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Abstract

A numerical model is proposed to compute the eigenmodes and the forced

response of multilayered elastic spheres. The main idea is to describe analyti-

cally the problem along the angular coordinates with spherical harmonics and

to discretize the radial direction with one-dimensional finite elements. The

proper test function must be carefully chosen so that both vector and tensor

spherical harmonics orthogonality relationships can be used. The proposed

approach yields a general one-dimensional formulation with a fully analytical

description of the angular behaviour, suitable for any interpolating technique.

A linear eigenvalue problem, simple and fast to solve, is then obtained. The

eigensolutions are the spheroidal and torsional modes. They are favourably

compared with literature results for a homogeneous sphere. The eigensolu-

tions are superposed to compute explicitly the forced response. The latter is

used to reconstruct the propagation of surfaces waves. In particular, the col-
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limation of a Rayleigh wave (non-diffracted surface wave propagating with a

quasi-constant width) excited by a line source in a homogeneous sphere is re-

covered with the model. Based on the vibration eigenmodes, a modal analysis

shows that such a wave is a superposition of fundamental spheroidal modes

with a displacement confined at the equator of the sphere. These modes are

the so-called Rayleigh modes, of sectoral type and high polar wavenumbers.

When a thin viscoelastic coating is added to the sphere, the Rayleigh mode

behaviour is recovered in a limited frequency range, allowing the generation

of a collimating wave at the interface between the sphere and the coating.
Keywords: sphere, finite element, spherical harmonics, eigenmodes, forced

response, surface waves

1. Introduction

The study of the free vibrations (eigenmodes) of an elastic sphere is a1

classical mechanics problem formally solved first by Lamb [1]. This topic2

received a great interest in geophysics [2, 3], using the Earth’s eigenmodes to3

synthesize seismograms and improve the understanding of earthquakes [4].4

Lamb [1] and Shah et al. [5] also studied the case of a hollow sphere (spherical5

shell), which has been reconsidered with the emergence of composites struc-6

tures [6–8]. Besides because the eigenmodes are intrinsic to the structure7

they can be used to characterize unknown materials or geometries, using e.g.8

the resonant scattering theory for immersed spheres [9] or Raman scattering9

for nanoparticles [10]. Sphere eigenmodes have also found applications in the10

non-destructive testing of ceramic balls in aeronautics [11].11

Eigenmodes are the solutions of a dispersion relationship, which can be12
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obtained analytically in a homogeneous sphere. However advanced numeri-13

cal methods are required when the structure is complex (e.g. multilayered).14

Buchanan and Ramirez [12] have used a two-dimensional model of the sphere15

cross-section, using finite elements to discretize the radial and polar angular16

directions and an exponential ansatz along the azimuthal coordinate. How-17

ever the computational cost raises quickly with the frequency of interest, and18

this method is therefore rather limited to low-frequency computation. On19

the contrary, semi-analytical methods yield a one-dimensional model, and20

thus the cost remains reasonable even at high frequencies. The basic idea21

of semi-analytical methods is to describe analytically some directions (in a22

sphere, the angular ones) and to discretize the remaining one (the radial23

direction).24

This principle has been applied with spherical harmonics along the angu-25

lar directions and finite elements along the radial direction by Heyliger and26

Jilani [6] and Park [13]. It leads to a linear eigenvalue problem which is simple27

to solve. However, both existing formulations do not take full advantage of28

the analytical description of the solution along the angular coordinates. The29

eigenproblem of Heyliger and Jilani [6] is not given in a closed-form, so that30

numerous integrations must be performed before computing the modes. The31

approach of Park [13] (the so-called spherical thin layer method (STLM))32

requires to evaluate, for a given interpolation choice, lengthy analytical ex-33

pressions of the stiffness matrices. In Park’s work, only the conventional34

linear and quadratic shape functions have been treated. The extension to35

other interpolating functions is possible, but it would require an important36

amount of tedious derivations and factorization along the angular coordi-37
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nates. It is then of interest to propose a more compact formulation in which38

various interpolating functions can be immediately used, including high-order39

shape functions (see e.g. Ref. [14]).40

From the authors’ point of view, the main issue is to properly identify41

the orthogonality relationships of spherical harmonics which must be used to42

preserve the separation of radial and angular variables in the elastodynamic43

balance equations. These equilibrium equations correspond to vector wave44

equations, which complicates the problem. As will be outlined in this paper,45

two kinds of orthogonality relationships are necessary to eventually obtain a46

general semi-analytical formulation. On one hand, the orthogonality of vector47

spherical harmonics is needed for the kinetic energy term (including the scalar48

product of displacements). This first kind of orthogonality is rather well-49

known in the literature [15]. On the other hand, the orthogonality of tensor50

spherical harmonics is required for the potential energy term (including the51

stress-strain tensor product). This second kind of orthogonality is much more52

mathematically involved (see e.g. Refs. [16, 17]). Note that the principle of53

semi-analytical methods, when applied to solve the scalar Helmholtz equation54

(as done in Ref. [18] for instance), is simpler to implement since it only55

involves the orthogonality of scalar spherical harmonics.56

As far as wave propagation is concerned, surface acoustic waves on a57

sphere are strongly related to the eigenmodes. The latter corresponds to58

standing waves which naturally occur because of the closed geometry of the59

sphere. Any wave can be reconstructed by a superposition on the eigen-60

modes [4, 19]. The Rayleigh surface wave, when excited by a point source,61

propagates all over the sphere (because of diffraction) and merges at the62
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pole opposite to the source (because of the curvature). However as shown by63

Tsukahara et al. [20], Ishikawa et al. [21] and Clorennec and Royer [22], if the64

source is a line of specific width, the Rayleigh wave is naturally collimated,65

that is, the wave is not diffracted but propagates with a quasi-constant width.66

Such a wave makes several roundtrips, which has been exploited to design67

gas sensors [23]. This phenomenon can be explained as a balance between68

diffraction and curvature effects. In this paper, we are interested in mod-69

elling the propagation of waves excited by an arbitrary source, based on the70

eigenvibrations of a multilayered sphere. In particular, we want to reproduce71

the collimation of a Rayleigh wave generated by a line source in a homoge-72

neous sphere, and to investigate the perturbation induced by the addition of73

a thin viscoelastic coating to the sphere.74

The main objective of this paper is to elaborate a general one-dimensional75

semi-analytical finite element model to compute both the free (eigenmodes)76

and forced responses of an elastic sphere of complex internal structure (e.g.77

multilayered). This model is presented in Sec. 2 of this paper. The forced78

response model is calculated explicitly based on modal superposition on the79

eigenmodes. It is subsequently used to reconstruct the propagation of surface80

waves. In Sec. 3, the computed eigenmodes are compared with literature re-81

sults. The forced response is used in Sec. 4 to simulate a collimating Rayleigh82

wave. The behaviour of this wave is analysed in terms of the eigenvibrations83

of the sphere. Finally, the effect of a viscoelastic coating on the collimating84

wave is investigated.85

5



2. The numerical model86

2.1. Elastodynamic variational formulation87

We consider a solid sphere of radius r = a. The problem is described88

in the spherical coordinate system (r, θ, φ) shown in Fig. 1. r is the radial89

direction; θ is the polar or colatitude angle, with 0 ≤ θ ≤ π; φ is the azimuthal90

angle, with 0 ≤ φ ≤ 2π. A time-harmonic dependance e−jωt is chosen for91

the displacement field, with u(r, θ, φ) = [ur(r, θ, φ), uθ(r, θ, φ), uφ(r, θ, φ)]T.92

The superscript T denotes matrix transpose. The elastodynamics variational93

formulation is (see e.g. Bathe [24, Chap. 4]):94

∫
V
δεTσdV − ω2

∫
V
ρδuTudV =

∫
V
δuTfdV +

∫
∂V
δuTtd∂V , (1)

with dV = r2dr sin θdθdφ. f is the vector of volumic acoustic forces. t is the95

vector of stresses on a spherical isosurface of radius r = a, such that d∂V =96

r2 sin θdθdφ (note that a stress boundary condition may also be applied on97

the inner radius, supposed at r = b, in case of a hollow sphere). The stress98

and strain vectors are respectively given by σ = [σrr, σθθ, σφφ, σθφ, σrφ, σrθ]T99

and ε = [εrr, εθθ, εφφ, 2εθφ, 2εrφ, 2εrθ]T. The stress-strain relation is σ = Cε.100

C is the matrix of material properties. The materials can be elastic or101

viscoelastic. The model is restricted to the case of transversely isotropic102
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materials, such that:103

C =



C11 C12 C12 0 0 0

C12 Cα C23 0 0 0

C12 C23 Cα 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C55


, (2)

where Cα = 2C44+C23. This restriction is necessary to allow the separation of104

angular and radial variables in Sec. 2.2. Besides, material properties can vary105

arbitrarily along the radius only (e.g. a sphere made of several homogeneous106

layers).107

The strain-displacement relation is ε = Lu. The operator L is given by:108

L = Lr
∂

∂r
+ Lθ

1
r

∂

∂θ
+ Lφ

1
r sin θ

∂

∂φ
+ 1
r
L1 + cot θ

r
L2 , (3)

with:109

Lr =



1 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 1 0


, Lθ =



0 0 0

0 1 0

0 0 0

0 0 1

0 0 0

1 0 0


, Lφ =



0 0 0

0 0 0

0 0 1

0 1 0

1 0 0

0 0 0


,L1 =



0 0 0

1 0 0

1 0 0

0 0 0

0 0 −1

0 −1 0


, L2 =



0 0 0

0 0 0

0 1 0

0 0 −1

0 0 0

0 0 0


.

(4)

2.2. Vector spherical harmonic expansion110

Let us first remind that, applying the Helmholtz decomposition theorem,111

finding the solutions of the homogeneous elastodynamic equations (strong112
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Figure 1: Spherical coordinate system. r: radial coordinate; 0 ≤ θ ≤ π: polar or colatitude

angle; 0 ≤ φ ≤ 2π: azimuthal angle.

formulation) consists in solving three scalar Helmholtz equations. The radial113

and angular coordinates can be separated, and the angular scalar depen-114

dence is written on a basis of spherical harmonic functions [4, 15, 19]. The115

normalized scalar spherical harmonic functions are given by:116

Y m
l (θ, φ) = Nm

l√
2π
Pm
l (cos θ)ejmφ , (5)

with the degree l (l ≥ 0) and the order m (|m| ≤ l) [25]. Nm
l =

√
(2l+1)(l−m)!

2(l+m)!117

is the normalization factor. The integers l and m are also called the polar and118

azimuthal wavenumbers [4]. Pm
l (cos θ) is the associated Legendre polynomial119

of the first kind, which satisfies the Legendre equation [25]:120

d2Pm
l

dθ2 + cot θdPm
l

dθ +
(
l − m2

sin2 θ

)
Pm
l = 0 , (6)

with l = l(l + 1). The explicit form of associated Legendre polynomials is121

written by convention [25]:122

Pm
l (cos θ) = (−1)m(sin θ)m dm

d(cos θ)mPl(cos θ) , (7)

where Pl(cos θ) is the Legendre polynomial of the first kind, including the123

Condon-Shortley phase (−1)m.124
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From the scalar solutions, one can eventually obtain the vector displace-125

ment solution in which radial and angular variables are also separated. In126

this paper, the radial behaviour of the displacement is interpolated using127

finite elements (see Sec. 2.3) instead of using exact spherical Bessel func-128

tion, while the analytical description of the angular behaviour, using vector129

spherical harmonics, is exploited.130

In Eq. (1), the displacement field is then written as:131

u(r, θ, φ) =
∑
l≥0

∑
|m|≤l

Sml (θ, φ)ûml (r) , (8)

where ûml (r) = [ûml (r), v̂ml (r), ŵml (r)]T is the vector of the (l,m)–coefficients132

of the expansion (to be determined). The matrix Sml conveniently concate-133

nates the vector spherical harmonics and is given by [13, 15]:134

Sml (θ, φ) =


Ym
l (θ, φ) 0 0

0 ∂Yml (θ,φ)
∂θ

−∂Yml (θ,φ)
sin θ∂φ

0 ∂Yml (θ,φ)
sin θ∂φ

∂Yml (θ,φ)
∂θ

 . (9)

The same form is also assumed for the volumic forces and the normal stresses,

that is:

f(r, θ, φ) =
∑
l≥0

∑
|m|≤l

Sml (θ, φ)f̂ml (r) , (10)

t(θ, φ) =
∑
l≥0

∑
|m|≤l

Sml (θ, φ)t̂ml . (11)

It is noteworthy that the vector spherical harmonics form an orthogonal135

basis [15, 17], with:136

∫ π

0

∫ 2π

0
Sp∗k Sml dφ sin θdθ =


1 0 0

0 l 0

0 0 l

 δklδmp , (12)
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where ∗ stands for the transpose conjugate matrix. The proof is briefly137

recalled in Appendix A.1. As explained later, the key point of the formulation138

proposed in this paper is then to choose the test function as follows:139

δuT(r, θ, φ) = δûT(r)Sp∗k (θ, φ) . (13)

From Eq. (13), one can write the virtual strains as: δεT =
[
LSp∗Tk δû

]T
.140

2.3. Finite element approximation of the radial dependance of wavefields141

Along the radial direction, a finite element approximation is applied such142

that the displacement on each element is given by:143

ûm,el (r) = Ne(r)Ûm,e
l . (14)

Ne(r) is the matrix of one-dimensional interpolation functions. Ûm,e
l is the144

vector of nodal displacements.145

In Eq. (1), the angular integrations are then computed and simplified146

using Eq. (12). To evaluate the integral
∫
δεTσ sin θdθdφ, additional rela-147

tionships coming from the orthogonality of tensor spherical harmonics are148

necessary. These are given in Appendix A.1. A detailed example is also149

given in Appendix B for the calculation of one matrix component. Finally,150

after lengthy algebraic manipulations, the following global matrix system can151

be obtained:152 (
K(l)− ω2M(l)

)
Ûm
l = F̂m

l . (15)

The stiffness matrix is given by:153

K(l) = K1(l) + K2(l) + KT
2 (l) + K3(l) , (16)
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where elementary matrices are:154

Ke
1(l) =

∫ dNeT

dr


C11 0 0

0 lC55 0

0 0 lC55


dNe

dr r2dr , (17)

Ke
2(l) =

∫ dNeT

dr


2C12 −lC12 0

lC55 −lC55 0

0 0 −lC55

Nerdr , (18)

Ke
3(l) =

∫
NeT


lC55 + 4Cβ −l

(
C55 + 2Cβ

)
0

−l
(
C55 + 2Cβ

)
l(C55 + lC23 + 2(l − 1)C44) 0

0 l(C55 + (l − 2)C44) 0

Nedr ,

(19)

where Cβ = C23 + C44.155

The elementary mass matrix is given by:156

Me(l) =
∫
ρNeT


1 0 0

0 l 0

0 0 l

Ner2dr . (20)

The force vector F̂m
l gathers the contribution of volumic forces and stresses,157

that is:158

F̂m
l = F̂m

l,v + F̂m
l,s . (21)

The elementary volumic forces are given by:159

F̂m,e
l,v =

∫
NeT


1 0 0

0 l 0

0 0 l

 f̂m,el r2dr . (22)
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The contribution of stresses can be written:160

δÛTF̂m
l,s =


1 0 0

0 l 0

0 0 l


[
δûr2t̂ml

]r=a
r=b

, (23)

where δÛ is the vector of virtual nodal displacements.161

As a final remark, let us highlight the significance of the test function162

(13). Owing to this choice, the orthogonality of vector spherical harmonics163

(Eq. (12)) immediately appears in each integral of Eq. (1). Moreover, this164

choice also takes advantage of the orthogonality of tensor spherical harmon-165

ics [16, 17], which leads to the identities summed up by Eqs. (A.4)–(A.5)166

in Appendix A.1. Both vector and tensor orthogonality relationships are167

mandatory to get uncoupled governing equations for each pair of wavenum-168

bers (l,m), as eventually obtained in Eq. (15). This yields a general for-169

mulation with a fully analytical description of the problem along the two170

angular coordinates. This is not the case in the model of Heyliger and Jilani171

[6], in which angular integrals must be solved analytically or numerically for172

each value of l. On the other hand, compared with the formulation of Park173

[13], the expressions of the matrices given by Eqs. (17)–(19) are valid for any174

choice of interpolation functions.175

2.4. The source-free problem: computation of the eigenmodes176

To compute the eigenmodes of the sphere, the source-free problem must177

be considered (i.e. F̂m
l = 0 in Eq. (15)). It yields a standard linear eigenprob-178

lem in terms of ω. For each integer value of l, one obtains N eigenfrequencies179

ω
(n)
l and eigenvectors Û(n)

l (corresponding to the radial mode shapes), with180

n = 1 . . . N .181
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Let us stress than when this problem is solved analytically, the eigenfre-182

quencies are the roots of transcendental equations involving spherical Bessel183

functions (the dispersion relationship can be found for a homogeneous and184

isotropic sphere in Ref. [19]), which must be solved with root-finding al-185

gorithms. Their convergence can be poor at high frequencies because of186

instabilities [26]. Conversely, the linear eigenproblem obtained in this paper187

can be solved with standard methods.188

The eigenproblem shares some properties with the analytical dispersion189

relationship. Both are degenerate with respect to the azimuthal wavenumber190

m, such that there are 2l+1 independent modes with the same eigenfrequency191

ω
(n)
l [27, 28]. Furthermore, it can be noticed from the structures of matri-192

ces in Eqs. (17)–(20) that the eigensystem can be readily divided into two193

independent linear eigenproblems, namely:194

(KS − ω2MS)ÛS = 0 , (24)

(KT − ω2MT )ÛT = 0 . (25)

One recovers the two families of eigenmodes in a sphere [19]. The first eigen-195

problem yields the so-called spheroidal modes, which have a non-zero dis-196

placement in every direction. The second eigenproblem yields the so-called197

torsional modes, which have a non-zero displacement only in the angular198

(transverse) directions. For the simplicity of the formulation, this decompo-199

sition is not exploited in this paper (the finite element discretization is only200

one-dimensional and leads to fast computations).201
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2.5. The forced response: wave propagation202

To reconstruct surface wave propagation, the forced response problem203

must be considered. First, let us write the linear eigenproblem for a given204

mode (l, n):205

(K(l)− ω(n)2
l M(l))Û(n)

l = 0 . (26)

Owing to viscoelasticity (if any), the matrices K and M are complex-valued206

and not Hermitian. However, both matrices are symmetric such that the207

following orthogonality relationships hold:208

Û(k)T
l K(l)Û(n)

l = ω
(n)2
l δkn , (27)

Û(k)T
l M(l)Û(n)

l = δkn . (28)

Introducing the modal expansion Ûm
l = ∑N

n=1 α
(n)Û(n)

l into the forced re-209

sponse equation (15), multiplying by Û(k)T
l and using the orthogonality re-210

lationships (27) and (28) yields:211

α(n) = Û(n)T
l F̂m

l

ω
(n)2
l − ω2

, (29)

such that:212

Ûm
l =

N∑
n=1

Û(n)T
l F̂m

l Û(n)
l

ω
(n)2
l − ω2

. (30)

This quantity corresponds at each node to the displacement Frequency Re-213

sponse Function (FRF) of a pair (l,m). Its inverse Fourier transform yields214

the transient displacement:215

Ûm
l (t) = 1

2π

∫ +∞

−∞

 N∑
n=1

Û(n)T
l F̂m

l (ω)Û(n)
l

ω
(n)2
l − ω2

 e−jωtdω . (31)
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Finally, the vector of physical nodal displacements in the time domain is216

given by:217

U(θ, φ, t) =
∑
l≥0

∑
|m|≤l

Sml (θ, φ)Ûm
l (t) . (32)

2.6. Wave properties218

Phase and group velocities can be derived from the eigenfrequencies. The219

phase velocity is given by:220

v(n)
pl

= Re(ω(n)
l )a

l + 1
2

, (33)

where ka = l+1/2 accounts for the polar phase-shift of surface waves [19, 29].221

The group velocity is defined as [19]:222

v(n)
gl

= Re∂ω
(n)
l

∂l
a , (34)

Following Finnveden [30], the group velocity can be obtained from the finite223

element matrices (which avoids complex mode sorting). Deriving Eq. (26)224

with respect to l yields:225 ∂K(l)
∂l

− 2ω(n)
l M(l)∂ω

(n)
l

∂l
− ω(n)2

l

∂M(l)
∂l

 Û(n)
l

+ (K(l)− ω(n)2
l M(l))∂Û(n)

l

∂l
= 0 .

(35)

Multiplying by Û(n)T
l , the second term is equal to zero. One readily obtains226

the following expression:227

v(n)
gl

= Re
Û(n)T

l

(
∂K(l)
∂l
− ω(n)2

l
∂M(l)
∂l

)
Û(n)
l

2ω(n)
l Û(n)T

l M(l)Û(n)
l

 a . (36)
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To compute the derivative of the mass and the stiffness matrices, it is note-228

worthy that they can be readily factored as:229

K(l) = K′

1 + l(K′

2 + K′T
2 ) + l

2K′

3 , (37)

M(l) = M′

1 + lM′

2 . (38)

Therefore, their derivatives are given by:230

∂K(l)
∂l

= (2l + 1)(K′

2 + K′T
2 ) + 2l(2l + 1)K′

3 , (39)

∂M(l)
∂l

= (2l + 1)M′

2 . (40)

2.7. Remarks on the sherical harmonic expansion231

In Eqs. (8), (10), (11), the quantities ûml , f̂ml , t̂ml stand for the coefficients232

of a Vector Spherical Harmonic Transform (Vector SHT analysis), given by:233

ûml (r) =
∫ π

0

∫ 2π

0
Sm∗l (θ, φ)u(r, θ, φ)dφ sin θdθ . (41)

Accordingly the physical quantities uml , fml , tml are the results of an Inverse234

Vector Spherical Harmonic Transform (Vector SHT synthesis). As shown by235

Kostelec et al. [31], the θ-derivative of Y m
l in Sml can be related recursively236

to the l+ 1 and l− 1 spherical harmonics degrees, such that the vector SHT237

is equivalent to several scalar SHT. For any scalar function h(θ, φ), its SHT238

synthesis is:239

h(θ, φ) =
∑
l≥0

∑
|m|≤l

Y m
l (θ, φ)ĥml . (42)

The complex-valued coefficients ĥml can be obtained from the SHT analysis240

of the function h, that is:241

ĥml =
∫ π

0

∫ 2π

0
Y m∗
l (θ, φ)h(θ, φ)dφ sin θdθ . (43)
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These transforms cannot be evaluated analytically in general. Several accu-242

rate and quick numerical tools have been proposed in the literature [32–34].243

In this paper, the SHT analysis and synthesis are performed following the244

numerical strategy described in Refs. [33] and [34]. The fundamental steps245

are briefly recalled in the following for self-consistency.246

First, Eq. (43) can be written as:247

ĥml = Nm
l√
2π

∫ π

0

[∫ 2π

0
e−jmφf(θ, φ)dφ

]
Pm
l (cos θ) sin θdθ . (44)

Equation (44) shows that the SHT analysis can be subdivided into a Fourier248

transform followed by a projection on the basis of associated Legendre poly-249

nomials of the first kind.250

The Fourier transform integral is computed using a Discrete Fourier251

Transform (DFT) on a minimum of NTF = 2L + 1 samples along the az-252

imuthal coordinate according to Shannon’s theorem, where L is the max-253

imum value of l. In practice, the DFT can be efficiently computed using254

Fast Fourier Transform (FFT) algorithms [35]. It yields the spectrum of255

coefficients hm(θ).256

The projection on the basis of associated Legendre polynomial is then257

evaluated using a Gauss-Legendre quadrature (GLQ). For a given m and258

using the change of variable x = cos θ, one obtains:259 ∫ π

0
hm(θ)Pm

l (cos θ) sin θdθ =
L+1∑
q=1

wqh
m(acosxq)Pm

l (xq) , (45)

where wq are the Gauss weights and xq are the Gauss points. Using L + 1260

Gauss points, the integration is exact if the product hm(acosxq)Pm
l (xq) is261

a polynomial of maximum degree 2L. The latter assumption is not strictly262

satisfied, but the accuracy has been shown to be very good in practice [33].263
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The SHT synthesis (42) can be written as:264

h(θ, φ) = Nm
l√
2π

m=L∑
m=−L

 L∑
l=|m|

ĥml P
m
l (cos θ)

 ejmφ . (46)

This equation shows that for each value of θ the first step of the SHT synthesis265

is a summation over the associated Legendre polynomial basis, followed by266

an Inverse DFT. Note that the number of synthesis along θ can be reduced267

taking advantage of the symmetry of the associated Legendre polynomial268

across the equator, with the identity:269

Pm
l (cos(π − θ)) = (−1)(l+m)Pm

l (cos θ) . (47)

3. Validation test case: free vibrations of an isotropic homogeneous270

sphere271

Material E (GPa) ρ (kg m−3) cl (m s−1) cs (m s−1) ηl (Np wavelength−1) ηs (Np wavelength−1)

Steel 200 7932 5500.7 3175.8 0.003 0.008

Epoxy 9 1600 2960 1450 0.0047 0.0069

Table 1: Material properties

3.1. Description of the test case272

Let us consider an isotropic sphere of radius a = 10 mm. The surface of273

the sphere is free (i.e. σrr = σrθ = σrφ = 0). The sphere is made of steel.274

Materials properties are given in Table 1 (here the viscoelastic parameters275

are equal to zero). The material is isotropic and its stiffness matrix can be276
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written as:277

C =



3λ λ λ 0 0 0

λ 3λ λ 0 0 0

λ λ 3λ 0 0 0

0 0 0 λ 0 0

0 0 0 0 λ 0

0 0 0 0 0 λ


, (48)

with the Lamé’s parameter λ = Eν/[(1 + ν)(1− 2ν)] (ν = 0.25).278

The eigenmodes computed with the numerical method of this paper are279

compared with the results of Ref. [19, Ch. 8] for n = 1, . . . , 5 and l =280

1, . . . , 60. The non-dimensional eigenfrequencies are defined by ω(n)
l = aω

(n)
l /cS,281

where cS is the shear wave velocity. The radius is discretized with three-nodes282

line elements of length ∆r = 0.012a, which corresponds to a sixth of the283

minimum radial wavelength given by 2πcS/max(ω(n)
l ). The one-dimensional284

numerical model then comprises 1014 degrees of freedom (dofs).285

3.2. Results286

Figure 2 compares the eigenfrequencies of Ref. [19] and those obtained287

with the numerical method of this paper. Both results are superimposed.288

The curves of the spheroidal modes (blue triangles in Fig. 2) start at l = 0289

at breathing mode eigenfrequencies (modes with a radial polarization only).290

At low wavenumber l, these curves also exhibit a sudden change of slope,291

characterizing a strong dispersive behaviour.292

Some radial modeshapes Um
l are displayed in Fig. 3. The dofs ûml , v̂ml and293

ŵml can be related to physical displacements, based on the two independent294

eigensystems (24)–(25). The dofs ûml describe the radial dependence of ur.295
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As expected, they are null for torsional modes which are polarized along the296

angular directions only – see Fig. 3e. The dofs v̂ml give the radial dependence297

of uθ and uφ for spheroidal modes. As shown in Fig. 3b,c,d, the dofs ŵml are298

null in that case. On the contrary, the dofs ŵml are the only non-zero dofs for299

torsional modes – see Fig. 3e. To verify the accuracy on modeshapes, Fig. 3b300

can be compared with the results of Ref. [19]. A very good visual agreement301

is obtained.302

The radial behaviour of the modes depends on their polar wavenumber l303

and on their order n. For l = 0, the motion is purely radial (breathing mode)304

and distributed over the radius (Fig. 3a). The spheroidal modes with l = 1305

are the only modes with a non-zero displacement at r = 0 – see Fig. 3b and306

[19]. As shown in Fig. 3c and 3d, for high values of l the displacement is307

confined near the surface, particularly for the fundamental mode with n = 1308

(Fig. 3c). When the order n of the mode increases, e.g. in Fig. 3d with n = 5,309

the inner displacement increases and oscillations can be observed along the310

radius.311

A simple post-processing step enables to represent the modal displace-312

ment on a spherical surface (some properties necessary to compute the values313

of Sml (θ, φ) are given in Appendix A.2). Figure 4 shows the normal displace-314

ment ur at the surface of the sphere (r = a), for the fundamental spheroidal315

mode (n = 1) with l = 30. The displacement is shown for three values of m316

(m = 0, m = 10, m = l = 30). All the modes have the same eigenfrequency317

because of the eigensystem degeneracy, but the modeshapes in the angular318

directions are quite different. These modeshapes correspond to the zonal319

(Fig. 4a), tesseral (Fig. 4b) and sectoral (Fig. 4c) patterns of the spherical320
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Figure 2: Non-dimensional eigenfrequencies ω(n)
l of a surface-free sphere made of steel.

Solid and dashed blacked lines: results of Eringen and Şuhubi [19] for spheroidal and

torsional modes. Blue triangles: numerical results for spheroidal modes. Red crosses:

numerical results for torsional modes.

harmonics [15, 25], modulated by the radial behaviour of the mode. For321

the angular components uθ and uφ (not shown here), similar patterns can322

be observed (some of them then involve the θ-derivative of the patterns of323

spherical harmonics). It is noteworthy that for high values of l (i.e. with324

a displacement confined at the surface), the sectoral modes appear to be325

analogue to the so-called whispering-gallery modes, which have found many326

applications in optics [36–38].327

4. Surface Acoustic Waves328

In this section, the numerical model is used to reconstruct the collimation329

of the Rayleigh surface wave, and to interpret this phenomenon in terms of330

the eigenvibrations of the sphere. As an example of a multilayered sphere,331
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Figure 3: Radial modeshapes (arbitrary unit) ûml (r) (solid blue line), v̂ml (r) (dashed red

line) and ŵml (r) (dotted black line) of (a) spheroidal mode, l = 0, n = 1 (ω(1)
0 = 4.44);

(b) spheroidal mode, l = 1, n = 2 (ω(2)
1 = 3.412); (c) spheroidal mode, l = 60, n = 1

(ω(1)
60 = 57.13); (d) spheroidal mode, l = 60, n = 5 (ω(5)

60 = 86.03); (e) torsional mode,

l = 60, n = 1 (ω(1)
60 = 63.44).

(a) (b) (c)

Figure 4: Normal modal displacement (arbitrary unit) ur(r = a, θ, φ) of the fundamental

spheroidal modes l = 30, n = 1 (ω(1)
30 = 29.46) (a) for m = 0; (b) for m = 10; (c) for

m = l.
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the effect of a viscoelastic coating is finally investigated.332

4.1. Description of the collimating wave test case333

In this test case, an isotropic and homogeneous sphere made of viscoelastic334

steel is considered. The material properties are given in Table 1. The radius335

of the sphere is a = 25 mm. A normal force F (θ, φ, t)er is applied at the336

surface of the sphere, with:337

F (θ, φ, t) = f(θ, φ)g(t) . (49)

Only spheroidal modes are excited, because the excitation is limited to the338

radial direction.339

The transient part of the force g(t) is a sinus of centre frequency fc =340

1 MHz modulated over n = 5 cycles by a Hanning window. It is given341

explicitely by:342

g(t) =


1
2 sin(2πfct)

[
1 + cos

(
2πfc
n

t− π
)]

if 0 ≤ t ≤ n

fc
,

0 if t >
n

fc
. (50)

f(θ, φ) is distributed along a thick line. The line source is modelled by the343

product of two Gaussian functions as:344

f(θ, φ) = e−
(θ−θc)2

2θ2
σ e−

(φ−φc)2

2φ2
σ . (51)

It is centered at the equator (i.e. at θc = π/2) and at φc = 0. The standard345

deviations θσ and φσ control the width of the Gaussian along the polar and346

the azimuthal coordinates respectively. One sets φσ = 2π/235 (≈ 1.5◦) to347

obtain a thick line perpendicular to the equator.348
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According to Clorennec and Royer [22], it is possible to choose the polar349

aperture of the source (51) to obtain a collimating Rayleigh wave. In that350

case, the propagation of the wave is diffraction-free. The Rayleigh wave351

propagates with a quasi-constant polar width in the direction perpendicular352

to the source. The collimation angle of the source is given in Ref. [22] by353

the formula:354

θCOL =
√
πcR
4afc

, (52)

where cR ≈ 0.9194cS is the Rayleigh wave velocity [19]. Here, cR ≈ 2919.8 m s−1.355

It yields θCOL ≈ 0.3029 (≈ 17.3◦). Taking the Gaussian width as 1/e2, one356

sets θσ = 0.1514 in Eq. (51). For comparison, two other cases are also357

considered: a longer line source (θσ = 0.2668) and a shorter line source358

(θσ = 0.0667). The waves emitted by these three different sources are com-359

puted from the modal expansion given in Sec. 2.5.360

The source term (see Eq. (21)) is obtained from the coefficients t̂ml .361

The latter are computed with a numerical SHT analysis (see Eqs.(44)–(45))362

applied to Eq. (51) with l from 0 to 150. The GLQ is computed with L = 151363

Gauss points and weights (determined with the function legpts of the Chebfun364

package [39]). The number of FFT points along the azimuthal wavenumber365

is set to 512. It has been checked that the L2-error over the whole spherical366

surface between the initial source (given by Eq. (51)) and the synthetized367

one (inverse SHT of t̂ml , applying Eq. (46)) is less than 1%.368

The length of the one-dimensional finite elements is ∆r = 0.003a, which369

yields 2 010 dofs. The forced response is obtained with a superposition of370

N = 80 eigenfrequencies. The solution is computed between 0 and 10 MHz371

for 8 192 frequencies.372
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Figure 5: Transient collimating signal ur(t)/a at the surface of a viscoelastic sphere (r = a)

at point θ = π/2, φ = π/2. Blue curve: modal superposition using N = 80 modes. Red

dashed curve: modal superposition using the fundamental Rayleigh mode only (N = 1).

Line source: θσ = 0.1514.

4.2. Results373

4.2.1. Collimating, diverging and focusing waves374

Figure 5 shows the transient displacement at the point θ = π/2 (on the375

equator) and φ = π/2, for the source with θσ = 0.1514. Several major peaks376

can be observed. These peaks correspond to the arrivals of the Rayleigh wave,377

either propagating counter-clockwise (e.g. the first and the third peaks),378

either propagating clockwise (e.g. the second and the fourth peaks). On this379

figure, the time-of-flight between the peaks is estimated to 27.01 µs, which380

agrees well with the theoretical arrival of the Rayleigh wave to do a half-trip381

(26.89 µs).382

Figure 6 represents the normal displacement ur at the surface as a func-383
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Figure 6: Normal displacement ur(θ)/a at the surface of a viscoelastic sphere (r = a). Blue

dashed curve: at φ = 0 and t = 2.289 µs. Red solid curve: at φ = π/2 and t = 15.38 µs.

(a) Collimating wave (θσ = 0.1514); (b) Focusing wave (θσ = 0.2668); (c) Diverging wave

(θσ = 0.0667).

tion of the polar angle θ, at φ = 0 (at the source position) and at φ = π/2384

(after a trip of a quarter of circumference), for the three different sources. In385

each case, the amplitude is lower at φ = π/2 (red curve) than at the source386

position (blue dashed curve) because of viscoelastic losses (and because the387

source splits into waves travelling in opposite directions).388

For a source width θσ = 0.1514, the variation of the wavefront width is389

weak and equal to 6% (see Fig. 6a). A collimating wave is then obtained, as390

predicted by Eq. (52).391

Conversely, the wavefront width strongly decreases when the source is392

larger (θσ = 0.2668) – see Fig. 6b. As shown in Fig. 6c, when the source is393

shorter (θσ = 0.0667) the wavefront width increases. The propagation is not394

diffraction-free in these cases. Note that the diffraction reaches its maximum395

at φ = π/2 because it is located right in between the source and its opposite396

pole. The wave in Fig. 6b is called focusing wave because the wavefront397

focuses towards φ = π/2 and then diverges towards the pole opposite to the398

source [21]. The so-called diverging wave (Fig. 6c) diverges towards φ = π/2399
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Figure 7: Phase velocity of spheroidal modes for a viscoelastic steel sphere of radius

a = 25 mm. Red crosses: Rayleigh fundamental mode (n = 1).

and then converges towards the pole opposite to the source.400

Some videos of the transient collimating, diverging and focusing Rayleigh401

waves are included in the supplementary materials of the electronic version402

of this paper to clearly visualize these phenomena.403

4.2.2. Modal analysis404

As described in Sec. 3.2, the displacement of the fundamental spheroidal405

mode (n = 1) is generally confined near the surface. This mode is usually406

called the Rayleigh mode [22], because its velocity approaches asymptotically407

the Rayleigh wave velocity in a half-space (see Fig. 7). Retaining only the408

Rayleigh mode to compute the forced response yields the red curve in Fig. 5,409

which correctly approximates the main wave packets. Higher-order modes410

(n > 1) enrich the signal with the contribution of other waves which can be411

identified as body waves travelling inside the sphere [19].412
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Figure 8: Coefficients 10 log10(|t̂ml /max t̂ml |) (dB) of the force applied to obtain (a) a

collimating wave (θσ = 0.1514); (b) a focusing wave (θσ = 0.2668); (c) a diverging wave

(θσ = 0.0667). These coefficients are computed from the numerical SHT analysis based

on Eq. (45) with l from 0 to 150, 151 GLQ and 512 FFT points.
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Figure 9: Forced response 10 log10(|ûml /max ûml |) (dB) at the surface of a viscoelastic

sphere (r = a) and at the centre frequency (ω = 49.46) for (a) a collimating wave (θσ =

0.1514); (b) a focusing wave (θσ = 0.2668); (c) a diverging wave (θσ = 0.0667).

Interestingly the modal contributions can be further decomposed as a413

function of polar and azimuthal wavenumbers l and m. Figure 8 displays the414

coefficients |t̂ml | of the three different sources. The resulting modal responses415

|ûml (r = a)| (see Eq. (30)) at centre frequency ω = 49.46 are shown in Fig. 9.416

In the collimating case, Fig. 8a and Fig. 9a show that the source mostly417

excites sectoral modes (i.e. with m ≈ l), except for low values of l (l <418

20) where tesseral modes (m < l, m , 0) also contribute. As shown in419
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Figure 10: FRF |ûml (ω)|/a at the surface of a viscoelastic sphere (r = a) for l = 9 for the

collimating wave (θσ = 0.1514).

Fig. 10, the FRF |ûml (ω)| for l = 9 exhibit several peaks which correspond420

to resonances of various spheroidal modes (torsional modes are not excited).421

It can be observed that the leading contributions come from the resonances422

of the 14th and the 17th spheroidal modes. The resonance of the Rayleigh423

mode is hence negligible. Therefore in Fig. 9a, the modes with a small polar424

wavenumber l can be interpreted as the contribution of body waves. It can425

be inferred that the collimating Rayleigh wave actually corresponds to a426

superposition of Rayleigh sectoral modes of high wavenumber m ≈ l, i.e.427

modes confined near the surface and near the equator of the sphere. This is428

confirmed by Fig. 11, showing the FRF |ûml (ω)| for l = 52.429

For the diverging and focusing waves, Figs. 8b-c and Figs. 9b-c show430

that the contribution of tesseral modes is also significant for higher polar431

wavenumbers l (l > 30), as opposed to the collimating case. In that case,432
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Figure 11: FRF |ûml (ω)|/a at the surface of a viscoelastic sphere (r = a) for l = 52 for the

collimating wave (θσ = 0.1514).

Figure 12: FRF |ûml (ω)|/a at the surface of a viscoelastic sphere (r = a) for l = 52 for the

diverging wave (θσ = 0.0667).
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the FRF exhibits a single resonance peak which corresponds to the Rayleigh433

mode for various values of m (see Fig. 12 for the diverging case at l = 52).434

Therefore, the focusing and diverging waves indeed involve the contribution435

of Rayleigh tesseral modes (m , l), in addition to sectoral modes. Note436

that in the diverging case (Fig. 8c and Fig. 9c), modes with a small polar437

wavenumber are more excited than in the two other cases. This is an expected438

result because, as already explained for the collimating source, these low-439

order modes represent the contribution of body waves, diffracted throughout440

the sphere.441

As a side remark, the similarities between Figs. 8 and 9 tend to show442

that the type of wave (i.e. collimating, focusing or diverging) generated by443

a source can be qualitatively predicted solely from the a SHT analysis of the444

force (Fig. 8).445

4.3. Effect of a viscoelastic coating446

In this last test case, a 1-mm epoxy coating is added at the surface of447

the sphere (materials properties are given in Table 1). The generation of448

a collimating wave at the interface between the sphere and the coating is449

investigated.450

The eigenfrequencies of the spheroidal modes of the coated sphere are451

displayed in Fig. 13 for n ≤ 5 and the group velocity is plotted in Fig. 14.452

For the sake of comparison, the curves corresponding to the Rayleigh mode453

without coating are represented with red crosses. The behaviour of the modes454

significantly changes with the coating. It can be observed that the modal455

density increases and that the modes are much more dispersive. In particular,456

the Rayleigh mode of the sphere is not recovered. However, for some values457
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Figure 13: Non-dimensional eigenfrequencies ω(n)
l of the spheroidal modes of a viscoelastic

steel sphere of radius a = 25 mm. Red crosses: Rayleigh mode (n = 1) without coating.

Bullets: modes with a 1-mm coating of epoxy (in blue, the quasi-Rayleigh mode).
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Figure 14: Group velocity of the spheroidal modes of a viscoelastic steel sphere of radius

a = 25 mm. Red crosses: Rayleigh mode (n = 1) without coating. Bullets: modes with a

1-mm coating of epoxy (in blue, the quasi-Rayleigh mode).
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of l the eigenfrequencies of the coated sphere almost coincide with those of458

the Rayleigh mode of the surface-free sphere (see the circled zone in Fig. 13).459

Group velocities can then be locally close to that of the Rayleigh wave. In460

Fig. 14, the group velocity of the mode identified with blue points is almost461

non dispersive for 50 < l < 100. Its value (2620 m s−1) is ten percent lower462

than the Rayleigh wave velocity of the sphere. The modal attenuations463

(not shown here for conciseness) are also almost equal in this region. For464

simplicity, this mode will be called quasi-Rayleigh mode in the following.465

Since the collimating wave is a superposition of Rayleigh modes (see466

Sec. 4.2.2), the source is modified to select the quasi-Rayleigh mode when467

it is similar to the Rayleigh mode without coating (i.e. for 50 < l < 100).468

The frequency bandwidth is reduced and centred on a higher frequency (the469

transient source g(t) is a sinus of centre frequency fc = 1.2 MHz modulated470

over 10 cycles). The spatial profile f(θ, φ) of the source is modified according471

to Eq. (52). The source is applied in the normal direction and at the interface472

between the sphere and the coating.473

The forced response ur(t) at the interface and for θ = π/2, φ = π/2 is474

shown in Fig. 15. As in the surface-free sphere (in Fig. 5), several major peaks475

are observed. The time-of-flight between the peaks is equal to 30.31 µs. It476

yields a velocity of 2591 m s−1, which is quite close to the group velocity of477

the quasi-Rayleigh mode. Actually, this mode prevails in the FRF (not shown478

here) which confirms the modal selectivity of the chosen source. Figure 16479

represents the normal displacement ur(θ) at φ = 0 (blue dashed line) and480

φ = π/2 (red solid line). The amplitude of the wavefront varies, but its width481

is nearly constant, which means that a collimating wave can be generated at482
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Figure 15: Transient collimating signal ur(t)/a at the surface (r = a) of a viscoelastic

sphere coated with epoxy at point θ = π/2, φ = π/2. Source parameter: θσ = 0.1514.
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Figure 16: Normal displacement ur(θ)/a at the surface (r = a) of a viscoelastic sphere

coated with epoxy. Blue dashed curve: at φ = 0 and t = 4.669 µs. Red solid curve: at

φ = π/2 and t = 19.14 µs. Source parameter: θσ = 0.1514.
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the interface.483

5. Conclusion484

A semi-analytical one-dimensional finite element formulation has been485

proposed to compute the free and the forced responses of multi-layered486

spheres. The solution along the radial coordinate has been approximated487

with one-dimensional finite elements. Taking advantage of both vector and488

tensor spherical harmonics orthogonality, the appropriate choice of test func-489

tion has led to independent governing equations for each couple of angular490

wavenumbers. A fully analytical description of the angular behaviour of the491

displacement fields as well as a general formulation suitable for any inter-492

polating technique has been eventually obtained. The formulation yields a493

linear eigenvalue problem which is simple and fast to solve. The eigenso-494

lutions give both the spheroidal and torsional modes. The accuracy of the495

model has been checked by comparison with literature results for a homoge-496

neous sphere.497

The vibration modes have been superposed to reconstruct surface acous-498

tic waves phenomena in the sphere. A collimating Rayleigh wave has then499

been recovered numerically. The modal analysis of such a wave, based on500

the resonances of the sphere, has shown that the collimating Rayleigh wave501

corresponds to a superposition of the fundamental spheroidal modes with a502

displacement confined at the equator of the sphere: the so-called Rayleigh503

modes, of sectoral type, with a high polar wavenumber. When the sphere504

is coated with a thin elastic layer, the numerical results have shown that505

the Rayleigh mode behaviour is approximately recovered in a limited fre-506
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quency range. This allows generating a collimating wave at the interface of507

the sphere and the coating.508

Further works are currently in progress to model and study the influence509

of an infinite embedding medium on the free vibrations and surface wave510

propagation in spherical structures.511
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Appendix A. Properties of spherical harmonics514

Appendix A.1. Scalar orthogonality relationships515

First, let us recall that the normalized spherical harmonics form an or-516

thonormal basis, such that [25]:517

∫ π

0

∫ 2π

0
Y p∗
k Y m

l dφ sin θdθ = δklδmp . (A.1)

Integrating by parts and using the Legendre equation (6), one can show518

that [15]:519

∫ π

0

∫ 2π

0

[
∂Y p∗

k

∂θ

∂Y m
l

∂θ
+ 1

sin2 θ

∂Y p∗
k

∂φ

∂Y m
l

∂φ

]
dφ sin θdθ = lδklδmp . (A.2)

Furthermore, it can be readily shown that:520

∫ π

0

∫ 2π

0

[
dY p∗

k

dθ Y m
l + Y p∗

k

dY m
l

dθ

]
dφ sin θdθ = 0 . (A.3)

These three scalar relationships yields the orthogonality of vector spheri-521

cal harmonics, expressed by Eq. (12), and are also useful to evaluate some522

components of the stiffness and mass matrices.523

Other relationships are necessary to evaluate the integral of δεTσ in524

Eq. (1). These relations are [17]:525

∫ π

0

∫ 2π

0

[(
∂2Y p∗

k

∂θ2 − cot θ∂Y
p∗
k

∂θ
− 1

sin2 θ

∂2Y p∗
k

∂φ2

) (
∂2Y m

l

∂θ2 − cot θ∂Y
m
l

∂θ
− 1

sin2 θ

∂2Y m
l

∂φ2

)

+4 ∂
∂θ

(
1

sin θ
∂Y p∗

k

∂φ

)
∂

∂θ

(
1

sin θ
∂Y m

l

∂φ

)]
dφ sin θdθ = (l − 1)l(l + 2)δklδmp,

(A.4)
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526

∫ π

0

∫ 2π

0

[
− ∂

∂θ

(
1

sin θ
∂Y p∗

k

∂φ

)(
∂2Y m

l

∂θ2 − cot θ∂Y
m
l

∂θ
− 1

sin2 θ

∂2Y m
l

∂φ2

)

+ ∂

∂θ

(
1

sin θ
∂Y m

l

∂φ

)(
∂2Y p∗

k

∂θ2 − cot θ∂Y
p∗
k

∂θ
− 1

sin2 θ

∂2Y p∗
k

∂φ2

)]
dφ sin θdθ = 0.

(A.5)

The above results, which are given in a scalar form in this paper for the sake527

of simplicity, must actually be derived from the orthogonality properties of528

tensor spherical harmonics. This derivation is more mathematically involved529

than for vector spherical harmonics [16]. These tensorial properties can be530

found under a compact dyadic form in the work of Martinec [17].531

Appendix A.2. Derivative with respect to the polar angle532

To evaluate the value of the matrix Sml at any angular coordinates, it533

is necessary to compute the derivative ∂Yml
∂θ

. Convenient formulas are given534

by Bosch [40] to avoid singular values at poles. These formulas have been535

slightly modified to be consistent with the normalization chosen in this paper,536

based on the guidelines of Ref. [40, Appendix A], denoting P
m
l (cos θ) =537

Nm
l P

m
l (cos θ).538

The polar derivative of a spherical harmonic can be obtained using the539

following recurrence formula (for m ≥ 0):540

2∂Y
m
l (θ, φ)
∂θ

=
(√

(l −m)(l +m+ 1)Pm+1
l (cos θ) −

√
(l +m)(l −m+ 1)Pm−1

l (cos θ)
) ejmφ
√

2π
.

(A.6)

For m < 0, the derivative can be readily obtained using the equality Y −ml =541

(−1)mY m
l . The cases of m = 0 or m = l are specific and the derivatives are542
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given by:543

∂Y 0
0 (θ, φ)
∂θ

= 0 , (A.7)

∂Y 0
l (θ, φ)
∂θ

=
√

l

4πP
1
l (cos θ) , (A.8)

∂Y l
l (θ, φ)
∂θ

= −
√

l

4πP
l−1
l (cos θ)ejlφ . (A.9)

At poles (θ = 0 or θ = π), for m = 0 the spherical harmonics do not544

depend on φ. From Eq. (5) and using the properties P 0
l (1) = 1 and P 0

l (−1) =545

(−1)l, one gets [25]:546

Y 0
l (0, φ) =

√
2l + 1

4π , (A.10)

Y 0
l (π, φ) = (−1)l

√
2l + 1

4π . (A.11)

For m > 0, the azimuthal coordinate is undetermined and the spherical547

harmonics must hence vanish at poles [25].548

Similarly, the derivative must vanish at poles for m , 0. For m = 0, using549

the property P 1
l (±1) = 0 into Eq. (A.8) enables to show that:550

∂Y 0
l (0, φ)
∂θ

= ∂Y 0
l (π, φ)
∂θ

= 0 . (A.12)

Appendix B. Example: calculation of the component K22 of the551

stiffness matrix552

In the following, let us detail for the sake of clarity the computation of553

the second diagonal component of the stiffness matrix K, denoted K22. The554

latter is derived from the integral of δεTσ in Eq. (1), where the integrand can555
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be explicitely written:556

δεTσ =
∑
l≥0

∑
|m|≤l

[
∂δûT

∂r
Sp∗k LT

r CLrSml
∂ûml
∂r

+
(

1
r

∂δûT

∂r
Sp∗k LT

r + δûT

r2
∂Sp∗k
∂θ

LT
θ + δûT

r2 sin θ
∂Sp∗k
∂φ

LT
φ + δûT

r2 Sp∗k LT
1 + cot θδû

T

r2 Sp∗k LT
2

)
CAm

l ûml

+ δûTAp∗T
k CSml Lr

1
r

∂ûml
∂r

]
, (B.1)

where Am
l =

(
Lθ

∂
∂θ

Sml + 1
sin θLφ

∂
∂φ

Sml + L1Sml + cot θL2Sml
)
.557

Hence, there is 25 matrices to compute using Eqs. (2), (4), (9). In the558

specific case of the component K22, it yields on one finite element:559

K22 =
∑
l≥0

∑
|m|≤l

∫ π

0

∫ 2π

0

[∫
δûeT

((
∂2Y p∗

k

∂θ2 + cot θ∂Y
p∗
k

∂θ
+ 1

sin2 θ

∂2Y p∗
k

∂φ2

)

×
(
∂2Y m

l

∂θ2 + cot θ∂Y
m
l

∂θ
+ 1

sin2 θ

∂2Y m
l

θ∂φ2

)
C23

+
{

2
(

cot θ∂Y
p∗
k

∂θ
+ 1

sin2 θ

∂2Y p∗
k

∂φ2

)(
cot θ∂Y

m
l

∂θ
+ 1

sin2 θ

∂2Y m
l

∂φ2

)
+ 2∂

2Y p∗
k

∂θ2
∂2Y m

l

∂θ2

+
(
∂

∂θ

(
1

sin θ
∂Y p∗

k

∂φ

)
− cot θ

sin θ
∂Y p∗

k

∂φ
+ 1

sin θ
∂2Y p∗

k

∂φ∂θ

)(
∂

∂θ

(
1

sin θ
∂Y m

l

∂φ

)
− cot θ

sin θ
∂Y m

l

∂φ
+ 1

sin θ
∂2Y m

l

∂θ∂φ

)}
C44

)
ûmel dr

+
∫ (

δûeT − r∂δû
eT

∂r

)(
1

sin2 θ

∂Y p∗
k

∂φ

∂Y m
l

∂φ
+ ∂Y p∗

k

∂θ

∂Y m
l

∂θ

)(
ûe − r∂ûmel

∂r

)
C55dr

]
dφ sin θdθ .

(B.2)

It can be immediatly noticed that the terms factored by C55 involves560

the orthogonality relationship (A.2). Noticing that − cot θ
sin θ

∂Yml
∂φ

+ 1
sin θ

∂2Yml
∂θ∂φ

=561

∂
∂θ

(
1

sin θ
∂Yml
∂φ

)
, and using the Legendre equation (6), the term factored by C44562

can be rewritten as:563

k lY p∗
k Y m

l +
(
∂2Y p∗

k

∂θ2 − cot θ∂Y
p∗
k

∂θ
− 1

sin2 θ

∂2Y p∗
k

∂φ2

)(
∂2Y m

l

∂θ2 − cot θ∂Y
m
l

∂θ
− 1

sin2 θ

∂2Y m
l

∂φ2

)

+ 4 ∂
∂θ

(
1

sin θ
∂Y p∗

k

∂φ

)
∂

∂θ

(
1

sin θ
∂Y m

l

∂φ

)
, (B.3)
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where k = k(k + 1). This term involves orthogonality relationships (A.1)564

and (A.4). Finally, the two terms factored by C23 can be replaced using565

the Legendre equation (6) and further simplified using the orthogonality566

relationship (A.1). This yields:567

K22 =
∫
δûeT

(
l
2
C23 + 2l(l − 1)C44

)
ûmel dr+

∫ (
δûeT − r∂δû

eT

∂r

)
lC55

(
ûe − r∂ûe

∂r

)
dr.

(B.4)

Using the finite element interpolation (14), one finally recasts the second568

diagonal component of the elementary matrices of Eqs. (17)–(19).569
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