P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02417326

B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, 1999.

V. Augustyn, P. Simon, and B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage, Energy Environ. Sci, vol.7, p.1597, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01171774

N. Wu, Nanocrystalline oxide supercapacitors, Mater. Chem. Phys, vol.75, pp.22-28, 2002.

T. Brousse, M. Toupin, and R. Dugas, Crystalline MnO[sub 2] as possible alternatives to amorphous compounds in electrochemical supercapacitors, J. Electrochem. Soc, vol.153, p.2171, 2006.

T. Brousse, P. Taberna, and O. Crosnier, Long-term cycling behavior of asymmetric activated carbon/MnO2 aqueous electrochemical supercapacitor, J. Power Sources, vol.173, pp.633-641, 2007.

M. Onoda, Geometrically frustrated triangular lattice system Na x VO 2 : superparamagnetism in x = 1 and trimerization in x ?0, J. Phys. Condens. Matter, vol.7, p.145205, 2008.

D. Hamani, M. Ati, J. Tarascon, and P. Rozier, NaxVO2 as possible electrode for Naion batteries, Electrochem. Commun, vol.13, pp.938-941, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01702291

C. Didier, M. Guignard, J. Darriet, and C. Delmas, O?3-Na x VO 2 system: a superstructure for Na 1/2 VO 2, Inorg. Chem, vol.51, pp.11007-11016, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00745833

O. Szajwaj, E. Gaudin, and F. Weill, Investigation of the new P?3-Na 0.60 VO 2 phase: structural and physical properties, Inorg. Chem, vol.48, pp.9147-9154, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00426246

M. Guignard, C. Didier, and J. Darriet, P2-Na x VO2 system as electrodes for batteries and electron-correlated materials, Nat. Mater, vol.12, pp.74-80, 2013.

C. Didier, M. Guignard, and C. Denage, Electrochemical Na-deintercalation from NaVO2, Electrochem. Solid-State Lett, vol.14, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00576017

M. C. Biesinger, L. W. Lau, A. R. Gerson, and R. S. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides, Appl. Surf. Sci, vol.257, pp.887-898, 2010.

J. Mendialdua, R. Casanova, and Y. Barbaux, XPS studies of V2O5, V6O13, VO2 and V2O3, J. Electron. Spectrosc. Relat. Phenom, vol.71, pp.249-261, 1995.

G. Silversmit, D. Depla, and H. Poelman, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+), J. Electron. Spectrosc. Relat. Phenom, vol.135, pp.167-175, 2004.

J. S. Bonso, A. Rahy, and S. D. Perera, Exfoliated graphite nanoplatelets-V2O5 nanotube composite electrodes for supercapacitors, J. Power Sources, vol.203, pp.227-232, 2012.

Y. Liu, M. Clark, and Q. Zhang, V2O5 nano-electrodes with high power and energy densities for thin film Li-ion batteries, Adv. Energy Mater, vol.1, pp.194-202, 2011.

D. Choi, G. E. Blomgren, and P. N. Kumta, Fast and reversible surface redox reaction in nanocrystalline vanadium nitride supercapacitors, Adv. Mater, vol.18, pp.1178-1182, 2006.

C. Lee, A. C. Marschilok, and A. Subramanian, Synthesis and characterization of sodium vanadium oxide gels: the effects of water (n) and sodium (x) content on the electrochemistry of NaxV2O5·nH2O, Phys. Chem. Chem. Phys, vol.13, p.18047, 2011.

F. Béguin and E. Fr?ckowiak, Supercapacitors: Materials, Systems, and Applications, 2013.

M. Acerce, D. Voiry, and M. Chhowalla, Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials, Nat. Nanotechnol, vol.10, pp.313-318, 2015.

V. Nicolosi, M. Chhowalla, and M. G. Kanatzidis, Liquid exfoliation of layered materials, Science, vol.340, 2013.

R. Ruoff, Calling all chemists: graphene, Nat. Nanotechnol, vol.3, pp.10-11, 2008.

M. Osada and T. Sasaki, Exfoliated oxide nanosheets: new solution to nanoelectronics, J. Mater. Chem, vol.19, p.2503, 2009.

A. B. Bourlinos, V. Georgakilas, and R. Zboril, Liquid-phase exfoliation of graphite towards solubilized graphenes, Small, vol.5, pp.1841-1845, 2009.

K. S. Novoselov, V. I. Fal?ko, and L. Colombo, A roadmap for graphene, Nature, vol.490, pp.192-200, 2012.

D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev, vol.39, pp.228-240, 2010.

J. N. Coleman, Liquid exfoliation of defect-free graphene, Acc. Chem. Res, vol.46, pp.14-22, 2013.

J. N. Coleman, M. Lotya, and A. O'neill, Two-dimensional nanosheets produced by liquid exfoliation of layered materials, Science, vol.331, pp.568-571, 2011.

Q. H. Wang, K. Kalantar-zadeh, and A. Kis, Electronics and optoelectronics of twodimensional transition metal dichalcogenides, Nat. Nanotechnol, vol.7, pp.699-712, 2012.

B. Anasori, M. R. Lukatskaya, and Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater, vol.2, 2017.

Y. Dall'agnese, P. Taberna, Y. Gogotsi, and P. Simon, Two-dimensional vanadium carbide (MXene) as positive electrode for sodium-ion capacitors, J. Phys. Chem. Lett, vol.6, pp.2305-2309, 2015.

Y. Dall'agnese, P. Rozier, and P. Taberna, Capacitance of two-dimensional titanium carbide (MXene) and MXene/carbon nanotube composites in organic electrolytes, J. Power Sources, vol.306, pp.510-515, 2016.

M. G. Barker and A. J. Hooper, Reactions of sodium oxide with the oxides VO2, V2O3, VO, and vanadium metal, J. Chem. Soc. Dalton Trans, p.1517, 1973.

B. L. Chamberland and S. K. Porter, A study on the preparation and physical property determination of NaVO2, J. Solid State Chem, vol.73, pp.398-404, 1988.