E. Frackowiak and F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, vol.39, pp.937-50, 2001.

S. Han, D. Wu, and S. Li, Porous graphene materials for advanced electrochemical energy storage and conversion devices

, Adv Mater, vol.26, pp.849-64, 2014.

. Review-ye,

X. Zhang, Y. Tang, and F. Zhang, A novel aluminum-graphite dual-ion battery, Adv Energy Mater, vol.6, p.1502588, 2016.

H. Kim, J. C. Kim, and M. Bianchini, Recent progress and perspective in electrode materials for K-ion batteries, Adv Energy Mater, vol.8, p.1702384, 2018.

X. L. Chen, P. R. Dai, and L. M. , Carbon-based supercapacitors for efficient energy storage, Natl Sci Rev, vol.4, pp.453-89, 2017.

M. S. Park, Y. Yamauchi, and H. K. Liu, Preface for 'Lithium ion batteries and beyond, APL Mater, vol.6, p.47401, 2018.

S. L. Wu and Y. W. Zhu, Highly densified carbon electrode materials towards practical supercapacitor devices, Sci China Mater, vol.60, pp.25-38, 2017.

D. B. Liu, K. Ni, and J. L. Ye, Tailoring the structure of carbon nanomaterials toward high-end energy applications, Adv Mater, vol.30, p.1802104, 2018.

Y. W. Zhu, J. Hx, and H. M. Cheng, Mass production and industrial applications of graphene materials, Natl Sci Rev, vol.5, pp.90-101, 2018.

L. Wen, L. F. Cheng, and H. M. , Carbon nanotubes and graphene for flexible electrochemical energy storage: from materials to devices, Adv Mater, vol.28, pp.4306-4343, 2016.

S. S. Zhang, K. Xu, and T. R. Jow, Low temperature performance of graphite electrode in Li-ion cells, Electrochim Acta, vol.48, pp.241-247, 2002.

Z. Song, L. W. Bao, and Y. , New route to tailor high mass loading all-solidstate supercapacitor with ultra-high volumetric energy density, Carbon, vol.136, pp.8-53, 2018.

Y. Gogotsi and P. Simon, True performance metrics in electrochemical energy storage, Science, vol.334, pp.917-925, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00714212

H. M. Cheng and F. Li, Charge delivery goes the distance, Science, vol.356, pp.582-585, 2017.

N. Nitta, F. Wu, and J. T. Lee, Li-ion battery materials: present and future, Mater Today, vol.18, pp.252-64, 2015.

N. Choi, C. Zh, and S. A. Freunberger, Challenges facing lithium batteries and electrical double-layer capacitors, Angew Chem Int Ed, vol.51, pp.9994-10024, 2012.

D. Kundu, T. E. Duffort, and V. , The emerging chemistry of sodium ion batteries for electrochemical energy storage, Angew Chem Int Ed, vol.54, pp.3431-3479, 2015.

L. L. Peng, Z. W. Fang, and Y. Zhu, Holey 2D nanomaterials for electrochemical energy storage, Adv Energy Mater, vol.8, p.1702179, 2018.

Y. Wen, K. He, and Y. Zhu, Expanded graphite as superior anode for sodiumion batteries, Nat Commun, vol.5, p.4033, 2014.

Y. G. Guo, J. S. Hu, and L. J. Wan, Nanostructured materials for electrochemical energy conversion and storage devices, Adv Mater, vol.20, pp.2878-87, 2008.

W. Tang, B. Goh, and M. Y. Hu, In situ Raman and nuclear magnetic resonance study of trapped lithium in the solid electrolyte interface of reduced graphene oxide, J Phys Chem C, vol.120, pp.2600-2608, 2016.

J. Ni and Y. Li, Carbon nanomaterials in different dimensions for electrochemical energy storage, Adv Energy Mater, vol.6, p.1600278, 2016.

D. B. Kong, Y. Gao, and X. Zc, Rational design of carbon-rich materials for energy storage and conversion, Adv Mater, vol.30, p.1804973, 2018.

Y. C. Yin, Y. Zl, and Z. Y. Ma, Bio-inspired low-tortuosity carbon host for highperformance lithium-metal anode, Natl Sci Rev, vol.6, pp.247-56, 2019.

R. Y. Yan, T. Heil, and V. Presser, Ordered mesoporous carbons with high micropore content and tunable structure prepared by combined hard and salt templating as electrode materials in electric double-layer capacitors, Adv Sustainable Sys, vol.2, p.1700128, 2018.

J. Zhao, Y. F. Jiang, and H. Fan, Porous 3D few-layer graphene-like carbon for ultrahigh-power supercapacitors with well-defined structure-performance relationship, Adv Mater, vol.29, p.1604569, 2017.

J. D. Xu, Q. M. Gao, and Y. L. Zhang, Preparing two-dimensional microporous carbon from pistachio nutshell with high areal capacitance as supercapacitor materials, Sci Rep, vol.4, p.5545, 2014.

D. W. Wang, L. F. Liu, and M. , Mesopore-aspect-ratio dependence of ion transport in rodtype ordered mesoporous carbon, J Phys Chem C, vol.112, pp.9950-9955, 2008.

D. W. Wang, L. F. Liu, and M. , 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage, Angew Chem Int Ed, vol.47, pp.373-379, 2008.

X. Y. Zheng, J. Y. Luo, and W. Lv, Two-dimensional porous carbon: synthesis and ion transport properties, Adv Mater, vol.27, pp.5388-95, 2015.

M. R. Benzigar, T. Sn, and J. S. , Recent advances in functionalized micro and mesoporous carbon materials: synthesis and applications, Chem Soc Rev, vol.47, pp.2680-721, 2018.

W. Li, J. Liu, and D. Y. Zhao, Mesoporous materials for energy conversion and storage devices, Nat Rev Mater, vol.1, p.16023, 2016.

P. Zhang, Z. A. Qiao, and S. Dai, Recent advances in carbon nanospheres: synthetic routes and applications, Chem Commun, vol.51, pp.9246-56, 2015.

T. Lin, C. Iw, and F. Liu, Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage, Science, vol.350, pp.1508-1521, 2015.

R. P. Fang, C. K. Yin, and L. C. , The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries, Adv Mater, vol.31, p.1800863, 2019.

Y. Shi, W. L. , and P. Sf, Choice for graphene as conductive additive for cathode of lithium-ion batteries, J Energy Chem, vol.30, pp.19-26, 2019.

M. Singh, K. J. Hahn, and H. , Thick electrodes for high energy lithium ion batteries, J Electrochem Soc, vol.162, pp.1196-201, 2015.

N. Wang, Z. Bai, and Y. Qian, Double-walled Sb@ TiO 2?x nanotubes as a superior high-rate and Ultralong-lifespan anode material for Na-ion and Li-ion batteries, Adv Mater, vol.28, pp.4126-4159, 2016.

Z. Yang, J. Ren, and Z. Zhang, Recent advancement of nanostructured carbon for energy applications, Chem Rev, vol.115, pp.5159-223, 2015.

H. Sun, M. L. Liang, and J. , Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage, Science, vol.356, pp.599-604, 2017.

J. Billaud, F. Bouville, and T. Magrini, Magnetically aligned graphite electrodes for high-rate performance Li-ion batteries, Nat Energy, vol.1, p.16097, 2016.

G. M. Zhou, Y. Lc, and D. W. Wang, Fibrous hybrid of graphene and sulfur nanocrystals for high-performance lithium-sulfur batteries, ACS Nano, vol.7, pp.5367-75, 2013.

G. M. Zhou, D. W. Wang, and L. Li, Nanosize SnO 2 confined in the porous shells of carbon cages for kinetically efficient and long-term lithium storage, Nanoscale, vol.5, pp.1576-82, 2013.

H. F. Shi, S. Z. Niu, and W. Lv, Easy fabrication of flexible and multilayer nanocarbon-based cathodes with a high unreal sulfur loading by electrostatic spraying for lithium-sulfur batteries, Carbon, vol.138, pp.18-25, 2018.

G. M. Zhou, D. W. Wang, and X. Shan, Hollow carbon cage with nanocapsules of graphitic shell/nickel core as an anode material for high rate lithium ion batteries, J Mater Chem, vol.22, pp.11252-11258, 2012.

Z. X. Xu, X. Zhuang, and Y. C. , Nitrogen-doped porous carbon superstructures derived from hierarchical assembly of polyimide nanosheets, Adv Mater, vol.28, pp.1981-1988, 2016.

L. Yao, Q. Wu, and P. X. Zhang, Scalable 2D hierarchical porous carbon nanosheets for flexible supercapacitors with ultrahigh energy density, Adv Mater, vol.30, p.1706054, 2018.

Z. Q. Tan, K. Ni, and G. X. Chen, Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage, Adv Mater, vol.29, p.1603414, 2017.

Y. Xu, L. Z. Zhong, and X. , Holey graphene frameworks for highly efficient capacitive energy storage, Nat Commun, vol.5, p.4554, 2014.

X. Liu and L. M. Dai, Carbon-based metal-free catalysts, Nat Rev Mater, vol.1, p.16064, 2016.

W. J. Lee, U. N. Maiti, and J. M. Lee, Nitrogen-doped carbon nanotubes and graphene composite structures for energy and catalytic applications, Chem Commun, vol.50, pp.6818-6848, 2014.

H. Yang, R. Xu, and Y. Yao, Multicore-shell bi@ N-doped carbon nanospheres for high power density and long cycle life sodium-and potassium-ion anodes

, Adv Funct Mater, vol.29, p.1809195, 2019.

F. Zhang, A. E. Lei, and Y. J. , Highly doped 3D graphene Na-ion battery anode by laser scribing polyimide films in nitrogen ambient, Adv Energy Mater, vol.8, p.1800353, 2018.

J. Zhou, L. J. Hou, and L. , Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres, Nat Commun, vol.6, p.8503, 2015.

J. Zhu, A. S. Childress, and M. Karakaya, Defect-engineered graphene for high-energy-and high-power-density supercapacitor devices, Adv Mater, vol.28, pp.7185-92, 2016.

A. C. Forse, C. Merlet, and J. M. Griffin, New perspectives on the charging mechanisms of supercapacitors, J Am Chem Soc, vol.138, pp.5731-5775, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01985713

W. Y. Tsai, P. L. Taberna, and P. Simon, Electrochemical quartz crystal microbalance (EQCM) study of ion dynamics in nanoporous carbons, J Am Chem Soc, vol.136, pp.8722-8730, 2014.

J. M. Griffin, A. C. Forse, and W. Y. Tsai, In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors, Nat Mater, vol.14, pp.812-821, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01447659

A. C. Forse, J. M. Griffin, and C. Merlet, Direct observation of ion dynamics in supercapacitor electrodes using in situ diffusion NMR spectroscopy, Nat Energy, vol.2, p.16216, 2017.

R. Futamura, T. Liyama, and Y. Takasaki, Partial breaking of the coulombic ordering of ionic liquids confined in carbon nanopores, Nat Mater, vol.16, pp.1225-1257, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02048141

M. Qiao, C. Tang, and G. He, Graphene/nitrogen-doped porous carbon sandwiches for the metal-free oxygen reduction reaction: conductivity versus active sites, J Mater Chem A, vol.4, pp.12658-66, 2016.

S. Kondrat, P. Wu, and R. Qiao, Accelerating charging dynamics in subnanometre pores, Nat Mater, vol.13, pp.387-93, 2014.

S. Kondrat and A. A. Kornyshev, Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors?, Nanoscale Horiz, vol.1, pp.45-52, 2016.

R. Y. Yan, M. Antonietti, and M. Oschatz, Toward the experimental understanding of the energy storage mechanism and ion dynamics in ionic liquid based supercapacitors, Adv Energy Mater, vol.8, p.1800026, 2018.

W. H. Shin, H. M. Jeong, and K. Bg, Nitrogen-doped multiwall carbon nanotubes for lithium storage with extremely high capacity, Nano Lett, vol.12, pp.2283-2291, 2012.

F. Yao, F. Gunes, and H. Q. Ta, Diffusion mechanism of lithium ion through basal plane of layered graphene, J Am Chem Soc, vol.134, pp.8646-54, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00793916

H. Chen, F. Guo, and Y. Liu, A defect-free principle for advanced graphene cathode of aluminum-ion battery, Adv Mater, vol.29, p.1605958, 2017.

R. Raccichini, A. Varzi, and S. Passerini, The role of graphene for electrochemical energy storage, Nat Mater, vol.14, pp.271-280, 2015.

X. Yang, C. Cheng, and Y. Wang, Liquid-mediated dense integration of graphene materials for compact capacitive energy storage, Science, vol.341, pp.534-541, 2013.

J. J. Yoo, K. Balakrishnan, and J. S. Huang, Ultrathin planar graphene supercapacitors, Nano Lett, vol.4, pp.1423-1430, 2011.

M. F. El-kady and R. B. Kaner, Scalable fabrication of high-power graphene microsupercapacitors for flexible and on-chip energy storage, Nat Commun, vol.4, p.1475, 2013.

Z. S. Wu, K. Parvez, and X. L. Feng, Graphene-based in-plane microsupercapacitors with high power and energy densities, Nat Commun, vol.4, p.2487, 2013.

J. L. Ye, H. B. Tan, and S. L. Wu, Direct laser writing of graphene made from chemical vapor deposition for flexible, integratable micro-supercapacitors with ultrahigh power output, Adv Mater, vol.30, p.1801384, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02049100

C. Cheng, G. Jiang, and G. P. Simon, Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes, Nat Nanotechnol, vol.13, pp.685-90, 2018.

Q. Zhang, K. Scrafford, and M. T. Li, Anomalous capacitive behaviors of graphene oxide based solid-state supercapacitors, Nano Lett, vol.14, pp.1938-1981, 2014.

Y. Gao, Y. Y. Wan, and W. Bq, Capacitive enhancement mechanisms and design principles of high-performance graphene oxide-based all-solid-state supercapacitors, Adv Funct Mater, vol.28, p.1706721, 2018.

H. Banda, B. Daffos, and S. Périé, Ion sieving effects in chemically tuned pillared graphene materials for electrochemical capacitors, Chem Mater, vol.30, pp.3040-3047, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02025393

M. Kühne, F. Paolucci, and J. Popovic, Ultrafast lithium diffusion in bilayer graphene, Nat Nanotechnol, vol.12, pp.895-905, 2017.

K. Ji, H. J. Hirata, and A. , Lithium intercalation into bilayer graphene, Nat Commun, vol.10, p.275, 2019.

M. Kühne, F. Börrnert, and S. Fecher, Reversible superdense ordering of lithium between two graphene sheets, Nature, vol.564, pp.234-274, 2018.

K. Ni, X. Y. Wang, and Z. C. Tao, In operando probing of lithium-ion storage on single-layer graphene, Adv Mater, vol.31, p.1808091, 2019.

Z. Jian, W. Luo, and J. X. , Carbon electrodes for K-ion batteries, J Am Chem Soc, vol.137, pp.11566-11575, 2015.

D. Sheberla, J. C. Bachman, and J. S. Elias, Conductive MOF electrodes for stable supercapacitors with high areal capacitance, Nat Mater, vol.16, pp.220-226, 2017.

W. Liu, X. Luo, and Y. Bao, A two-dimensional conjugated aromatic polymer via C-C coupling reaction, Nat Chem, vol.9, pp.563-70, 2017.

D. Schneider, D. Mehlhorn, and P. Zeigermann, Transport properties of hierarchical micro-mesoporous materials, Chem Soc Rev, vol.45, pp.3439-67, 2016.

Y. Feng, W. Zhu, and W. Guo, Bioinspired energy conversion in nanofluidics: a paradigm of material evolution, Adv Mater, vol.29, p.1702773, 2017.

L. Wen and L. Jiang, Construction of biomimetic smart nanochannels for confined water, Natl Sci Rev, vol.1, pp.144-56, 2013.

Q. Yang, Y. Su, and C. C. , Ultrathin graphene-based membrane with precise molecular sieving and ultrafast solvent permeation, Nat Mater, vol.16, pp.1198-202, 2017.

W. Guo, Y. Tian, and L. Jiang, Asymmetric ion transport through ion-channelmimetic solid-state nanopores, Accounts Chem Res, vol.46, pp.2834-2880, 2013.

D. Y. Ji, W. Q. Cao, and L. X. , Electrokinetically controlled asymmetric ion transport through 1D/2D nanofluidic heterojunctions, Adv Mater Technol, 2019.

X. P. Zhang, W. Q. Wang, and L. , Asymmetric electrokinetic proton transport through 2D nanofluidic heterojunctions, ACS Nano, vol.13, pp.4238-4283, 2019.

J. Ji, Q. Kang, and Y. Zhou, Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs, Adv Funct Mater, vol.27, p.1603623, 2017.

J. Gao, W. Guo, and D. Feng, High-performance ionic diode membrane for salinity gradient power generation, J Am Chem Soc, vol.136, pp.12265-72, 2014.

A. Esfandiar, B. Radha, and F. C. Wang, Size effect in ion transport through angstrom-scale slits, Science, vol.358, pp.511-514, 2017.

T. Mouterde, . Keerthi, and A. R. Poggioli, Molecular streaming and its voltage control inångström-scale channels, Nature, vol.567, pp.87-90, 2019.