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Abstract

A numerical treatment of fretting-wear under vibratory loading is proposed. The method is based on the
Dynamical Lagrangian Frequency Time method. It models unilateral contact through Coulomb’s friction
law. The basic idea is to separate time in two scales, slow scale for tribological phenomena and fast scale
for dynamics. For a chosen number of periods of vibration, a steady state is assumed and the variables
are decomposed in Fourier series. An Alternating Frequency Time procedure is performed to calculate the
non-linear forces. Then, a Hybrid Powell’s algorithm is used as solver. Numerical investigations on a beam
with friction contact interfaces illustrate the performances of this method and show the coupling between
dynamical and tribological phenomena.
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1. Introduction

Friction dampers are widely used in industry and civil engineering to control the vibrations of structures.
Friction damping is often obtained via the design of the mechanism, this is the case for example in turboma-
chinery applications when a bladed disk includes dovetail attachments. The positive effect of such dampers
is the decrease of vibrations, but friction also introduces micro and/or macro slip that could be accompanied
with fretting-wear. Indeed, some industrial damage surveys have shown that the predictions underestimate
wear on long-haul aircrafts’ dovetail profiles. This problem has not been encountered on short-haul aircrafts
equipped with the same type of engines. Considering that wear predictions have been performed in quasi-
static take-off and landing situations, for which vibratory effects are neglected, it is supposed here that a
coupling between wear and vibrations occurs during the parts of the flights operated at cruise speed, all
the more as these parts last much longer than the others on long-haul aircrafts. An academic example is
proposed to illustrate the phenomena that actually matter.

Roughly speaking, the state of the art concerning the modelling and calculation methods available to
solve such problems is as follows. On the one hand, recent methods enable one to calculate the vibrational
response of bladed disks in the presence of friction in blade attachments [1, 2, 3] but wear is not taken into
account, on the other hand most fretting-wear studies are performed in quasi-static situations for which
inertial - and then vibratory - effects are neglected. Aside from [4, 5], the coupling between fretting-wear
and vibrations is very seldom taken into account in the literature due to the complexity it introduces.

Wear itself is a complex phenomenon because wear debris creation can be changed by hardness, plasticity,
grain structure, temperature, etc. According to [6] around 180 laws of wear have been proposed. To quantify
wear, the Archard’s model [7] is the most commonly used. It considers that the wear volume is linked to the
product of normal force and sliding displacement. Classically, wear coefficient quantification is performed
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through the evaluation of the worn volume as a function of the normal load. The loss of matter can be
known through the measurement of the loss of mass, of the loss of dimensions, of the evolution of Vickers
microhardness imprints or directly by surface profilometry. The Archard’s model will be used here.

In the absence of vibratory effects, wear laws are often used with the Finite Element Method (FEM) to
solve deformable contact problems and get the evolution of wear rate and worn geometry as post-processing
steps in looping procedures. Commercial softwares can be used to model wear-cycles with an external rou-
tine to compute wear and remesh the geometry [8, 9]. This strategy is highly time consuming. In order to
reduce the calculation costs some simplified approaches have been developed based on Winkler’s foundation
to predict wear [10]. Various approaches have also been proposed to predict wear based on semi-analytical
models [11] or on Boundary Elements Methods (BEM) [12]. The later has been coupled with an optimization
technique [13] to get directly the worn geometry. Semi-analytical methods and BEM are very difficult to
use when the problem of contact with friction takes vibratory effects into account.

In this paper, an approach based on the FEM is proposed to model the coupling between fretting-wear
and vibration. It is based on the Dynamical Lagrangian Frequency Time method (DLFT) [3] and on a
multiscale approach to reduce the computational costs. The main assumption is that a periodic steady state
is reached and that wear will modify this state only a little. Thus, it is possible to use methods based on
Multi Harmonic Balance and Alternate Frequency Time procedures [14, 15, 2]. A multiscale formalism is
introduced to distinguish between the ”fast” phenomena caused by vibrations and the ”slow” phenomena due
to wear. Then, iterative numerical techniques are necessary because a non-linear system must be solved, at
each step of the slow scale. Here the strategy is based on a Hybrid Powell’s solver. Concerning the treatment
of wear through Archard’s law, it is assumed that the friction coefficient is unaffected by the evolution of
wear. Hardness will be considered constant. The plasticity of the material will be neglected. But more
elaborate models, based on the dissipated energy for example [16], could have been used as well.

The first examples treated by this DLFT-with-wear method have appeared in [17] and [18]. Here the
formalism is presented more thoroughly and a comparison with an example stemming from the literature is
proposed [19].

2. The reference problem

2.1. Continuous formulation

Let us consider an elastic solid Ω in contact with a fixed rigid body ΩR through a frictional interface Γc in
situation of fretting-wear (Fig. 1). The boundary of Ω, ∂Ω, is smooth; it is divided into three disjoint parts
Γt, Γu and Γc. n designates the unit normal vector outward ∂Ω. Traction forces T excite Γt periodically.
Displacements U are imposed on Γu and frictional contact with fretting-wear conditions on Γc. There are
no body forces. Ω’s material is supposed to be linearly and isotropically elastic. Perturbations are assumed
to be small.

nc

Γt

Γu

Γc

T
U

Ω

ΩR

Figure 1. Description of the problem
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In the presence of inertial forces, the equations of the problem of elasticity for Ω, excepting the contact
interface, are, classically:

divσ = ρ ü in Ω, (1)

σ n = T on Γt, (2)

u = U on Γu, (3)

σ = Eǫ in Ω, (4)

where u , σ, E and ǫ are respectively the field of displacements, Cauchy’s stress tensor, Hooke’s tensor and
the infinitesimal strain’s tensor.

The constitutive equations ruling the contact interface are described within the formalism of continuum
thermodynamics, following Stromberg’s works [19]. Firstly, a specific free energy Ψ is introduced to produce
an extension of Signorini’s unilateral contact conditions that takes wear into account.

Ψ = IC(uN , w), C = {(uN , w) : uN − w − g ≤ 0} . (5)

IC is the indicator function of the set C (i.e. IC = 0 if (uN , w) ∈ C and IC = +∞ otherwise). uN

designates the normal component of the interfacial displacement. Wear is introduced as a new state variable
w, increasing the initial gap g between the two surfaces in contact. The state laws associated with Ψ make
the unilateral contact conditions explicit:

W = pN ≥ 0, uN − w − g ≤ 0, pN (uN − w − g) = 0, (6)

where W designates the dual of w i.e. the driving force for wear, which has the same physical meaning as
pN , the normal component of the contact pressure exerted by ΩR on Ω.

Secondly, the dual Φ⋆ (in the sense of the Legendre-Fenchel transform) of a pseudo-dissipation potential
Φ gives Coulomb’s law of friction and Archard’s law of wear.

Φ⋆ = IF (pN )(pT ,W), F (pN ) =
{
(pT ,W) : ‖pT‖ − µ pN + kw pNW − kw p2

N ≤ 0
}

. (7)

The set F (pN ) is a closed convex set defining the friction and wear limit criteria. IF (pN ) is its indicator
function, defined the same way as IC . pT is the tangential component of the contact pressures. ‖.‖
represents the Euclidian norm. µ and kw are respectively Coulomb’s friction coefficient and Archard’s law
wear coefficient. This choice of Φ⋆ give the following complementary laws for W = pN ≥ 0:

u̇T = λ̇
pT

‖pT‖
, ẇ = λ̇ kw pN ,

λ̇ ≥ 0, ‖pT‖ − µ pN ≤ 0, λ̇ (‖pT‖ − µ pN ) = 0
(8)

In (8) can be recognised both a local form of Archard’s law of wear and a mathematical definition of the
Coulomb’s cone in case of fretting-wear.

Variationally, the problem is defined by three integral equations and one constitutive law (9-12). These
equations stem from the principle of virtual work, the weak formulation of Signorini’s unilateral contact
conditions, the complementary law of Coulomb and the local formulation of Archard’s law. For each moment
t of the studied time interval [0, T ], are sought the displacement field u for each point x of Ω and the contact
pressure field p (with pN = W and pT its normal and tangential components). v, p

′

and W
′

designate the
test-fields associated respectively with u, p and W .

∫

Ωl

ρüividV +

∫

Ωl

Eijkl

∂uk

∂xl

∂vi

∂xj

dV +

∫

Γc

pivi dA −

∫

Γl
t

tivi dA = 0 ∀v ∈ V , (9)

∫

Γc

(uN − w − g)(p′N − pN ) dA ≤ 0 ∀p′N ∈ KN , (10)

∫

Γc

(u̇Tα
(p′Tα

− pTα
)+ ẇ (W ′ −W)) dA ≤ 0 ∀(p′T ,W ′) ∈ F(pN ) (11)
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with

V = {v |v(x) = 0,x ∈ Γu} ,

KN = {pN | pN (x) ≥ 0,x ∈ Γc} ,

F(pN ) = {(pT,W) | (pT (x),W(x)) ∈ F (pN ),x ∈ Γc} .

In (11), the components of each vector are expressed in an orthonormal basis nα, perpendicular to n. ẇ is
obtained through the following equation:

ẇ = Kw |pN | ‖u̇T ‖ (12)

2.2. Finite element discretization

A FEM discretization of (9) is performed. Capital letters designate the FEM counterpart of the variables
named by small letters before: they are vectors of nodal quantities. The equations of motion are:

MÜ + CU̇ + KU + Fc(U , U̇ , W ) = Fex, (13)

where M, C and K respectively designate the mass, damping and stiffness matrices. Fex is the vector of
external forces. Fc represents the non-linear contact forces due to friction and impact; they also depend on
wear and on materials’ properties.

Wear is calculated at each interface node by:

ẆM =
Kw

αM

∣
∣PM

N

∣
∣

∥
∥
∥U̇

M
T

∥
∥
∥ . (14)

αM is the weighting factor for node M . The weighting factors depend on the quadrature rule used to
calculate the integrals on each elementary contact area. Exponent M in PM

N and U̇
M
T designate the nodal

quantities.
The constraints introduced by equations (10) and (11) become:

t
(UN − W − G) (P ′

N − PN ) ≤ 0 ∀P
′

N ∈ Kh
N , (15)

t

U̇T (P ′

T − PT ) ≤ 0 ∀P
′

T ∈ Fh(PN ), (16)

where Kh
N =

{
PM

N |PM
N ≥ 0

}
is the approximation of KN and Fh(PN ) =

{
P

M
T |

∥
∥P

M
T

∥
∥− µ|P M

N | ≤ 0
}

is

the approximation of F(pN ) with WM = P
M
N .

3. The DLFT-with wear method

3.1. A Harmonic Balance Method with two time scales

The strategy belongs to the family of multiscale approaches ([20], [21]). In [22], a time scale separation
is also used with an averaging procedure to estimate qualitatively the dynamics of damage evolution. In
[23], the wear of a wheel-rail is studied this way.

Here, time is split into two different scales: a fast one associated with vibratory phenomena and a slow
one associated with wear. τ and η are respectively the variables of the fast and of the slow time scales. At
the scale of a few cycles, wear appears as an almost constant interface gap. It is then assumed that wear
doesn’t change the aspect of the periodic response during a short lapse of time: on this period it is possible
to describe displacements and forces with Fourier series of τ . On a longer duration, Fourier coefficients
evolve as functions of η. Anyway, wear doesn’t change the pulsation of the response because it is ruled
by the pulsation of the excitation, ω, which isn’t affected by fretting-wear. η can then be considered as a
”large” multiple of the time period T = 2π

ω
of the fretting-wear cycles.
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The Fourier series of U can be expressed as:

U(τ, η) = Ũ0(η) +

Nh∑

n=1

(

Ũn,c(η) cos(nωτ) + Ũn,s(η) sin(nωτ)
)

. (17)

Afterwards, 17 is summarized by a multi-harmonic frequency-domain vector:

Ũ(η) =
[

Ũ0, Ũ1,c, · · · , ŨNh,c, Ũ1,s, · · · , ŨNh,s

]

, (18)

where c and s respectively stand for ”cosine” and ”sine”.

A Galerkin procedure is then performed to formulate equation 13 in the frequency domain. It is important
to mention that, here, the depth of wear is very small compared with the characteristic dimensions of the
structures in contact; that is why the modifications of the mass and stiffness matrices due to wear are
neglected. 13 becomes:

Z Ũ(η) + F̃c(η) = F̃ex(η). (19)

F̃c and F̃ex are respectively the multi-harmonic frequency-domain vectors of contact and excitation forces.
Z is a block-diagonal matrix such that:

Z = diag (K,Z1, . . . ,ZNh
) with Zn =

[
K− (nω)2M nωC

−nωC K− (nω)2M

]

, n = 1 . . . Nh (20)

In practice, as detailed in [3], the size of the frequency-domain problem is reduced, without loss of infor-
mation, through a condensation on the interface nodes, which are involved afterwards in the treatment of
contact non-linearities 1. Equation 19 becomes:

ZrŨr(η) + λ̃(η) = F̃r, (21)

or
f(Ũr) = ZrŨr(η) + λ̃(η) − F̃r = 0, (22)

where Ũr, F̃r and Zr designate respectively the reduced multiharmonic relative displacement vector, re-
duced stiffness matrix and reduced external excitation. λ̃ is the vector of the Lagrange multipliers which
represent the reduced contact forces in the frequency domain.

Algorithmically, the solution over the time interval [0, T ] is calculated through a step-by-step procedure
involving an incrementation of the slow time variable: for each step, Eq. 22 is solved through a Newton-like
solver; this process constitutes the external loop of the method.

3.2. Modeling of the contact forces

Solving 21 requires to know the expression of λ̃. Unfortunately it is not possible to calculate it directly
in the Galerkin procedure, indeed it depends on the state of each contact node - stick, slip or separation -
which is a priori unknown. To undertake this difficulty it is common to use the Alternating Frequency Time
method (AFT) [24]. Displacements and velocities are calculated in the frequency domain and transformed
into the time domain using an inverse DFT procedure (iDFT). In the time domain, contact forces could
be evaluated through different methods. The easiest one is to regularize the sign function - depending on
the velocity in the evaluation of Coulomb’s forces - by another function which is continuous. It allows a
direct computation of the non-linear friction forces [25]. The use of a penalty method is another popular

1Another exact reduction would also be used in the case of a contact between two deformable solids, it consists of working
on the degrees of freedom associated with the relative displacements at the interface instead of both the displacements of each
solid.
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method [14, 25, 26, 2, 27, 28]. The additional stiffnesses may then represent a damper’s stiffness or the
contact asperities stiffness. In the case of fretting-wear theses stiffnesses could change with wear process, to
take the modification of material properties in the contact area into account.

Another method has been proposed by Nacivet et al. [3]: the Dynamic Lagrangian Frequency-Time
method (DLFT). It uses augmented Lagrangians which allow to calculate without any softening of the non-
smooth frictional contact law. A time-marching procedure in the time domain is also required. Compared to
the conventional contact penalty method, the main advantage of the DLFT method is that, at convergence,
results don’t depend on any penalty coefficient (hence the term ”pseudo-penalty” coefficient to designate
the coefficient used below to enforce the matching between the time and frequency descriptions of displace-
ments). For stability reasons, good results are generally obtained when this coefficient is roughly equal to the
spectral radius of the dynamic stiffness matrix. This method has been successfully used to predict friction
damping in blade attachments [1] and to quantify the efficiency of friction ring dampers [28]. In a precedent
paper [17] this method has been coupled with a polynomial expansion of wear to calculate directly the wear
evolution for a two-degrees-of-freedom model. Here the formalism for contact forces calculation is the same
as in [17] (but wear depth is evaluated in a less complex manner, explained farther).

In the frequency domain, the Lagrange multiplier λ̃ is formulated as a pseudo-penalization of the equa-
tions of motion on the tangential and normal directions:

λ̃
T = F̃

T
r −

(

ZrŨr

)T

+ ǫT

(

Ũ
T
r − X̃

T
r

)

, (23a)

λ̃
N = F̃

N
r −

(

ZrŨr

)N

+ ǫN

(

Ũ
N
r − W

N − X̃
N
r

)

. (23b)

ǫT and ǫN are pseudo-penalty coefficients, X̃r is a new vector of relative displacements, which is computed

in the time domain. The pair
(

λ̃, X̃r

)

is determinated through an AFT procedure. Equation (22) becomes:

f(Ũr) = ǫ
(

Ũr − W − X̃r

)

, with ǫ = ǫT = ǫN . (24)

The convergence ensures that the time domain X̃r and frequency domain Ũr match with respect for contact
conditions.

The AFT is based on a prediction/correction procedure in the time domain (summarized in Fig. 2).
Algorithmically, this is the internal loop of the method.

The contact forces are calculated in the time domain, where the transition criteria between the three
possible states are easily formulated. Equation (23) is reformulated as:

λ̃ = F̃r − ZrŨr + ǫ
(

Ũr − W

)

︸ ︷︷ ︸

λ̃u

− ǫX̃r
︸︷︷︸

λ̃x

, (25)

The period is split into N time steps. λ̃, λ̃u and λ̃x have {λn}n=1..N ,
{
λ

n
u

}

n=1..N
and

{
λ

n
x

}

n=1..N
as

respective time domain counterparts. These vectors are obtained from the frequency domain vectors through
an iDFT procedure. A prediction/correction is then used to compute the contact forces. At each time
increment it first assumes that the contact node is in stick situation, thus the node doesn’t move: λ

n,T
x =

λ
n−1 ,T
x and λ

n,N
x = 0. The predicted contact forces are:

λ
n,T
pre = λ

n,T
u − λ

n−1 ,T
x , λn,N

pre = λn,N
u . (26)

The corrected contact forces will be:
λ

n = λ
n
u − λ

n
x , (27)

and λ
n
x will we be calculated to satisfy the contact and friction laws.
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Ũr

Pseudo-penalty
form - Eq. (25)

λ̃ = λ̃u − λ̃x

Prediction - Eq. (26)
n
λpre = n

λu

Correction - Eq. (28-30)
friction & contact laws

+ −

λ̃ f
(

Ũr

)

iDFT

n
λpre

n
λu

n
λx

DFT

Figure 2. Computation of the Lagrangian vector with wear

1. Separation: λn,N
pre ≥ 0

The contact is lost and the forces should be zero.

λ
n
x = λ

n
u . (28)

2. Stick: λn,N
pre < 0 and

∥
∥
∥λ

n,T
pre

∥
∥
∥ < µ

∣
∣λn,N

pre

∣
∣

In this case, the prediction verifies the contact conditions:

λn,N
x = 0, λ

n,T
x = λ

n−1 ,T
x . (29)

3. Slip: λn,N
pre < 0 and

∥
∥
∥λ

n,T
pre

∥
∥
∥ ≥ µ

∣
∣λn,N

pre

∣
∣

Again, there is no normal relative displacement. The correction is made assuming that the tangential
contact force has the same direction as the tangential predicted force. The definition of relative velocity
and the respect of the Coulomb’s law give:

λn,N
x = 0, λ

n,T
x = λ

n−1 ,T
x + λ

n,T
pre

(

1 − µ
|λn,N

pre |

‖λn,T
pre ‖

)

. (30)

The final step consists of transforming back the time domain updated Lagrangian in the frequency domain
using the DFT algorithm.

3.3. Wear depth calculation

At the end of the iDFT/DFT internal loop, it becomes possible to calculate the nodal wear for a single
fretting cycle, denoted δWM

1 , by wear rate integration:

δWM
1 (η) =

Kw

αM

∫ η+T

η

|PM
N (τ, η)| ‖U̇M

T (τ, η)‖dτ. (31)

The interface gap - i.e. the geometry - can then be updated. In practice, to accelerate the calculation by
decreasing the number of slow time steps, it is necessary to jump a certain number of cycles between two steps.
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The considered duration of the study, T , is split into k intermediate slow time steps. A too important step
would provoke such an unbalance in the contact zone that a high number of loops in the prediction/correction
process would be required to compensate for it. k is chosen heuristically as the probably best compromise
between the total number of slow-time steps and the number of required prediction-correction loops.

Concerning the evolution of wear depths, the integration follows an explicit scheme:

W
M (ηk+1) = W

M (ηk) +
ηk+1 − ηk

T
δWM

1 (ηk). (32)

At the level of the contact, equilibrium conditions are then modified: this imposes a return back to
the beginning of the prediction/correction process to re-equilibrate them. Then, a new loop - the wear up-
dating loop or intermediate loop - appears in the algorithm. This is specific to the DLFT-with-wear method.

The strategy of the DLFT-with-wear method is summarized in Fig. 3. One can notice the three loops
mentionned above, whereas the ”classical” DLFT has only two loops.

4. Numerical example

4.1. Description of the model

The algorithm developed for the coupled calculation of both the wear kinetics and the vibratory response
has been applied to a beam. This beam is parallelepipedic with length L = 100 mm, width l = 10 mm and
thickness h = 10 mm (Fig. 4). It is made of steel. The material’s properties are E = 210 GPa, ν = 0.3,
ρ = 7, 800 kg/m3 and the damping factor is η = 0.001. The structure is connected to the ground by a
spring of stiffness β = 0.01 MN/m in the x direction. It lies on a rigid support with unilateral contact
conditions. The initial gap is zero. The friction coefficient is µ = 0.3 and Archard’s law wear coefficient is
kw = 1.10−11 Pa−1. It is subjected to a normal load P fixed at 0.01 MPa and to a sinusoidal load Q. Q’s
amplitude is 0.01 MPa.

Two cases are treated according to the frequency of excitation. In the first case, the loading is supposed
to be quasi-static, ie the frequency is low compared to the first resonance frequency of the system and inertial
phenomena are neglected. A resembling example was studied by Strömberg [19], it will then be possible to
verify qualitatively the results. This case is considered for the sake of comparison with the second case, for
which the frequency is more important, entailing that dynamical aspects must be taken into account.

For both cases, the beam is discretized into linear 2D finite elements under the assumption of plane
strains. Each element has four nodes with two degrees of freedom per node. The harmonic balance uses 7
harmonics. Each considered cycle is discretized into 128 time-steps in the DFT correction procedures.

4.2. Case of a quasi-static loading

The evolution of wear depth is drawn in Figs. 5 and 6. The worn profile is drawn for the initial cycle, three
intermediate numbers of cycles and for a number of cycles for which a steady state has been apparently
reached. Three kinds of behaviour appear: no wear occurs in the zone closest to the fastening spring;
maximal wear depths are reached in the zone where the oscillating load is applied; an intermediate zone
separates the no-wear zone and the maximal-wear zone, it progressively goes from the stick state to the slip
state. These results are qualitatively in good agreement with Strömberg’s ones [19].

With the view of better understanding the wear process, the evolution of the wear depth as the cycles
go by is drawn for some points which belong on the one hand to the initial zone of slip (Fig. 7) and on the
other hand to the intermediate zone (Fig. 8). Fig. 7 shows that in the initial slip zone wear is intense at
the beginning of the process, but when the local normal pressures relax (Fig. 10), wear rates tend to zero.
Fig. 8 reveals more complex wear kinetics. Due to the increase of wear in the sliding zone, the amplitude of
the local normal pressure progressively increases in the transition zone between stick and slip. Equilibrium
conditions then impose a release of the normal pressure in the sticked zone closest to the peak of normal
pressure. This zone is then likely to become a sliding zone, where wear occurs. Such phenomena of normal
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Figure 3. Global flow chart of the DLFT-with-wear method: – model creation, – DLFT-with-wear procedure, –
DLFT algorithm and – wear calculation.
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Figure 4. Geometry, boundary conditions and mesh of the studied beam
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Figure 5. Wear depth evolution (quasi-static case)
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Figure 11. Evolution of the amplitude of the horizontal displacement in the contact zone (quasi-static case)

pressure redistribution make that, during the cycles, wear sometimes stops and sometimes restarts after a
few cycles.

Moreover, a little zone seems to never wear out. It is characterized by a null sliding (Fig. 11 and Fig. 12)
and a high level of normal pressure (Fig. 10). This null-wear node plays the role of a ”pillar” which would
be responsible for the steady-state regime, with a null wear rate, that the system seems to reach.

This example will be used in the next section as a reference while examining how inertial effects affect
the wear process.

4.3. Case of dynamical loadings

To start with, the vibratory behaviour of the beam without wear is explored, for different contact
types, via the calculation of the frequency response function (FRF) giving the amplitude of the horizontal
displacement at the node Pe located at the extremity of the beam and at the level of the contact (x = L,
y = 0). The frequency range goes from 1 Hz to 100 kHz. The FRF is obtained through the DLFT algorithm
(Fig. 13). Four modes are observed for a free interface without friction against two modes for a blocked
interface. The case with a frictional interface reveals an intermediate behaviour, strongly damped, with a
big non-linear resonance at 30 kHz and two smaller at 70 kHz and 81 kHz (Fig. 14).

Fig. 15 shows the final worn profiles obtained for some particular frequencies spotted in Fig. 14.
Compared to the quasi-static case, the introduction of inertial effects gives infinitely various behaviours,

since they depend on the frequency. This is illustrated here for f = 10 kHz and f = 79 kHz (Fig. 16).
The node considered before, Pe, stops two times per period at f = 10 kHz and four times per period at
f = 79 kHz. Such situations are well known for a single degree of freedom Coulomb friction oscillator [29].

From now on, wear is taken into account. Since the initial dynamical behaviour depends on the frequency,
wear also depends on it: the study focuses on the excitation at f = 79 kHz. The computation is performed
using a simple explicit Euler scheme on the slow scale and the DLFT method inside the vibratory periods.

The displacements along the contacting zone of the beam evolve according to the cycles as shown on
Fig. 17 and Fig. 18: progressively, almost all the points come to move. But in two zones, around x = 0.005 m
and between x = 0.025 m and x = 0.040 m, nodes of vibration seem to appear, accompanied by an increase
of the amplitude of the normal contact pressure (Fig. 19) and by a null wear depth (Fig. 20 and Fig. ??).
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Figure 14. Zoom on Fig. 13 for a frictional interface
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Figure 15. Final worn profile for different frequencies: (a) quasi-static, (b) f = 30kHz, (c) f = 70kHz and (d)
f = 79kHz
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Figure 16. Displacement and velocity of Pe versus τ = ωt : f1 = 10kHz (a) and f4 = 10kHz (a).
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Figure 17. Evolution of the amplitude of the horizontal displacement in the contact zone (79kHz)
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Figure 18. Excerpt of Fig. 17: displacement amplitude for 4 particular numbers of cycles
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Figure 19. Amplitude of the normal contact pressure distribution for 4 particular numbers of cycles (79kHz)

Example New. it. / cycle CPU time / cycle total New. it. total cycle nb total CPU time
quasi-static 2.96 0.57 s 4474 1510 861 s

79 kHz 2.32 1.02 s 13977 6007 6127 s

Table 1. Statistics about the performance of the DLFT-with-wear method

The explanation of this phenomenon is analogous with the one suggested in the quasi-static analysis, but
the equilibrium conditions that determine the modifications of the pressure distribution are here dynamical
conditions, hence the ”pillar” evoked in quasi-static conditions is replaced here by nodal zones of vibration.
The worn geometry profile is consequently very different from the one observed in quasi-static conditions.
Finally, the evolution of the total worn volume seems to reveal that a steady-state is reached in the dynamical
case too (Fig. 21).

4.4. Comments on the numerical performance of the DLFT-with-wear method

The algorithm is implemented in Matlab R2009 environment on a Linux PC with an Intel Core i7 920
(2.66 GHz) CPU. Some statistics about the time costs of the algorithm are provided in Tab. 1.

It is important here to remind that many wear cycles are skipped, because the evolution of the worn
profile during a single cycle is very limited. Therefore, the wear integration procedure, on the slow time
scale, is based, through an Euler explicit scheme, on increments whose maximum value is set at 1E8 cycles
for the quasi-static case and at 1E7 cycles for the 79kHz case (to ensure the convergence). The total
number of cycles actually dealt with the non-linear algorithm is then much lesser than the total number of
cycles physically addressed. The cycles mentionned in the table are only the ones actually computed in the
non-linear procedure.

The second column gives the average number of iterations required by the Newton solver in the DLFT-
with-wear algorithm for the whole range of cycles the calculation deals with. A low number of iterations
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Figure 20. Wear depth evolution (79kHz)
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Figure 21. Total worn volume evolution (79kHz)
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is generally enough but a maximum of 15 iterations has been observed. The third column shows that, on
average, it is longer, in terms of CPU time, to reach convergence for a dynamical behaviours than for a
quasi-static behaviour. The other columns confirm this tendency. The evaluation of fretting-wear under
vibrations is consequently a more time consuming procedure.

5. Conclusions and prospects

In this paper, a method has been proposed to calculate simultaneously the wear and the vibrations
of structures in situation of fretting-wear. It is based on the assumption that dynamical and tribological
phenomena can be separated on two time scales. The vibrations are analysed in the frequency domain
through harmonic balance and AFT procedures. The evolution of wear is integrated on a slow time scale
through an explicit scheme coupled with a skip cycles approach. The algorithm uses hybrid Powell’s solver
to deal with the issuing non-linear system.

The tests performed on a two dimensional case show a good concordance between the DLFT-with-wear
method and a method stemming from the literature in the quasi-static case. Nevertheless, the comparison
of the quasi-static forced response with its dynamical counterparts, including inertia at different frequencies,
reveal on the one hand the importance of the coupling between dynamics and wear and on the other hand
the complexity of wear kinetics. Indeed, despite wear depths are very small (a few microns), they modify
a lot the vibratory behaviour of the structure. That is why it is strongly recommended that designers take
this parameter into account when they dimension structures subject to freeting-wear and vibratory loads.
They can use the method presented here, but, of course, calibration tests must be performed to guarantee
that the life expectancy calculations are faithful to reality.

To conclude, a steady state with null wear rate has been picked out on the example. In the future, this
observation may give rise to another method, potentially based on an optimization process, which would
enable one to know rapidly an asymptotic worn geometry, if it exists.
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