D. Kelker, Distribution theory of spherical distributions and a locationscale parameter generalization, The Indian Journal of Statistics, Series A, pp.419-430, 1970.

M. Rangaswamy, D. Weiner, and A. Ozturk, Non-Gaussian random vector identification using spherically invariant random processes, IEEE Transactions on Aerospace and Electronic Systems, vol.29, issue.1, pp.111-124, 1993.

M. Rangaswamy, D. Weiner, and A. Ozturk, Computer generation of correlated non-Gaussian radar clutter, IEEE Transactions on Aerospace and Electronic Systems, vol.31, issue.1, pp.106-116, 1995.

S. Kotz, Statistical Distributions in Scientific Work, I. Dordrecht: Reidel, 1968, ch. Multivariate distributions at a cross road, pp.247-270

T. Cover and J. A. Thomas,

S. Bonnabel, Stochastic gradient descent on riemannian manifolds, IEEE Transactions on Automatic Control, 2013.

N. Tripuraneni, N. Flammarion, and F. Bach, Averaging stochastic gradient descent on Riemannian manifolds, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01957015

J. Zhou and S. Said, Recursive parameter estimation in a Riemannian manifold, 2018.

P. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on matrix manifolds

J. Lee,

. Springer, , 2001.

S. Amari and H. Nagaoka, Methods of information geometry

, American Mathematical Soc, 2007.

M. Berkane, K. Oden, and P. Bentler, Geodesic estimation in elliptical distributions, Journal of Multivariate Analysis, vol.63, issue.1, pp.35-46, 1997.

G. Verdoolaege and P. Scheunders, On the geometry of multivariate generalized Gaussian models, Journal of mathematical imaging and vision, vol.43, issue.3, pp.180-193, 2012.

G. Verdoolaege and P. Scheunders, Geodesics on the manifold of multivariate generalized Gaussian distributions with an application to multicomponent texture discrimination, International Journal of Computer Vision, vol.95, issue.3, p.265, 2011.

T. Zhang, A. Wiesel, and M. S. Greco, Multivariate generalized gaussian distribution: Convexity and graphical models

, IEEE Transactions on Signal Processing, issue.16, pp.4141-4148, 2013.

H. Zhang and S. Sra, First-order methods for geodesically convex optimization, Conference on Learning Theory, pp.1617-1638, 2016.

F. Pascal, Y. Chitour, and J. Ovarlez, Covariance structure maximumlikelihood estimates in compound Gaussian noise: Existence and algorithm analysis, IEEE Transactions on Signal Processing, vol.56, issue.1, pp.34-48, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01816367

Y. Chitour and F. Pascal, Exact maximum likelihood estimates for SIRV covariance matrix: Existence and algorithm analysis, IEEE Transactions on signal processing, vol.56, issue.10, pp.4563-4573, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00353594

R. Maronna, Robust M-estimators of multivariate location and scatter, The annals of statistics, pp.51-67, 1976.

F. Pascal, L. Bombrun, and J. Tourneret, Parameter estimation for multivariate generalized Gaussian distributions, IEEE Transactions on Signal Processing, issue.23, pp.5960-5971, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00879851

Z. Boukouvalas, S. Said, and L. Bombrun, A new riemannian averaged fixed-point algorithm for MGGD parameter estimation, IEEE Signal Processing Letters, vol.22, issue.12, pp.2314-2318, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01230086

S. Sra and R. Hosseini, Conic geometric optimization on the manifold of positive definite matrices, SIAM Journal on Optimization, vol.25, issue.1, pp.713-739, 2015.

X. Pennec, P. Fillard, and N. Ayache, A Riemannian framework for tensor computing, International Journal of computer vision, vol.66, issue.1, pp.41-66, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00070743

L. Boubchir and J. Fadili, Multivariate statistical modeling of images with the curvelet transform
URL : https://hal.archives-ouvertes.fr/hal-01088628

. Isspa, , pp.747-750, 2005.

D. Cho, T. Bui, and G. Chen, Image denoising based on wavelet shrinkage using neighbor and level dependency, vol.7, pp.299-311, 2009.

G. Verdoolaege, D. Backer, S. Scheunders, and P. , Multiscale colour texture retrieval using the geodesic distance between multivariate generalized Gaussian models, 15th IEEE International Conference on Image Processing, pp.169-172, 2008.

Y. Bazi, L. Bruzzone, and F. Melgani, Image thresholding based on the EM algorithm and the generalized Gaussian distribution, Pattern Recognition, vol.40, pp.619-634, 2007.

J. Scharcanski, A wavelet-based approach for analyzing industrial stochastic textures with applications, IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol.37, pp.10-22, 2006.

M. Desai and R. S. Mangoubi, Robust Gaussian and non-Gaussian matched subspace detection, IEEE Transactions on Signal Processing, vol.51, issue.12, pp.3115-3127, 2003.

M. Coban and R. M. Mersereau, Adaptive subband video coding using bivariate generalized Gaussian distribution model, IEEE International Conference on Acoustics, Speech, and Signal Processing Conference Proceedings, vol.4, pp.1990-1993, 1996.

J. Yang, Y. Wang, and W. Xu, Image and video denoising using adaptive dual-tree discrete wavelet packets, IEEE transactions on circuits and systems for video technology, vol.19, pp.642-655, 2009.

T. Elguebaly and N. Bouguila, Bayesian learning of generalized Gaussian mixture models on biomedical images, IAPR Workshop on Artificial Neural Networks in Pattern Recognition, pp.207-218, 2010.

M. Abramowitz and . Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. 9th printing, pp.258-259, 1972.

S. Amari, Natural gradient works efficiently in learning, Neural computation, vol.10, issue.2, pp.251-276, 1998.