

s
2(a+s) (αnI + T ∗s Ts)

−1(T ∗s Ts)
b−s

2(a+s)ψ
∥∥∥2

. sup
λ

∣∣∣∣∣αnλ
b

2(a+s)

αn + λ

∣∣∣∣∣
2

. α
b

a+s
n

and

S2n =
∥∥∥(αnI + T̂ ∗T̂ )−1

(
T̂ ∗ − T ∗

)
αnTs(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥2

c−s

≤
∥∥∥(T ∗s Ts)

− c−s
2(a+s) (αnI + T̂ ∗s T̂s)

−1
∥∥∥2 ∥∥∥T̂ ∗ − T ∗∥∥∥2 ∥∥∥αnTs(αnI + T ∗s Ts)

−1(T ∗s Ts)
b−s

2(a+s)ψ
∥∥∥2

.P α
− 2a+s+c

a+s
n

∥∥∥T̂ − T∥∥∥2

α
b+a
a+s
n

.P α
b−c
a+s
n .
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The result follows from combining all estimates together.

It is worth emphasizing that our risk bound is not specific to the nonparametric IV
regression. This result is of independent interest since it can be specialized to obtain
convergence rates of derivatives of arbitrary nonparametric estimators of T̂ and r̂
that have known L2 convergence rates, including the machine learning estimators
that become increasingly popular.

Next, we specialize the generic risk bound in Theorem A.1 to the nonparametric
IV regression with r and T estimated as

r̂(w) =
1

nhqn

n∑
i=1

YiKw

(
h−1
n (Wi − w)

)
(T̂ φ)(w) =

∫
φ(z)f̂ZW (z, w)dz, φ ∈ L2(Rp)

f̂ZW (z, w) =
1

nhp+qn

n∑
i=1

Kz

(
h−1
n (Zi − z)

)
Kw

(
h−1
n (Wi − w)

)
,

(A.1)

where Kz : Rp → R and Kw : Rq → R are kernel functions and hn → 0 is a
sequence of bandwidth parameters. We introduce several additional restrictions on
the distribution of the data and the kernel functions.

Assumption A.1.2. (i) (Yi, Zi,Wi)
n
i=1 are i.i.d. observations of (Y, Z,W ) ∈ R ×

Rp × Rq admitting Lebesgue density such that E‖W‖ < ∞, E‖Z‖ < ∞, and
E [U2|W ] ≤ C < ∞; (ii) fZ , fW , fZW , fU |Z ∈ L∞ and fZ , fZW ∈ L2; (iii) fZW ∈
H t(Rp+q) for some t > 0; (iv) Kz and Kw products of a univariate right (or left)
continuous kernel K ∈ L2(R) ∩ L∞(R) of bounded variation with

∫
K(u)du = 1,∫

|u|l|K(u)|du <∞, and
∫
ukK(u)du = 0 for k ∈ {1, . . . , l} and l ≥ t.

Assumption A.1.2 (i)-(ii) features some mild restrictions on the distribution of
the data. Assumption A.1.2 (iii)-(iv) involves a smoothness condition and conditions
on the kernel functions that are standard in the non-parametric estimation based on
the kernel smoothing.

The following risk bound will be used in the subsequent section to characterize
the asymptotic distribution of our separability test and to control remainders in the
uniform asymptotic expansions of the residual empirical process.

Corollary A.1.1. Suppose that Assumptions A.1.1 and A.1.2 are satisfied, 1

nhp+q
n
∨

h2t
n = O (αn), and 2s = b− a. Then for every c ∈ [0, s]

‖ϕ̂− ϕ‖2
c = OP

(
α
− 2(a+c)

b+a
n

(
1

nhqn
+ h2t

n

)
+ α

2(b−c)
b+a

n

)
.
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Proof. By the Cauchy-Schwartz inequality∥∥∥T̂ − T∥∥∥2

≤
∥∥∥f̂ZW − fZW∥∥∥2

= O

(
1

nhp+qn

+ h2t
n

)
,

where the second line follows from the well-known risk bound; see, e.g., Giné and
Nickl (2016) under Assumption A.1.2 (i), (iii)-(iv). Therefore, by Theorem A.1

‖ϕ̂− ϕ‖2
c .P α

− a+c
a+s

n

∥∥∥r̂ − T̂ϕ∥∥∥2

+ α
b−c
a+s
n .

The proof of

E
∥∥∥r̂ − T̂ϕ∥∥∥2

= O

(
1

nhqn
+ h2t

n

)
.

can be found in Babii and Florens (2017).

A.2 Proofs of main results

We prove first a supplementary lemma, which is used to establish the uniform asymp-
totic expansions in Theorem 3.1 and Theorem 4.1.

Lemma A.2.1. Suppose that Assumptions 4.1, A.1.1, and A.1.2 are satisfied. Then

sup
u

∣∣∣F̂Û(u)− F̂U(u)− Pr(U ≤ u+ ∆̂(Z)|X ) + FU(u)
∣∣∣ = oP

(
n−1/2

)
, (A.2)

where ∆̂ = ϕ̂− ϕ and X = (Yi, Zi,Wi)
∞
i=1.

Proof. The main idea of the proof is to embed the process inside the supremum
into an empirical process indexed by u and a Sobolev ball containing ∆̂ with a
probability tending to one. The latter property follows from the consistency of the
nonparametric IV estimator in the Sobolev norm; see Corollary A.1.1. We first show
that the process is Donsker, whence the supremum in Eq. A.2 is OP (n−1/2). Finally,
the required oP (n−1/2) order will follow from the fact that the process is degenerate.

Let Hc
M be a ball of radius M <∞ in the Sobolev space Hc(Rp). For u ∈ R and

∆ ∈ Hc
M , define

fu,∆(U,Z) = 1(−∞,u+∆(Z)](U)
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and
G1 = {fu,∆ : u ∈ R,∆ ∈ Hc

M(Rp)}
G2 = {fu,0 : u ∈ R}
G = G1 − G2.

Note that G2 is a classical Donsker class of indicator functions. If we can show
that G1 is Donsker, then G will be Donsker as a sum of two Donsker classes; see
Van Der Vaart and Wellner (2000), Theorem 2.10.6. To this end, we check that
the bracketing entropy condition is satisfied for G1. By Nickl and Pötscher (2007),
Corollary 4, under Assumption A.1.2 (i), the bracketing number of Hc

M satisfies

logN[ ](ε,H
c
M , ‖.‖L2

Z
) .

{
ε−p/c c < (p+ 1)/2

ε−2p/(p+1) c ≥ (p+ 1)/2
,

where (L2
Z , ‖.‖L2

Z
) denotes the space of functions, square-integrable with respect to

fZ . Put Mε = N[ ](ε,H
c
M , ‖.‖L2

Z
) and fix u ∈ R. Let

[
∆j,∆j

]Mε

j=1
be a collection

of ε-brackets for Hc
M , i.e., for any ∆ ∈ Hc

M , there exists 1 ≤ j ≤ Mε such that
∆j ≤ ∆ ≤ ∆j and

∥∥∆j −∆j

∥∥
L2
Z

≤ ε, and whence

1(−∞,u+∆j]
≤ 1(−∞,u+∆] ≤ 1(−∞,u+∆j].

Now for each 1 ≤ j ≤ Mε, partition the real line into intervals defined by grids of
points −∞ = uj,1 < uj,2 < · · · < uj,M1ε

=∞ and −∞ = uj,1 < uj,2 < · · · < uj,M2ε =
∞, so that each segment has probabilities

Pr
(
U −∆j(Z) ≤ uj,k−1

)
− Pr

(
U −∆j(Z) ≤ uj,k

)
≤ ε2/2, 2 ≤ k ≤ 2

ε2
,M1ε,

Pr
(
U −∆j(Z) ≤ uj,k−1

)
− Pr

(
U −∆j(Z) ≤ uj,k

)
≤ ε2/2, 2 ≤ k ≤ 2

ε2
,M2ε.

Denote the largest uj,k such that uj,k ≤ u by u∗j and the smallest uj,k such that

u ≤ ujk by u∗j . Consider the following family of brackets[
1(−∞,u∗j+∆j]

,1(−∞,u∗j+∆j]

]Mε

j=1
.
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Under Assumption A.1.2 (ii)∥∥∥1(−∞,u∗j+∆j] − 1(−∞,u∗j+∆j]

∥∥∥2

L2
Z

= Pr
(
u∗j + ∆j(Z) ≤ U ≤ u∗j + ∆j(Z)

)
≤ Pr

(
u+ ∆j(Z) ≤ U ≤ u+ ∆j(Z)

)
+ ε2

=

∫ {∫ u+∆j(z)

u+∆j(z)

fU |Z(u|z)du

}
fZ(z)dz + ε2

≤
∥∥∆j −∆j

∥∥
L2
Z

‖fU |Z‖∞ + ε2 = O
(
ε2
)
.

Therefore, we constructed brackets of size O(ε), covering G1, and we have used at
most O (ε−2Mε) such brackets. Since c > p/2, the bracketing integral converges10∫ 1

0

√
logN[ ](ε,G, ‖.‖L2

Z
)dε <∞.

Therefore, the empirical process

√
n(Pn − P )g, g ∈ G

is asymptotically equicontinuous; see Van Der Vaart and Wellner (2000), Theorem
1.5.7, i.e., for any ε > 0

lim
δ↓0

lim sup
n→∞

Pr∗

(
sup

f,g∈G: ρ(f−g)<δ
|
√
n(Pn − P )(f − g)| > ε

)
= 0, (A.3)

where Pr∗ denotes the outer probability measure. Now, we show that for every u ∈ R

ρ2(f̂u) = E[f̂ 2
u ]− (E[f̂u])

2 = oP (1)

with f̂u = 1(−∞,u+∆̂(Z)](U) − 1(−∞,u](U), where the expectation is computed with
respect to (U,Z) only. Indeed,

E[f̂u] = Pr(u ≤ U ≤ u+ ∆̂(Z)|X )

=

∫ ∫ u+∆̂(z)

u

fU |Z(v|z)dvfZ(z)dz

≤ ‖fU |Z‖∞‖fZ‖‖∆̂‖
= oP (1),

10Note that for ε > 1, N[ ](ε,G, ‖.‖L2
Z

) = 1, since a single bracket [0, 1] contains all g ∈ G.
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where the third line follows by the Cauchy-Schwartz inequality and Corollary A.1.1
under Assumptions 4.1, A.1.1, and A.1.2. Similarly,

E[f̂ 2
u ] = Pr(U ≤ u+ ∆̂(Z)|X ) + Pr(U ≤ u)− 2 Pr(U ≤ (u+ ∆̂(Z)) ∧ u|X )

≤
∫ ∫ u+∆̂(z)

u

fU |Z(v|z)dvfZ(z)dz

. ‖∆̂‖
= oP (1).

Lastly, let ‖ν̂n‖∞ denote the supremum in Eq A.2. Then

Pr∗(
√
n‖ν̂n‖∞ > ε) ≤ Pr∗

(√
n‖ν̂n‖∞ > ε, ρ(f̂u) < δ, ∆̂ ∈ Hc

M

)
+ Pr∗

(
ρ(f̂u) ≥ δ

)
+ Pr∗

(
∆̂ 6∈ Hc

M

)
,

where the second probability tends to zero as we have just shown and the last prob-
ability tends to zero since under the maintained assumptions, by Corollary A.1.1,
‖ϕ̂−ϕ‖c = oP (1). Therefore, it follows from the asymptotic equicontinuity in Eq. A.3
that

lim sup
n→∞

Pr∗(
√
n‖ν̂n‖∞ > ε) = 0,

which concludes the proof.

Proof of Theorem 4.1. By Lemma A.2.1, the following expansion holds uniformly in
u ∈ R

√
n(F̂Û(u)−FU(u)) =

√
n(F̂U(u)−FU(u))+

√
n
(

Pr
(
U ≤ u+ ∆̂(Z)|X

)
− FU(u)

)
+oP (1).

By Taylor’s theorem, there exists some τ ∈ [0, 1] such that

√
n
(

Pr
(
U ≤ u+ ∆̂(Z)|X

)
− Pr(U ≤ u)

)
=
√
n

∫ {∫ u+∆̂(z)

−∞
fUZ(v, z)dv −

∫ u

−∞
fUZ(v, z)dv

}
dz

=
√
n

∫ {
fUZ(u, z)∆̂(z) +

1

2
∂ufUZ(u+ τ∆̂(z), z)∆̂2(z)

}
dz

=
√
n〈ϕ̂− ϕ, fUZ(u, .)〉+

√
n

1

2

∫
∂ufUZ(u+ τ∆̂(z), z)∆̂2(z)dz

, T1n(u) + T2n(u).
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Under Assumption 4.1

‖T2n‖∞ ≤ ‖∂ufUZ‖∞
√
n‖ϕ̂− ϕ‖2

= oP (1).

Next, similarly to the proof of Theorem A.1, decompose

T1n(u) =
√
n〈ϕ̂− ϕ, fUZ(u, .)〉

, In(u) + IIn(u) + IIIn(u)

with

In(u) =
√
n
〈
L−s(αnI + T̂ ∗s T̂s)

−1T̂ ∗s (r̂ − T̂ϕ), fUZ(u, .)
〉

IIn(u) =
√
n
〈
L−s(αnI + T̂ ∗s T̂s)

−1T̂ ∗s T̂sL
sϕ− L−s(αnI + T ∗s Ts)

−1T ∗s TsL
sϕ, fUZ(u, .)

〉
IIIn(u) =

√
n
〈
L−s(αnI + T ∗s Ts)

−1T ∗s TsL
sϕ− ϕ, fUZ(u, .)

〉
.

We show below that IIn and IIIn are negligible. First,

‖IIIn‖∞ =
√
n sup

u

∣∣〈L−(a+s)
[
(αnI + T ∗s Ts)

−1T ∗s Ts − I
]
Lsϕ,LafUZ(u, .)

〉∣∣
.
√
n
∥∥[(αnI + T ∗s Ts)

−1T ∗s Ts − I
]
Lsϕ

∥∥
−(a+s)

.
√
n
∥∥∥(T ∗s Ts)

1/2αn(αnI + T ∗s Ts)
−1(T ∗s Ts)

b−s
2(a+s)ψ

∥∥∥
.
√
n sup

λ

∣∣∣∣∣αnλ
b−s

2(a+s)
+ 1

2

αn + λ

∣∣∣∣∣ ‖ψ‖
=
√
n sup

λ

∣∣∣∣ αnλ

αn + λ

∣∣∣∣ ‖ψ‖
= O

(√
nαn

)
= o(1),

where the first line follows since L is self-adjoint and LafUZ(u, .) exists, the second by
the Cauchy-Schwartz inequality and Assumption 4.1 (i), the third by Engl, Hanke,
and Neubauer (1996), Corollary 8.22. for some ψ ∈ L2(Rp), the fourth by the
isometry of the functional calculus, the fifth by 2s = b − a, and the last since
nα2

n → 0 under Assumption 4.1 (ii).
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Next,

‖IIn‖∞ =
√
n sup

u

∣∣∣〈L−sαn [(αnI + T̂ ∗s T̂s)
−1 − (αnI + T̂ ∗s T̂s)

−1
]
Lsϕ, fUZ(u, .)

〉∣∣∣
=
√
n sup

u

∣∣∣〈L−s(αnI + T̂ ∗s T̂s)
−1
(
T̂ ∗s T̂s − T ∗s Ts

)
αn(αnI + T ∗s Ts)

−1Lsϕ, fUZ(u, .)
〉∣∣∣

.
√
n
∥∥∥(αnI + T̂ ∗s T̂s)

−1
(
T̂ ∗s T̂s − T ∗s Ts

)
αn(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥
−(a+s)

≤ 2S1n + 2S2n

with

S1n =
√
n
∥∥∥(αnI + T̂ ∗s T̂s)

−1T̂ ∗s

(
T̂s − Ts

)
αn(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥
−(a+s)

.
√
n
∥∥∥Ts(αnI + T̂ ∗s T̂s)

−1T̂ ∗s

(
T̂s − Ts

)
αn(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥

.P
√
nα1/2

n

∥∥∥αn(αnI + T ∗s Ts)
−1(T ∗s Ts)

b−s
2(a+s)ψ

∥∥∥
.P
√
nαn

= oP (1)

and

S2n =
√
n
∥∥∥(αnI + T̂ ∗s T̂s)

−1
(
T̂ ∗s − T ∗s

)
αnTs(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥
−(a+s)

.
√
n
∥∥∥Ts(αnI + T̂ ∗s T̂s)

−1
(
T̂ ∗s − T ∗s

)
αnTs(αnI + T ∗s Ts)

−1Lsϕ
∥∥∥

.P
√
n
∥∥αnTs(αnI + T ∗s Ts)

−1Lsϕ
∥∥

.P
√
nαn

= oP (1),

where the second line follows by Engl, Hanke, and Neubauer (1996), Corollary 8.22,

the third since ‖T̂ − T‖ .P α1/2
n , and the last by computations similar to the proof

of Theorem A.1 and 2s = b− a.
Next, decompose

In(u) =
√
n
〈

(αnI + T̂ ∗T̂ )−1T̂ ∗(r̂ − T̂ϕ), fUZ(u, .)
〉

=
√
n
〈
r̂ − T̂ϕ, T (αnI + T ∗T )−1fUZ(u, .)

〉
+R1n(u) +R2n(u)

with

R1n(u) =
√
n
〈
r̂ − T̂ϕ, (T̂ − T )(αnI + T ∗T )−1fUZ(u, .)

〉
R2n(u) =

√
n
〈
r̂ − T̂ϕ, T̂

[
(αnI + T̂ ∗T̂ )−1 − (αnI + T ∗T )−1

]
fUZ(u, .)

〉
.
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By the Cauchy-Schwartz inequality, we bound the first remainder term as

‖R1n‖∞ ≤
√
n‖r̂ − T̂ϕ‖‖T̂ − T‖‖(αnI + T ∗T )−1(T ∗T )1/2‖ sup

u
‖(T ∗T )−1/2fUZ(u, .)‖

.P
√
n‖r̂ − T̂ϕ‖‖T̂ − T‖α−1/2

n sup
u
‖fUZ(u, .)‖a

.P
√
n‖r̂ − T̂ϕ‖‖T̂ − T‖α−1/2

n

.P
√
n

(
1√
nhqn

+ htn

)(
1√
nhp+qn

+ htn

)
α−1/2
n

= oP (1),

where the second line follows by Engl, Hanke, and Neubauer (1996), Corollary 8.22.,
the third under Assumption 4.1 (i), the fourth from the proof of Corollary A.1.1,
and the last under Assumption 4.1 (ii).

The second remainder term is decomposed as R2n(u) = −RI
2n(u)−RII

2n(u) with

RI
2n(u) =

√
n
〈
r̂ − T̂ϕ, T̂ (αnI + T̂ ∗T̂ )−1T̂ ∗(T̂ − T )(αnI + T ∗T )−1fUZ(u, .)

〉
RII

2n(u) =
√
n
〈
r̂ − T̂ϕ, T̂ (αnI + T̂ ∗T̂ )−1(T̂ ∗ − T ∗)T (αnI + T ∗T )−1fUZ(u, .)

〉
,

where we bound in the same way as ‖R1n‖∞

‖RI
2n‖∞ ≤

√
n‖r̂ − T̂ϕ‖‖T̂ (αnI + T̂ ∗T̂ )−1T̂ ∗‖‖T̂ − T‖‖(αnI + T ∗T )−1fUZ(u, .)‖

.
√
n‖r̂ − T̂ϕ‖‖T̂ − T‖α−1/2

n

= oP (1)

and

‖RII
2n‖∞ ≤

√
n‖r̂ − T̂ϕ‖‖T̂ (αnI + T̂ ∗T̂ )−1‖‖T̂ ∗ − T ∗‖‖T (αnI + T ∗T )−1fUZ(u, .)‖

.
√
n‖r̂ − T̂ϕ‖α−1/2

n ‖T̂ − T‖
= oP (1).

Therefore, uniformly over u ∈ R

In(u) =
√
n
〈
T ∗(r̂ − T̂ϕ), (αnI + T ∗T )−1fUZ(u, .)

〉
+ oP (1).

Note that

(r̂ − T̂ϕ)(w) =
1

n

n∑
i=1

(Yi − [ϕ ∗Kz](Zi))h
−q
n Kw

(
h−1
n (Wi − w)

)
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with [ϕ ∗Kz](z) ,
∫
ϕ(v)h−pn Kz (h−1

n (z − v)) dv and Yi = ϕ(Zi) +Ui. Note also that

T ∗
[
h−qn Kw

(
h−1
n (Wi − .)

)]
(z) = [fZW ∗Kw](z,Wi)〈

fZW (., w), (T ∗T )−1fUZ(u, .)
〉

= [T (T ∗T )−1fUZ(u, .)](w)

with [fZW ∗ Kw](z, w) ,
∫
fZW (z, v)h−qn Kw (h−1

n (w − v)) du. Using these observa-
tions, decompose further

In(u) =
1√
n

n∑
i=1

Ui[T (T ∗T )−1fUZ(u, .)](Wi) +Q1n +Q2n +Q3n + oP (1)

with

Q1n(u) =

〈
1√
n

n∑
i=1

[ϕ− ϕ ∗Kz](Zi)[fZW ∗Kw](.,Wi), (αnI + T ∗T )−1fUZ(u, .)

〉

Q2n(u) =

〈
1√
n

n∑
i=1

Ui {[fZW ∗Kw](.,Wi)− fZW (.,Wi)} , (αnI + T ∗T )−1fUZ(u, .)

〉

Q3n(u) =

〈
1√
n

n∑
i=1

UifZW (.,Wi),
[
(T ∗T )−1 − (αnI + T ∗T )−1

]
fUZ(u, .)

〉
.

We show that the first remainder term is negligible by the Cauchy-Schwartz and the
triangle inequalities under Assumption 4.1 (ii)

‖Q1n‖∞ ≤

∥∥∥∥∥ 1√
n

n∑
i=1

[ϕ− ϕ ∗Kz](Zi)[fZW ∗Kw](.,Wi)

∥∥∥∥∥ sup
u
‖(αnI + T ∗T )−1fUZ(u, .)‖

.
1√
n

n∑
i=1

|[ϕ− ϕ ∗Kz](Zi)| ‖[fZW ∗Kw](.,Wi)‖α−1/2
n

.P
√
nhbnα

−1/2
n

= oP (1),

where the second line follows under Assumption 4.1 (i), the third by

E

∣∣∣∣∣ 1√
n

n∑
i=1

|[ϕ− ϕ ∗Kz](Zi) ‖[fZW ∗Kw](.,Wi)‖ |

∣∣∣∣∣ =

=
√
nE |[ϕ− ϕ ∗Kz](Z) ‖[fZW ∗Kw](.,W )‖|

≤
√
n‖ϕ− ϕ ∗Kz‖‖fZW ∗Kw‖

= O(
√
nhbn),
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where the second line follows under the i.i.d. assumption, the third by the Cauchy-
Schwartz inequality and since fZ and fW are uniformly bounded under Assump-
tion A.1.2 (ii), and the last by the standard bias computations under Assump-
tions A.1.1 (ii) and A.1.2 (iv), Young’s inequality, and Assumption A.1.2 (ii) and
(iv).

Similarly, by the Cauchy-Schwartz inequality

E‖Q2n‖2
∞ . E

∥∥∥∥∥ 1√
n

n∑
i=1

Ui {[fZW ∗Kw](.,Wi)− fZW (.,Wi)}

∥∥∥∥∥
2

α−1/2
n

= E ‖U {[fZW ∗Kw](.,W )− fZW (.,W )}‖2 α−1/2
n

. E‖[fZW − fZW ∗Kw](.,W )‖2α−1/2
n

. ‖fZW − fZW ∗Kw‖α−1/2
n

= O(htnα
−1/2
n )

= o(1),

where the second line follows under the i.i.d. assumption, the third since E[U |W ] ≤ C
under Assumption A.1.2 (i), the fourth since fW is uniformly bounded under Assump-
tion A.1.2 (ii), the fifth by the standard bias computations under Assumptions A.1.1
(ii) and A.1.2 (iv), and the last since h2t

n /αn → 0 under Assumption 4.1 (ii).
Lastly, by the Cauchy-Schwartz inequality

‖Q3n‖∞ =

∥∥∥∥∥ 1√
n

n∑
i=1

UifZW (.,Wi)

∥∥∥∥∥ sup
u

∥∥[(T ∗T )−1 − (αnI + T ∗T )−1
]
fUZ(u, .)

∥∥
.P

∥∥αn(αnI + T ∗T )−1(T ∗T )κ/2a−1
∥∥ sup

u
‖fUZ(u, .)‖κ

. sup
λ

∣∣∣∣αnλκ/2a−1

αn + λ

∣∣∣∣
= O(α(κ/2a−1)∧1

n )

= o(1),

where the second inequality follows under the i.i.d. assumption and Assumptions A.1.2
(i)-(ii), the third under Assumption 4.1 (i), and the last since κ > 2a under the same
assumption.

Combining all estimates together, we obtain uniformly in u ∈ R

√
n(F̂Û(u)−FU(u)) =

√
n(F̂U(u)−FU(u))+

1√
n

n∑
i=1

Ui[T (T ∗T )−1fUZ(u, .)](Wi)+oP (1).
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Proof of Corollary 4.1. The process given in Theorem 4.1 is an empirical process
indexed by the following class of functions

F =
{

(v, w) 7→ 1{v≤u} + v
(
T (T ∗T )−1fUZ(u, .)

)
(w), u ∈ R

}
,

which is a sum of the classical Donsker class of indicator functions and the class

H =
{

(v, w) 7→ v
(
T (T ∗T )−1fUZ(u, .)

)
(w), u ∈ R

}
.

By Van Der Vaart and Wellner (2000), Theorem 2.10.6, it enough to show that H
is Donsker. The former statement follows from the fact that fZW ∈ H t, t > q/2,
whence under Assumption 4.1 (i), there exists some M < ∞, such that ‖h‖t ≤ M
for all h ∈ H. Under Assumption A.1.2 (i), this shows that the class H is Donsker;
see, e.g., Nickl and Pötscher (2007), Corollaries 4 and 5.

Next, we look at the independence empirical process. The following assumption
mirrors Assumption 4.1.

Assumption A.2.1. (i) ‖∂ufUZ‖∞ < ∞ and supu ‖∂ufUZ(u, .)‖κ < ∞ with κ >

2a; (ii)
∥∥∥∫{v≤.} ∂ufUZW (., .v)dv

∥∥∥
∞
< ∞ and supu,w

∥∥∫ w fUZW (u, ., v)dv
∥∥
κ
< ∞ with

κ > 2a; (iii) hn → 0 and αn → 0 are such that α
4a
b+a
n nh2q

n → ∞, α
2(a+c)
b+a

n nhqn → ∞,

α
− 4a

b+a
∨1

n nh4t
n → 0, α2

nn→ 0, αnnh
p+2q
n →∞ nh2b

n /αn → 0, and h2t−p−q
n /αn → 0 with

c > p/2, t > q/2, 2s = b− a, b ≥ a and a, b, t, p, q are as in Assumptions A.1.1 and
A.1.2.

Assumption A.2.1 (ii) is an additional smoothness condition compared to As-
sumption 4.1. Similarly to Assumption A.2.1 (i), it requires the existence of a uni-
formly bounded derivative of a joint distribution/density and its Sobolev smoothness.

Lemma A.2.2. Suppose that Assumptions A.1.1, A.1.2, and A.2.1 are satisfied.
Then uniformly over (u,w) ∈ R×Rq

(F̂Û(u)− F̂U(u))F̂W (w)−
(

Pr(U ≤ u+ ∆̂(Z)|X ) + FU(u)
)
FW (w) = oP

(
n−1/2

)
and

F̂ÛW (u,w)− F̂UW (u,w)−Pr(U ≤ u+ ∆̂(Z),W ≤ w|X ) +FUW (u,w) = oP
(
n−1/2

)
.

where ∆̂ = ϕ̂− ϕ and X = (Yi, Zi,Wi)
∞
i=1,
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Proof. Note that the first expression and the expression in the statement of Lemma A.2.1
multiplied by FW differ only by

(F̂Û(u)− F (u))(F̂W (w)− FW (w)),

which is OP (n−1) by Corollary 4.1 and the maximal inequality. This proves the first
statement since FW is bounded by one.

The proof of the second statement is similar to the proof of Lemma A.2.1 and is,
therefore, omitted.

Proof of Theorem 3.1. By Lemma A.2.2, uniformly in (u,w)

Gn(u,w) = T1n(u,w) + T2n(u,w)− T3n(u,w) + oP (1),

where

T1n(u,w) =
√
n
(
F̂UW (u,w)− F̂U(u)F̂W (w)

)
,

T2n(u,w) =
√
n
(

Pr
(
U ≤ u+ ∆̂(Z),W ≤ w|X

)
− FUW (u,w)

)
,

T3n(u,w) =
√
n
(

Pr
(
U ≤ u+ ∆̂(Z)|X

)
− FU(u)

)
FW (w).

The first term is a classical independence empirical process

T1n(u,w) =
1√
n

n∑
i=1

{
1{Ui≤u,Wi≤w} − 1{Ui≤u}FW (w)− 1{Wi≤w}FU (u) + FU (u)FW (w)

}
− 1√

n

n∑
i=1

{
1{Wi≤w} − FW (w)

} 1

n

n∑
i=1

{
1{Ui≤u} − FU (u)

}
=

1√
n

n∑
i=1

{
1{Ui≤u,Wi≤w} − 1{Ui≤u}FW (w)− 1{Wi≤w}FU (u) + FU (u)FW (w)

}
+ oP (1),

where the second line follows by the maximal inequality.
Next, under Assumption A.2.1 (i), by Taylor’s theorem, for some τ ∈ [0, 1]

T2n(u,w) =
√
n

∫ ∫ w
{∫ u+∆̂(z)

−∞
fUZW (ũ, z, v)dũ−

∫ u

−∞
fUZW (ũ, z, v)dũ

}
dvdz

=
√
n

∫ ∫ w {
fUZW (u, z, w̃)∆̂(z) +

1

2
∂ufUZW (u+ τ∆̂(z), z, v)∆̂2(z)

}
dvdz

=
√
n

〈
ϕ̂− ϕ,

∫ w

fUZW (u, ., v)dv

〉
+

√
n

2

∫ ∫ w

∂ufUZW (u+ τ∆̂(z), z, v)dv∆̂2(z)dz

, S1n(u,w) + S2n(u,w).

Appendix - 16



Under Assumptions A.2.1

‖S2n‖∞ ≤ sup
w,u,z

∣∣∣∣∫ w

∂ufUZW (u, z, v)dv

∣∣∣∣√n ‖ϕ̂− ϕ‖2

= oP (1)

by Corollary A.1.1. Similarly,

T3n(u,w) =
√
n〈ϕ̂− ϕ, fUZ(u, .)〉FW (w) + oP (1).

Therefore, uniformly in (u,w) ∈ R×Rq

T2n(u,w)− T3n(u,w)

=
√
n

∫
(ϕ̂(z)− ϕ(z))

{∫ w

fUZW (u, z, w̃)dw̃ − fUZ(u, z)FW (w)

}
dz + oP (1)

=
√
n

∫
(ϕ̂(z)− ϕ(z))g(u,w, .)dz + oP (1)

=
1√
n

n∑
i=1

Ui
(
T (T ∗T )−1g(u,w, .)

)
(Wi) + oP (1),

where the last line follows by the same argument as in the proof of Theorem 4.1
under Assumption A.2.1 (i).

Proof of Corollary 3.2. The asymptotic distribution of Tn,∞ under H0 is readily ob-
tained by the continuous mapping theorem; see Van Der Vaart and Wellner (2000),
Theorem 1.3.6. For the Cramér-von Mises statistics, write

Tn,2 =

∫∫
G2(u,w)dFUW (u,w) +R1n +R2n

with

R1n =

∫∫ {
G2
n(u,w)−G2(u,w)

}
dF̂ÛW (u,w)

R2n =

∫∫
G2(u,w)d[F̂ÛW (u,w)− FUW (u,w)].

By Corollary 3.1, under H0, Gn  G and
√
n(F̂ÛW (u,w)−FUW (u,w)) also converges

weakly by Corollary 3.1 and Theorem 4.1, whence by the Skorokhod construction

n−1/2 sup
u,w
|Gn(u,w)| a.s.−−→ 0 and sup

u,w

∣∣∣F̂ÛW (u,w)− FUW (u,w)
∣∣∣ a.s.−−→ 0. (A.4)
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The first expression in Eq. A.4 implies that R1n
a.s.−−→ 0. Since G has a.s. bounded

and continuous trajectories, the second expression in Eq. A.4 in conjunction with the
Helly-Bray theorem show that R2n

a.s.−−→ 0. Therefore, the asymptotic distribution of
the Cramér-von Mises test follows by the continuous mapping theorem.

Under the alternative hypothesis, by Theorem 3.1, the Glivenko-Cantelli theorem
and a similar argument we obtain

n−1/2Tn,2 =

∫∫
|n−1/2Gn(u,w)|2dF̂ÛW (u,w)

a.s.−−→ 2d2 > 0

n−1/2Tn,∞ = sup
u,w
|n−1/2Gn(u,w)| a.s.−−→ 2d∞ > 0.

Therefore, by Slutsky’s theorem Tn,2
a.s.−−→ ∞ and Tn,∞

a.s.−−→ ∞, which proves the
second statement.
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