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E INFO ABSTRACT 

Three methods of aqueous extraction of flaxseed mucilage (magnetic stirring, microwaves and ultra­
sounds) were compared and tested, from whole flaxseeds at a concentration of 5%(w/v) and a temperature 
of S0°C. While microwaves are less efficient than a magnetic stirring, ultrasound-assisted extraction 
showed the highest mass transfer coefficient and a higher order kinetic. 7% of the seed mass were 

extracted after only 30 min of treatment. 

ity 
Ultrasound assisted extraction decreases the intrinsic viscosity of the mucilage from 12.5 dL/g (for 

magnetic stirring) to 6.2 dL/g, and the weight-average molecular weight of the largest polysaccharides 
from 1.5 x 1 os Da to 0.5 x 1 os Da, whilst having a limited impact on protein content and monosaccharide 

nd is
hinn
seed
rally
v and
aceu
 and
reve
reas
itra

 rheo
and A
Bemi
o bee
 to it
g for
en b
o an
composition. 

tion

e remarkable features of flaxseed is its high mucilage 
ated in the outermost layer of the seed's hull. flaxseed 
presents from 3 to 9% of the total seed (Fedeniuk 

ris, 1994). lt is composed of 50-80% of carbohydrates, 
roteins and 3 to 9% of ashes (Cui, 2001; Oomah
). The polysaccharides are composed of galacturonic
%), xylose (19-38%), rhamnose (11-16%), galactose
rabinose (8-13%) and glucose (4-6%) (Fedeniuk and
994; Oomah et al., 1995). They are present in an acidic.
 rhamnogalacturonan 1 (Naran et al., 2008; Cui et al.,
and a neutral (galacto )-arabinoxylan form, both at dif­
s according to the cultivar (Fedeniuk and Biliaderis,
ne and Jones, 1957; Hunt and Jones, 1962). The acidic
ide can be divided into different fractions: a minor
gh molecular weight (6.5 x 105 g/mol (Warrand et al.,
.5 x 106 g/mol (Qian et al., 2012)); and a major one
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 responsible for the high viscosity (Cui et al., 1994) and 
ing behavior in solution. 
 mucilage has several potential applications. ln food, it 
 used as a texturing agent due to its thickening abil­
 Quensel, 1989; Susheelamma, 1989). ln cosmetic and 

tical applications, it can be used as a lubricant for skin 
 even as artificial mucus (O'Mullane and Hayter, 1993). 
nt intestinal inflammation and is of interest as an agent 
ing blood glucose and blood cholesterol (Thakur et al., 
 and Bhattacharya, 2009) when included in food. lt has a 
metrical behavior to guar gum (Fedeniuk and Biliaderis, 
rabie gum (Barbary et al., 2009; Mazza and Biliaderis, 

ller et al., 1993) and a high water absorption capacity 
n noted (Wanasundara and Shahidi, 1997). 

s high thickening capacity, however, its presence can be 
 any potential aqueous processing of the seeds. Hence, 
etter to use dehulled seeds, or to remove the mucilage 
y processing of the seeds. The extraction is generally 
ith hot water (Mazza and Biliaderis, 1989) and at low 
tration. Sorne simple basic or acid treatments are also 

ger et al., 2011) although drawbacks of these methods 
concentrations of proteins in the mucilage and their 
 denaturing. Thus, to help in the extraction process, 

ve been (Wanasundara and Shahidi, 1997; Wu et al., 

ed. 
ve the extraction yield of polysaccharides from plants, 
rs use non-classical heating modes such as microwaves 
unds. Microwaves have shown large improvements in 
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he extraction yields, for example in the polysaccharides of black
ightshade (Chen et al., 2005). Ultrasonic-assisted extraction, on
he other hand, is the most used technique in this field. They
ave been employed in the extraction of polysaccharides from
he roots of valerian (Hromádková et al., 2002), Salvia officinalis
Hromádková et al., 1999), Korean pine kernel (Chen and Zhang,
007), lime (Toma et al., 2001) and Zyziphus jujube (Li et al., 2007).

n addition, microwave and ultrasonic assisted extraction can also
e used together, as in the extraction of pectin from grapefruit
Bagherian et al., 2011). As previously noted, however, longer treat-

ent times and higher temperatures can lead to degradation of the
olysaccharides. (Bagherian et al., 2011; Liu et al., 2013).

If a potential flaxseed biorefinery is to be realized, it will be
ritical to have easily manipulable seeds and a high quality final
roduct. Thus, high mucilage extraction yields and high mucilage
urity are highly desired. Herein, we present a comparison of
lassical, microwave and ultrasonic-assisted extraction techniques,
ncluding extraction kinetics, composition and intrinsic viscosity of
he mucilage obtained.

. Materials and methods

.1. Materials and reagents

Flaxseeds used are the Niagara variety coming from Linea,
rance. Sodium tetraborate, m-hydroxybiphenyl, sulfuric acid,
odium hydroxide and monosaccharides standards were purchased
rom Sigma–Aldrich, France. Polysaccharides standards were pur-
hased from Polymer Laboratories, USA.

.2. Mucilage extraction

Classical heating for mucilage extraction was performed in
water bath at 50 ◦C with magnetic stirring. The seeds were

mmersed in the water once the desired temperature was reached.
Microwave extraction was performed at 2450 MHz in a mul-

imode oven MARSX from CEM instruments, with HP500 closed
igestion reactors. The temperature was controlled and measured
y an optical probe inserted into the reactor.

Ultrasonic extraction was performed using a Sonics Vibracell
robe – 500 W with a frequency of 22 kHz. The sonication was per-
ormed at different amplitudes in a 100 or 150 mL plastic beaker
ith a 13 mm diameter probe placed 2 cm below the surface. The
evice was used in a pulsed mode (i.e. 1 s on; 5 s off, etc.).

The mucilage was recovered by filtration of the sample on a
lastic mesh (1 mm × 1 mm) assisted with a water aspirator. The
ucilage concentration was obtained by determining the dry mat-

er after heating the sample in an oven at 103 ◦C until weight
tabilization. Extraction yield is expressed as:

= 100 · Cm · Vmr

ms
(1)

here Cm is the dry matter content of the mucilage recovered
g/dL). Vm is the volume of the recoverable mucilage (dL). ms is the

ass of the seeds (g). The dry matter determination was repeated
wice on one or two different samples in order to achieve a repre-
entative value.

Freeze-drying of the extracts was performed on a Cryo-Rivoire
evice, to which the samples were cooled to −40 ◦C at a rate
f 0.5 ◦C/min, then held under a vacuum of 0.3 mbar whilst they
armed 20 ◦C.
.3. Mucilage analysis

Kinematic viscosity was measured with capillary Cannon-
enske viscosimeters in a 40 ◦C thermostated bath. The
measurement was repeated several times on two different sam-
ples. Intrinsic viscosity was calculated by measuring the viscosities
obtained at different mucilage concentrations. It is defined as:

lim
c→0

(
1
c

� − �0

�0

)

where � is the viscosity of the solution. �0 is the viscosity in the
absence of mucilage and c is the concentration of mucilage (g/mL).
The methods of Solomon and Gottesman (1968), Huggins (1942)
and Kraemer (1938) were used for the calculation.

Ash content was determined by heating a freeze-dried sample
for 3 h in a muffle furnace at 600 ◦C. This measure was repeated at
least once. Protein content was analyzed by the Kjeldahl method
using a Kjeltec 8400 automatic analyzer, and a standard conversion
factor (nitrogen to protein) of 6.25. Each sample was first concen-
trated by freeze-drying in order to get measurable quantities of
nitrogen and each measurement was repeated at least once.

Monosaccharides distribution was obtained by a HPIC DIONEX
ICS 3000 DC-EG with a Carbo-Pac PA-1 column, a post-column with
NaOH 300 mM and an automatic sampler AS3000. The device is
equipped with a pulsed electrochemical detector. 100 mg of freeze-
dried mucilage is first hydrolyzed with 1.25 mL of a solution of
H2SO4, 72% (w/w) then 13.5 mL of water is added and the mix-
ture heated at 100 ◦C in closed tubes for different durations. 3.6 mL
of NaOH 32% (w/v) is added to stop hydrolysis and the sample is
diluted 50 times with ultra-pure water prior to analysis. Samples
and monosaccharides standards used for calibration are injected
two times. Results consider maximum concentration value accord-
ing to hydrolysis duration.

Galacturonic acid content was measured via the Blumenkrantz
titration method (Blumenkrantz and Asboe-Hansen, 1973). Sam-
ples are hydrolyzed 5 min at 100 ◦C with a solution of sodium
tetraborate in sulfuric acid. After cooling the samples, a basic solu-
tion of three metahydroxybiphenyl is added and absorption is
recorded at 520 nm. Concentration is obtained with a calibration
curve obtained with different galacturonic acid standards.

Gel permeation chromatography was realized on a Dionex Sum-
mit ASI100 injection autosampler with a P580 Pump and a GPC
oven with a column PL Aquagel OH 40 8 �m + PL Aquagel OH 30
8 �m thermostated at 40 ◦C and coupled to a VARIAN 350 RI detec-
tor. The eluent was ultra-pure water with a flow rate of 0.8 mL/min
and the temperature was fixed at 40 ◦C. The softwares used are
Chromeleon and Secential. Polysaccharides standards (Mw from
0.75 kDa to 788 kDa) were used for calibration.

2.4. Expression of the results

The results are expressed with the formula:

X = x̄ ± t × �√
n

where x̄ is the calculated experimental average value, � is the
standard deviation of the measurements and n is the number of
measurements. t is the student coefficient at a 68% confidence level
for the expression and representation of the results. However, a
95% confidence level was used and indicated to denote significant
differences.

3. Results and discussion

3.1. Classical heating
Different parameters are known to influence the aqueous
extraction of vegetable products. Temperature, dilution, pH, time,
heating and stirring modes are the key factors that can exert an
action on the release of hydrosoluble compounds. As indicated in
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 1. Kinetic profile of mucilage extraction (50°C, 250 rpm). 

re (Ziolkovska, 2012), a high temperature allows a bet­
on of mucilage, however, it increases protein and ash 
arbary et al., 2009) and can induce protein denatur­
e our extraction was performed at a mild temperature 
lution is also important to avoid high viscosity in the 
e viscosity of the medium increases with seed concen­

 the mucilage is not as easily recovered at low than at 
n. In this case, a standard concentration of 5% of seeds 
er is preferred. Concerning pH, strongacid solutions are 
nhance mucilage extraction but can deteriorate seeds 
omplete hydrolysis of their mucilage. Neutra( pH con­
e no influence on the solubility of polysaccharides but 
 the solubility of proteins (Martinez-Flores et al., 2006). 
en pH 4 and 10, we do not observe any change in the 

eld at 50 °C after 30 min of extraction. This may indicate 
teins are still not fully hydrated. 

ic approach 

ing the mucilage extraction curves (Fig. 1 ), we assume 
s rate of mucilage from the seeds follows a first-order 
g proportional to the difference between the concentra­

ucilage cells and the concentration in the extractant. 
, being a surface-coated compound, exhibits a mass­

a equal to that of the outer surface area of the seeds, S

S(Cs -Cw) (2) 

nitial volume of mucilage cells which surrounds the 
3 ). 

ncentration of mucilage in the cells on the surface of 
d (kg/m3 ). 

ncentration of mucilage in the extractant (kg/m3 ). 

ss-transfer coefficient (m/s). 

of conservation of mass means: 

olume of extractant (m3).

oncentration of mucilage in the ce lis at t- O. 

(3) 
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3.3. Use of u

Thus, we
sonotrode, 
 we will assume that after 180 min of treatment, ail of 
e has been removed from the surface of the flaxseeds, 
 -Cs -C

weq
.

exp ( 

s/Vw

kS(l + /3) t) 
Vs 

w 

) = -k*.t
e,i 

(5) 

(6) 

log (1-Cw/Cweq) versus t, a regression coefficient of 
tained with k° - 0.0065. 
(1 + /3) 

s 
(7) 

o Vs/5 can be approximated as the thickness of the 
yer. This thickness is never constant, as it can vary from O 
n 80 µm. By microscopie observation on different cross 
flaxseeds at a magnification of xlOOO on several seeds, 
 average thickness of 27 µm. 

_k_* 
�  + /3) 

(8) 

ution used here, /3 can be neglected. k~ 4.10-7 m/s. 
action kinetic is thus quite slow. Even if the mucilage 
on in the extractant increases with time, its high viscos­
s withdrawal from the seeds complicated. 
, we obtain a mucilage concentration of 5.0 g L-1

, which 
s to an extraction yield of 6.5%. Limitations of the yield 
lained by low recovered mucilage volumes ( <80% of 
ctant volume) due to difficulties in the filtration of 
hen the mucilage concentration and viscosity become 

icrowave technology 

drates are compounds far less dielectric than water and 
nsider that any microwave effect would be mainly due 
tion of the water molecules. Collision between water 
d's carbohydrates may also help solubilizing them. 
pressurized reactors with a temperature contrai. Thus 
aves could be used to heat the sample and/or to main­
perature. To test the presence of a microwave effect, 
ed the dry matter extracted after 30min at 50 °C in a 
n with the dry matter extracted after 30 min with many 
ofiles (fast, slowwith different ramps durations to reach 
d with different on/off time ratios at 50 °C) of heating 
microwave aven at 1200 W. 
odes gave the best results of mucilage extraction as 

ise between temperature and the time of microwave 
ght but significant enhancement of the extraction yield 
 was achieved (pulsed modes gave an extraction yield 
8% compared to 1.23 ± 0.49% with a classical aven at a 
nce level). However, this effect is identical or inferior 
roduced by magnetic stirring (2.11 ±0.28% compared 

73% at a 95% confidence level). Although microwave 
ffers a viable method to quickly increase the temper­
 medium in order to perform subsequent processes, it 
ow a significant effect on the overall extraction yield of 
ltrasonic technology 

 found that at 20% of the maximum amplitude of the 
the extraction yield after 30 min ( 5 min of effective 
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on of the extraction yield and kinematic viscosity of the extractant 
itude of ultrasounds (after 30 min of treatment in pulsed mode). 

reatment), is 4.5 ± 1.0% compared to 4.4 ± 0.3% after 
ction via magnetical stirring. Increasing the amplitude 
0% gives an extraction yield of 6.75±0.08%, which is 
to that obtained after 3 h of magnetical stirring treat­
 0.28% (Fig. 2 ). 

ic approach 
 the kinetic evolution of the extraction we choose to 
amplitude of 60%, in order to maintain a stable tem­
ring the extraction process. The data suggests that the 
traction can be divided into two steps (Fig. 3). A first 
 state is reached after 30 min of extraction and a fur­
e of the extract concentration is then observed, leading 
tion yield of 13.5 ± 0.05%. 
t for a second order rate kinetics assuming a rate pro­
 the square of the concentration of mucilage in the 

simplified as: 

)2 weq-Cw (9) 

cond-order extraction rate constant (m3 kg-1 min-1 ). 

n can be resolved by using Peleg's (1988) model: 

-t (10) 
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f R2 = 0.9917. 
e duce Cweq - 5.3 g L -t .k' -0.031 m3 kg-1 min-1. 
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on of the extract concentration with time of ultrasonic treatment at 
f 60% at so•c. 

where K 
polymer-so
related to c

Intrinsic
at high dilu

Salomon

[lJ) = [2(17re

where c is 
The advanta
does not ne

Kraemer

ln11,e1 =[1]
C 

(17) = limc➔

Huggins 
rasound-assisted extraction of mucilage follows a sec­
rate kinetics for the first 30 min of extraction. The 
 of mucilage extraction demonstrates a zero-order 

s. Therefore, plotting concentration versus time (where 
in), weobtain k= 0.039 m3 kg- 1 min- 1 and R2 = 0.9994.
e can presume that, after 30 min, the mucilage layer 

d and inner mate rial (proteins, fi brous partiel es, etc.) are 
ing into the extractant via ultrasonic-assisted osmosis. 
in the higher extraction rate and kinetic order of ultra­
ted mucilage extraction, different phenomena have to 
to account. While an increase of the extraction yield is 
 for an increase of the viscosity du ring classical heating 
viscosity gradually decreases with time and amplitude 
ds (Fig. 2). Hence, diffusion is not hindered by viscos­
her volume is recovered after an ultrasonic treatment. 

ersed in water, mucilage cells be gin to swell and the cell 
es more fragile. With ultrasounds, a strong mechanical 
s and its rupture is favored and uncoated molecules are 
ased. 
trasounds, through their thermomechanic action, the 
 dissipated by the collapse of cavitation bubbles and 

 microjets, desorb surface coated molecules. They can 
e structure of large molecules such as polysaccharides. 
ed power at the different amplitudes, as indicated by 
is from 7 to 83W from 20 to 80% and the energy pro­
e system by ultrasounds after 30 min is from 1.3 kj to 
ering the activation energy of ultrasonic degradation of 
lysaccharides as reported in literature (26.5 kJ/mol for 
arum polysaccharide (Zhu et al., 2010), 52.13 kJ/mol for 
Zhou and Ma, 2006), 65.8 kJ/mol for Arabinan (Shatalov 
, 2005)) polysaccharides degradation is expected. To 

ore precisely this phenomenon, the intrinsic viscosity 
cted mucilage was calculated. 

sic viscosity 
 viscosity, in ml./g is the expression of the hydro­
lume occupied by the molecules. It depends on the 
onformation (linear, branched) but also on the rigidity 

er chains. It is correlated with the molecular weight 
 Mark-Houwink-Sakurada relationship (G6mez-Oiaz 
. 

(11) 

and œ are parameters specific to the couple 
lvent. Alpha is a function of polymer geometry, 

hain flexibility. 
 viscosity can be calculated through different methods 
tion: 
 method: 

1- l - ln11,e1)J
112 

C 
(12) 

the concentration, in g/dl.lJrel is the relative viscosity. 
ge of this equation is that it is a one-point measure and 
ed several dilutions of the medium. 
 method: 

)-kk[lJJ2C

o (.! ln .!L.)

(13) 

(14) 

C 170 

method: 

(15) 
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