C. Baudrit, N. Perrot, J. M. Brousset, P. Abbal, H. Guillemin et al., A probabilistic graphical model for describing the grape berry maturity, Comput. Electron. Agric, vol.118, pp.124-135, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01535300

D. M. Beckles, N. Hong, L. Stamova, and K. Luengwilai, Biochemical factors contributing to tomato fruit sugar content: a review, Fruits, vol.67, pp.49-64, 2012.

N. Bertin, M. Causse, B. Brunel, D. Tricon, and M. Génard, Identification of growth processes involved in QTLs for tomato fruit size and composition, J. Exp. Bot, vol.60, pp.237-248, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02656740

N. Bertin, P. Martre, M. Génard, B. Quilot, and C. Salon, Under what circumstances can process-based simulation models link genotype to phenotype for complex traits? Case-study of fruit and grain quality traits, J. Exp. Bot, vol.61, pp.956-967, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01189446

B. Biais, C. Bénard, B. Beauvoit, S. Colombié, D. Prodhomme et al., Remarkable reproducibility of enzyme activity profiles in tomato fruits grown under contrasting environments provides a roadmap for studies of fruit metabolism, Plant Physiol, vol.164, pp.1204-1221, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02639362

S. Castellarin, M. Matthews, G. Gaspero, and G. Gambetta, Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries, Planta, vol.227, pp.101-112, 2007.

B. G. Coombe, The development of fleshy fruits, Annu. Rev. Plant Physiol, vol.27, pp.207-228, 1976.

B. G. Coombe, Research on development and ripening of the grape berry, Am. J. Enol. Viticult, vol.43, pp.101-110, 1992.

B. G. Coombe and M. G. Mccarthy, Dynamics of grape berry growth and physiology of ripening, Aust. J. Grape Wine Res, vol.6, pp.131-135, 2000.

Z. W. Dai, P. Vivin, F. Barrieu, N. Ollat, and S. Delrot, Physiological and modelling approaches to understand water and carbon fluxes during grape berry growth and quality development: a review, Aust. J. Grape Wine Res, vol.16, pp.70-85, 2010.

Z. W. Dai, P. Vivin, and M. Génard, Modelling the effects of leaf-to-fruit ratio on dry and fresh mass accumulation in ripening grape berries, Acta Hortic, vol.803, pp.283-291, 2008.

Z. W. Dai, P. Vivin, T. Robert, S. Milin, S. H. Li et al., Modelbased analysis of sugar accumulation in response to source-sink ratio and water supply in grape (Vitis vinifera) berries, Funct. Plant Biol, vol.36, pp.527-540, 2009.

T. M. Dejong and J. Goudriaan, Modeling peach fruit growth and carbohydrate requirements: reevaluation of the double-sigmoid growth pattern, J. Am. Soc. Hortic. Sci, vol.114, pp.800-804, 1989.

E. Desnoues, Y. Gibon, V. Baldazzi, V. Signoret, M. Génard et al., Profiling sugar metabolism during fruit development in a peach progeny with different fructose-to-glucose ratios, BMC Plant Biol, vol.14, p.336, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02631892

S. Dray and A. B. Dufour, The ade4 package: implementing the duality diagram for ecologists, J. Stat. Softw, vol.22, pp.1-20, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00434575

E. Duchêne and C. Schneider, Grapevine and climatic changes: a glance at the situation in Alsace, Agron. Sustain. Dev, vol.25, pp.93-99, 2005.

S. Fishman and M. Génard, A biophysical model of fruit growth: simulation of seasonal and diurnal dynamics of mass, Plant Cell Environ, vol.21, pp.739-752, 1998.

I. Garcia-de-cortazar-atauri, N. Brisson, N. Ollat, O. Jacquet, and J. C. Payan, Asynchronous dynamics of grapevine (Vitis vinifera) maturation: experimental study for a modelling approach, J. Int. Sci. Vigne Vin, vol.43, pp.83-97, 2009.

M. Génard, V. Baldazzi, and Y. Gibon, Metabolic studies in plant organs: don't forget dilution by growth, Front. Plant Sci, vol.5, p.85, 2014.

M. Génard, N. Bertin, C. Borel, P. Bussieres, H. Gautier et al., Towards a virtual fruit focusing on quality: modelling features and potential uses, J. Exp. Bot, vol.58, pp.917-928, 2007.

M. Génard, N. Bertin, H. Gautier, F. Lescourret, and B. Quilot, Virtual profiling: a new way to analyse phenotypes, Plant J, vol.62, pp.344-355, 2010.

M. Génard, F. Lescourret, L. Gomez, and R. Habib, Changes in fruit sugar concentration in response to assimilate supply, metabolism and dilution: a model approach applied to peach fruit (Prunus persica), Tree Physiol, vol.23, pp.373-385, 2003.

I. Grechi, N. Hilgert, M. Génard, and F. Lescourret, Assessing the peach fruit refractometric index at harvest with a simple model based on fruit growth, J. Am. Soc. Hortic. Sci, vol.133, pp.178-187, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00857824

S. Guichard, N. Bertin, C. Leonardi, and C. Gary, Tomato fruit quality in relation to water and carbon fluxes, Agronomie, vol.21, pp.385-392, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00886126

L. C. Ho, R. I. Grange, and A. J. Picken, An analysis of the accumulation of water and dry matter in tomato fruit, Plant Cell Environ, vol.10, pp.157-162, 1987.

K. H. Jensen, J. A. Savage, and N. M. Holbrook, Optimal concentration for sugar transport in plants, J. R. Soc. Interface, vol.10, 2013.

S. Klie, S. Osorio, T. Tohge, M. F. Drincovich, A. Fait et al., Conserved changes in the dynamics of metabolic processes during fruit development and ripening across species, Plant Physiol, vol.164, pp.55-68, 2014.

K. Kobashi, H. Gemma, and S. Iwahori, Abscisic acid content and sugar metabolism of peaches grown under water stress, J. Am. Soc. Hortic. Sci, vol.125, pp.425-428, 2000.

J. Kromdijk, N. Bertin, E. Heuvelink, J. Molenaar, P. H. De-visser et al., Crop management impacts the efficiency of quantitative trait loci (QTL) detection and use: case study of fruit load ×QTL interactions, J. Exp. Bot, vol.65, pp.11-22, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02634160

C. Kühn and C. P. Grof, Sucrose transporters of higher plants, Curr. Opin. Plant Biol, vol.13, pp.287-297, 2010.

N. Kuhn, L. Guan, Z. W. Dai, B. Wu, V. Lauvergeat et al., Berry ripening: recently heard through the grapevine, J. Exp. Bot, vol.65, pp.4543-4559, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02635221

S. Lalonde, M. Tegeder, M. Throne-holst, W. B. Frommer, J. W. Patrick et al., An update on sugar transport and signalling in grapevine, Plant Cell Environ, vol.26, pp.821-832, 2003.

C. Leonardi, S. Guichard, and N. Bertin, High vapour pressure deficit influences growth, transpiration and quality of tomato fruits, Sci. Hortic. (Amsterdam), vol.84, pp.285-296, 2000.

F. Lescourret and M. Génard, A virtual peach fruit model simulating changes in fruit quality during the final stage of fruit growth, Tree Physiol, vol.25, pp.1303-1315, 2005.

F. Lescourret, M. Génard, R. Habib, and S. Fishman, Variation in surface conductance to water vapor diffusion in peach fruit and its effects on fruit growth assessed by a simulation model, Tree Physiol, vol.21, pp.735-741, 2001.

H. F. Liu, M. Génard, S. Guichard, and N. Bertin, Model-assisted analysis of tomato fruit growth in relation to carbon and water fluxes, J. Exp. Bot, vol.58, pp.3567-3580, 2007.

K. Luengwilai and D. M. Beckles, Starch granules in tomato fruit show a complex pattern of degradation, J. Agric. Food Chem, vol.57, pp.8480-8487, 2009.

L. M. Mcfadyen, R. J. Hutton, and E. W. Barlow, Effects of crop load on fruit water relations and fruit growth in peach, J. Hortic. Sci, vol.71, pp.469-480, 1996.

P. S. Nobel, Effective thickness and resistance of the air boundary layer adjacent to spherical plant parts, J. Exp. Bot, vol.26, pp.120-130, 1975.

A. Nookaraju, C. P. Upadhyaya, S. K. Pandey, K. E. Young, S. J. Hong et al., Molecular approaches for enhancing sweetness in fruits and vegetables, Sci. Hortic, vol.127, pp.1-15, 2010.

. Oiv, Recueil des Méthodes Internationales D'analyses de Vins et des Moûts, vol.1, pp.35-56, 2009.

S. Osorio, Y. Ruan, and A. R. Fernie, An update on sourceto-sink carbon partitioning in tomato, Front. Plant Sci, vol.5, p.516, 2014.

M. Petreikov, L. Yeselson, S. Shen, I. Levin, A. A. Schaffer et al., Carbohydrate balance and accumulation during development of near-isogenic tomato lines differing in the AGPase-L1 allele, J. Am. Soc. Hortic. Sci, vol.134, pp.134-140, 2009.

M. Prudent, M. Causse, M. Génard, P. Tripodi, S. Grandillo et al., Genetic and physiological analysis of tomato fruit weight and composition: influence of carbon availability on QTL detection, J. Exp. Bot, vol.60, pp.923-937, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00600425

M. Prudent, A. Lecomte, J. Bouchet, N. Bertin, M. Causse et al., Combining ecophysiological modelling and quantitative trait locus analysis to identify key elementary processes underlying tomato fruit sugar concentration, J. Exp. Bot, vol.62, pp.907-919, 2011.
URL : https://hal.archives-ouvertes.fr/hal-02647846

B. Quilot, M. Génard, J. Kervella, and F. Lescourret, Analysis of genotypic variation in fruit flesh total sugar content via an ecophysiological model applied to peach, Theor. Appl. Genet, vol.109, pp.440-449, 2004.

, R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing, 2010.

J. Ripoll, L. Urban, and N. Bertin, The potential of the MAGIC TOM parental accessions to explore the genetic variability in tomato acclimation to repeated cycles of water deficit and recovery. Front, Plant Sci, vol.6, p.1172, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01273701

Y. L. Ruan and J. W. Patrick, The cellular pathway of postphloem sugar transport in developing tomato fruit, Planta, vol.196, pp.434-444, 1995.

V. O. Sadras and M. G. Mccarthy, Quantifying the dynamics of sugar concentration in berries of Vitis vinifera cv, Aust. J. Grape Wine Res, vol.13, pp.66-71, 2007.

A. A. Schaffer and M. Petreikov, Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation, Plant Physiol, vol.113, pp.739-746, 1997.

N. E. Soltis and D. J. Kliebenstein, Natural variation of plant metabolism: genetic mechanisms, interpretive caveats, and evolutionary and mechanistic insights, Plant Physiol, vol.169, pp.1456-1468, 2015.

J. Tilbrook and S. D. Tyerman, Hydraulic connection of grape berries to the vine: varietal differences in water conductance into and out of berries, and potential for backflow, Funct. Plant Biol, vol.36, pp.541-550, 2009.

T. Tohge and A. R. Fernie, Metabolomics-inspired insight into developmental, environmental and genetic aspects of tomato fruit chemical composition and quality, Plant Cell Physiol, vol.56, pp.1681-1696, 2015.

B. H. Wu, B. Quilot, M. Génard, S. H. Li, J. B. Zhao et al., Application of a SUGAR model to analyse sugar accumulation in peach cultivars that differ in glucose-fructose ratio, J. Agric. Sci, vol.150, pp.53-63, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02644745

L. Zanon, R. Falchi, S. Santi, and G. Vizzotto, Sucrose transport and phloem unloading in peach fruit: potential role of two transporters localized in different cell types, Physiol. Plant, vol.154, pp.179-193, 2015.

X. Zhang, X. Wang, X. Wang, G. Xia, Q. Pan et al., A shift of phloem unloading from symplasmic to apoplasmic pathway is involved in developmental onset of ripening in grape berry, Plant Physiol, vol.142, pp.220-232, 2006.

Y. Zhang and M. Keller, Grape berry transpiration is determined by vapor pressure deficit, cuticular conductance, and berry size, Am. J. Enol. Viticult, vol.66, pp.454-462, 2015.