B. Banerdt, Initial results from the InSight mission on Mars, Nat. Geosci, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02531541

M. Golombek, Geology of the InSight landing site on Mars, Nat. Commun, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02563276

D. L. Anderson, Seismology on Mars. J. Geophys. Res, vol.82, pp.4524-4546, 1977.

D. Giardini, The seismicity of Mars, Nat. Geosci, 2020.
URL : https://hal.archives-ouvertes.fr/hal-02526752

P. Lognonné, SEIS: InSight's Seismic Experiment for Internal Structure of Mars, Space Sci. Rev, vol.215, p.12, 2019.

D. Banfield, InSight Auxiliary Payload Sensor Suite (APSS), Space Sci. Rev, vol.215, p.4, 2019.

D. Banfield, The atmosphere of Mars as observed by InSight, Nat. Geosci, 2020.
URL : https://hal.archives-ouvertes.fr/insu-02494466

A. Trebi-ollennu, InSight Mars lander robotics instrument deployment system, Space Sci. Rev, vol.214, p.93, 2018.

J. N. Maki, The color cameras on the InSight lander, Space Sci. Rev, vol.214, p.105, 2018.

J. Peterson, Observations and Modelling of Background Seismic Noise Open, 1993.

P. Lognonné and C. L. Johnson, , vol.10, 2015.

A. Spiga, Atmospheric science with InSight, Space Sci. Rev, vol.214, p.109, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01902145

P. Lognonné and B. Mosser, Planetary seismology, Surv. Geophys, vol.14, pp.239-302, 1993.

N. Murdoch, Evaluating the wind-induced mechanical noise on the InSight seismometers, Space Sci. Rev, vol.211, pp.429-455, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01445661

B. Kenda, Modeling of ground deformation and shallow surface waves generated by Martian dust devils and perspectives for near-surface structure inversion, Space Sci. Rev, vol.211, pp.501-524, 2017.
URL : https://hal.archives-ouvertes.fr/insu-02551135

N. Murdoch, Estimations of the seismic pressure noise on Mars determined from Large Eddy Simulations and demonstration of pressure decorrelation techniques for the InSight mission, Space Sci. Rev, vol.211, pp.457-483, 2017.

N. Murdoch, Flexible mode modelling of the InSight lander and consequences for the SEIS instrument, Space Sci. Rev, vol.214, p.117, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01915826

D. Mimoun, The noise model of the SEIS seismometer of the InSight mission to Mars, Space Sci. Rev, vol.211, pp.383-428, 2017.

L. Fayon, A numerical model of the SEIS leveling system transfer matrix and resonances: application to SEIS rotational seismology and dynamic ground Interaction, Space Sci. Rev, vol.214, p.119, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01990999

T. Spohn, The heat flow and physical properties package (HP 3 ) for the InSight mission, Space Sci. Rev, vol.214, p.96, 2018.

S. Kedar, Analysis of regolith properties using seismic signals generated by InSight's HP3 penetrator, Space Sci. Rev, vol.211, p.315, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01729585

N. Brinkman, The first active seismic experiment on Mars to characterize the shallow subsurface structure at the InSight landing site, SEG Tech. Prog. Expand. Abstr, pp.4756-4760, 2019.

G. G. Sorrells, A preliminary investigation into the relationship between long-period seismic noise and local fluctuations in the atmospheric pressure field, Geophys. J. Int, vol.26, pp.71-82, 1971.

R. D. Lorenz, Seismometer detection of dust devil vortices by ground tilt, Bull. Seism. Soc. Am, vol.105, pp.3015-3023, 2015.
URL : https://hal.archives-ouvertes.fr/insu-02555145

P. Morgan, A pre-landing assessment of regolith properties at the InSight landing site, Space Sci. Rev, vol.214, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01901608

P. Delage, An investigation of the mechanical properties of some Martian regolith simulants with respect to the surface properties at the InSight mission landing site, Space Sci. Rev, vol.211, pp.191-213, 2017.
URL : https://hal.archives-ouvertes.fr/insu-02552601

I. Ethz, . Jpl, . Icl, . Isae-supaero, U. Mps et al., InSight Marsquake Service Mars Seismic Catalogue: InSight Mission V1 2/1/2020, 2020.

A. M. Dainty, Seismic scattering and shallow structure of the moon in oceanus procellarum, vol.9, pp.11-29, 1974.

L. Margerin, M. Campillo, B. Van-tiggelen, and R. Hennino, Energy partition of seismic coda waves in layered media: theory and application to Pinyon Flats observatory, Geophys. J. Int, vol.177, pp.571-585, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00261432

L. Margerin, M. Campillo, N. Shapiro, and B. A. Van-tiggelen, Residence time of diffuse waves in the crust as a physical interpretation of coda Q: application to seismograms recorded in Mexico, Geophys. J. Int, vol.138, pp.343-352, 1999.

B. A. Romanowicz and B. J. Mitchell, , vol.1, pp.789-827, 2015.

K. Gillet, L. Margerin, M. Calvet, and M. Monnereau, Scattering attenuation profile of the moon: implications for shallow moonquakes and the structure of the megaregolith, Phys. Earth Planet. Int, vol.262, pp.28-40, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02566142

C. A. Langston, Structure under Mount Rainier, Washington, inferred from teleseismic body waves, J. Geophys. Res, vol.84, pp.4749-4762, 1979.

D. L. Abt, North American lithospheric discontinuity structure imaged by Ps and Sp receiver functions, J. Geophys. Res, vol.115, p.9301, 2010.

L. Vinnik, H. Chenet, J. Gagnepain-beyneix, and P. Lognonné, First seismic receiver functions on the Moon, Geophys. Res. Lett, vol.28, pp.3031-3034, 2001.

P. Lognonné, J. Gagnepain-beyneix, and H. Chenet, A new seismic model of the Moon: implication in terms of structure, formation and evolution, Earth Planet. Sci. Lett, vol.112, pp.27-44, 2003.

B. Knapmeyer-endrun, S. Ceylan, and M. Van-driel, Crustal S-wave velocity from apparent incidence angles: a case study in preparation of InSight, Space Sci. Rev, vol.214, p.83, 2018.

J. Kolb and V. Lekic, Receiver function deconvolution using transdimensional hierarchical Bayesian inference, Geophys. J. Int, vol.197, pp.1719-1735, 2014.

M. P. Panning, Planned products of the Mars Structure Service for the InSight mission, Mars. Space Sci. Rev, vol.211, pp.611-650, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01534998

M. P. Panning, Verifying single-station seismic approaches using Earth-based data: preparation for data return from the InSight mission to Mars, Icarus, vol.248, pp.230-242, 2015.
URL : https://hal.archives-ouvertes.fr/insu-02557342

A. M. Khan, Single-station and single-event marsquake location and inversion for structure using synthetic Martian waveforms, Phys. Earth Planet. Inter, vol.258, pp.28-42, 2016.

I. Daubar, Impact-seismic investigations of the InSight mission, Space Sci. Rev, vol.214, p.132, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01990992

D. Baratoux, M. J. Toplis, M. Monnereau, and O. Gasnault, Thermal history of Mars inferred from orbital geochemistry of volcanic provinces, Nature, vol.472, pp.338-341, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02566107

M. Golombek, Selection of the InSight landing site, Space Sci. Rev, vol.211, pp.5-95, 2017.

S. E. Smrekar, Pre-mission InSights on the interior of Mars, Space Sci. Rev, vol.215, p.3, 2019.
URL : https://hal.archives-ouvertes.fr/hal-01990798

B. R. Tittmann, V. A. Clark, J. M. Richardson, and T. W. Spencer, Possible mechanism for seismic attenuation in rocks containing small amounts of volatiles, J. Geophys. Res, vol.85, pp.5199-5208, 1980.

J. Clinton, The Marsquake Service: securing daily analysis of SEIS data and building the Martian seismicity catalogue for InSight, Space Sci. Rev, vol.214, p.133, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01991048

M. Knapmeyer, TTBox: a MatLab toolbox for the computation of 1D teleseismic travel times, Seismol. Res. Lett, vol.75, pp.726-733, 2004.

D. E. Smith, Mars Orbiter laser altimeter: experiment summary after the first year of global mapping of Mars, J. Geophys. Res, vol.106, pp.23689-23722, 2001.

. Institute-of-geophysics, ;. Zurich, . Cnrs, . Cnes, and F. Toulouse, 12 Sorbonne Université, Muséum National d'Histoire Naturelle, UMR CNRS 7590, IMPMC, issue.10

, 20 Black Forest Observatory, École Polytechnique, École Normale Supérieure (ENS), p.29

N. Msfc, . Nsstc, A. L. Huntsville, and U. , 36 Planetary Science Institute, 38 Atmospheric, Oceanic and Planetary Physics, vol.195, pp.1165-1183, 2013.

K. Mosegaard and A. Tarantola, Monte Carlo sampling of solutions to inverse problems, J. Geophys. Res, vol.1001, pp.12431-12448, 1995.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state calculations by fast computing machines, J. Chem. Phys, vol.21, pp.1087-1091, 1953.

W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika, vol.57, pp.97-109, 1970.

G. G. Sorrells, J. A. Mcdonald, Z. A. Der, and E. Herrin, Earth motion caused by local atmospheric pressure changes, Geophys. J. Int, vol.26, pp.83-98, 1971.

B. L. Kennett, The removal of free surface interactions from threecomponent seismograms, Geophys. J. Int, vol.104, pp.53-163, 1991.

J. P. Ligorria and C. J. Ammon, Iterative deconvolution and receiver-function estimation, Bull. Seism. Soc. Am, vol.89, pp.1395-1400, 1999.

B. Tauzin, T. S. Ph?m, and H. Tkal?i?, Receiver functions from seismic interferometry: a practical guide, Geophys. J. Int, vol.217, pp.1-24, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02293275

R. Kind, G. L. Kosarev, and N. V. Petersen, Receiver functions at the stations of the German Regional Seismic Network (GRSN), Geophys. J. Int, vol.121, pp.191-202, 1995.

K. Hannemann, F. Krüger, T. Dahm, and D. Lange, Structure of the oceanic lithosphere and upper mantle north of the Gloria Fault in the eastern mid-Atlantic by receiver function analysis, J. Geophys. Res, vol.122, pp.7927-7950, 2017.

M. Wathelet, An improved Neighborhood Algorithm: parameter conditions and dynamic scaling, Geophys. Res. Lett, vol.35, p.9301, 2008.
URL : https://hal.archives-ouvertes.fr/insu-00335912

T. Shibutani, M. Sambridge, and B. Kennett, Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia, Geophys. Res. Lett, vol.23, pp.1829-1832, 1996.

M. Sambridge, Geophysical inversion with a neighbourhood algorithm-I. Searching a parameter space, Geophys. J. Int, vol.138, pp.479-494, 1999.

J. Ipgp, . Cnes, . Ethz, M. Icl, . Isae-supaero et al., SEIS Raw Data: InSight Mission, 2019.

,

, Black Forest Observatory Data (GFZ Data Services, 1971.

,

Y. Nakamura, Shallow moonquakes: Depth, distribution and implications as to the present state of the lunar interior, Proc. Lunar Sci. Conf. 10th, vol.3, pp.2299-2309, 1979.

, , 1963.

, Additional support was provided by ANR (ANR-14-CE36-0012-02, ANR-19-CE31-0008-08 for SEIS science support and ANR-11-EQPX-0040 for RESIF data access) and for the IPGP team by the UnivEarthS Labex program (ANR-10-LABX-0023) and IDEX Sorbonne Paris Cité (ANR-11-IDEX-the InSight Project, Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Additional work was supported by NASA's InSight Participating Scientist Program and LPI (LPI is operated by USRA under a cooperative agreement with the Science Mission Directorate of the NASA). The Swiss coauthors were jointly funded by (1) the Swiss National Science Foundation and French Agence Nationale de la Recherche, SEIS-related contracts and CNES employees, as well as CNRS and the French team universities for personal and infrastructure support. SEIS VBB testing and development have also been supported by SESAME

, Pan acknowledge funding from European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreements 793824 and 751164. This paper is InSight Contribution 101, LPI contribution 2249 and IPGP Contribution 4099. Author contributions P. Lognonné leads the SEIS experiment and the VBB sensors. He designed the higherlevel requirements of the experiment together with D. Mimoun. He led the manuscript team effort, contributed to several Supplementary Discussions and integrated all contributions. W.B.B. leads the InSight mission and the US contribution to, Space Office (SSO), the contractual and technical support of the ESA-PRODEX office. SEIS-SP development and delivery were funded by UKSA. The SEIS levelling system development and operation support at MPS was funded by the DLR German Space Agency. B.T. and L

L. K. , G. P. , P. Laudet, A. S. , -. Deployment et al., reviewed the manuscript. All authors read and commented on the manuscript. W.T.P. and P. Lognonné led the analysis of Supplementary Discussion 1. C

D. S. , F. , ;. S. Krasner, J. K. , C. K. et al., developed the modelling and inversion tools for dust devils, processed the corresponding data and wrote Supplementary Discussion 2-3. C.P. and S.R. developed the automatic HiRise dust devil track software. M.D. developed the subsurface inversion tool with contributions from B.K. and P. Lognonné and wrote Supplementary Discussion 2-4. All authors discussed the overall results, LVL inversion methodology with the support of P. Lognonné. P. Delage and P. Lognonné discussed the results and P. Delage provided additional laboratory experiment support. L.F. and M. van D. performed the resonances analysis. T.S. leads the HP 3 experiment and contributed to the execution of the HP 3 -SEIS experiment and the interpretation of the results

P. Davis, P. Lognonné, L. Pou, B. P. , and R. F. , the glitchremoval algorithm based on the discrete wavelet transform. All authors analysed the glitches