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ARTICLE

The nature of deep overturning and
reconfigurations of the silicon cycle across the last
deglaciation
M. Dumont1,2✉, L. Pichevin1, W. Geibert 3, X. Crosta4, E. Michel5, S. Moreton 6, K. Dobby1 & R. Ganeshram1

Changes in ocean circulation and the biological carbon pump have been implicated as the

drivers behind the rise in atmospheric CO2 across the last deglaciation; however, the pro-

cesses involved remain uncertain. Previous records have hinted at a partitioning of deep

ocean ventilation across the two major intervals of atmospheric CO2 rise, but the con-

sequences of differential ventilation on the Si cycle has not been explored. Here we present

three new records of silicon isotopes in diatoms and sponges from the Southern Ocean that

together show increased Si supply from deep mixing during the deglaciation with a maximum

during the Younger Dryas (YD). We suggest Antarctic sea ice and Atlantic overturning

conditions favoured abyssal ocean ventilation at the YD and marked an interval of Si cycle

reorganisation. By regulating the strength of the biological pump, the glacial–interglacial shift

in the Si cycle may present an important control on Pleistocene CO2 concentrations.
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The last deglaciation (10,000–18,000 years ago, 10–18 ka)
was an interval of dramatic climatic change characterised
by rise in atmospheric CO2 concentrations by 80–90 ppm1.

A well-accepted mechanism links the rise in CO2 to a global
reorganisation of the ocean overturning circulation leading to an
increase in deep ocean ventilation across the deglaciation2,3.
Overturning in the Southern Ocean is thought to have played a
key role with respect to the deglacial rise in CO2 in part because it
is where many of the world’s water masses outcrop today4.
Hence, this is a region where deep ocean ventilation is moder-
ated5–8 and where nutrients are redistributed via intermediate
waters to the low latitudes controlling the strength of carbon
drawdown into the ocean via the biological pump9,10. As such,
elucidating how the ocean circulation changes across deglacial
transitions is important for our understanding of the causes of
glacial-interglacial CO2 variability.

Recent studies have noted basin-scale or inter-basin hetero-
geneities in the onset of deglacial ventilation of the ocean interior
that previously had been regarded as a uniform process of whole-
ocean change leading to the observed rise in atmospheric CO2.
For example, δ13C, δ18O and radiocarbon studies of benthic
foraminifera have revealed differential termination onsets
between the Atlantic, Pacific and Indian Oceans11–15. Others have
shown a difference in ventilation timing with depth within
basins15–19. The influence of these asynchronous circulation
changes on the redistribution of nutrients such as silicic acid
(DSi) has not been explored. The importance of DSi in particular
lies in its influence over phytoplankton community composition.
A supply of DSi-rich waters favours the proliferation of
diatoms20,21 that efficiently export organic carbon from the ocean
surface22 without exporting alkalinity. This promotes a greater
drawdown of CO2 into the ocean by increasing the Corg:CaCO3

rain ratio23,24.
The hypothesised changes in ocean circulation and overturning

may have impacted on the distribution of DSi differently to
carbon. Due to the slower remineralisation rate of biogenic silica
(opal) relative to organic carbon during particle settling, the DSi
maximum lies deeper in the water column25. Therefore, the
supply of DSi to the surface ocean via upwelling relative to carbon
and other nutrients should be particularly sensitive to changes in
deep overturning and mixing. Silicon cycling within the ocean
may be reconstructed by the analysis of silicon isotopes within the
frustules and spicules of diatoms and siliceous sponges.

Isotopic fractionation occurs during the uptake of DSi by
diatoms, discriminating against the heavier isotopes with a con-
sistent average fractionation factor of −1.1 ‰26,27. As the pool of
available DSi is depleted both the isotopic composition of diatom
biogenic silica (δ30Sidiat) and the remaining DSi become iso-
topically heavier. Hence, δ30Sidiat can be used as a proxy for the
relative utilization of the available DSi pool26,28. Assuming no
significant changes in dissolution, opal accumulation can be used
as a proxy for the absolute uptake of DSi by diatoms. Changes in
DSi supply to the surface ocean can be inferred from the changes
in relative depletion (δ30Sidiat) compared to those of the absolute
uptake indicated by the opal accumulation.

The silicon isotopic composition of sponges (δ30Sisponge)
has been shown to be dependent on concentration and
isotopic composition of the ambient DSi. Sponges preferentially
incorporate the lighter silicon isotopes into their spicules
with a greater fractionation occurring under higher DSi
concentrations29,30. Hence, δ30Sisponge records can be used to
infer the changes in the DSi content within the deep ocean.
Since the deep ocean supplies DSi to the Southern Ocean sur-
face, the δ30Sisponge and δ30Sidiat records can be used together to
infer whether the deep ocean DSi content could be influencing
the supply to the surface ocean.

Using sediment records of silicon isotopes, we document how
changes in circulation across the deglaciation influenced the input
of DSi to the surface of the Southern Ocean. Further, we
demonstrate that greater input of DSi to the Southern Ocean
increased the transport of DSi from the Southern Ocean to low
latitudes, fertilizing diatom production there. Finally, we propose
that the poor ventilation and greater stratification of the ocean
during glacial periods decoupled DSi and carbon distributions
leading to an accumulation of DSi in the deep ocean. We suggest
that this proposal provides further insight into how the biological
pump moderates atmospheric CO2 across glacial-interglacial
cycles.

Results
Diatom-based proxies. δ30Sidiat and opal accumulation records
were constructed from three cores (MD84-551: 55.01oS, 73.17oE,
2230 m water depth. MD88-773: 52.90oS, 109.87oE, 2460 m water
depth. MD88-772: 50.02oS, 104.90oE, 3310 m water depth) loca-
ted in the Antarctic Zone (AZ) and Polar Front Zone (PFZ) of the
Indian sector of the Southern Ocean (Fig. 1). The DSi supplied to
these zones is sourced from circumpolar deep water31,32, which
upwells within the AZ and delivers DSi to the PFZ by Ekman
transport.

The δ30Sidiat records of the three cores (Fig. 2) display an
overall LGM - to - Holocene δ30Sidiat increase of 0.65–0.86 ‰.
This magnitude of glacial-interglacial δ30Sidiat change is char-
acteristic of Southern Ocean sediment records28,33–35 and has
been attributed to higher LGM dust-borne iron fluxes causing
diatoms to reduce their DSi demand36. It has been argued that
changes in diatom species composition within record may drive
changes in δ30Sidiat37. Diatom assemblage data (Supplementary
Note 4 and Supplementary Figs. 6 and 7) does not support a
significant species component that can explain the δ30Sidiat
variability across all three records.

The opal accumulation records from MD84-551 and MD88-
773 were 230Th-normalised to correct for sediment focusing38.
230Th data were not available for MD88-772 so opal mass
accumulation rate (MAR) was determined using the dry bulk
densities and sedimentation rates. However, it was noted in a
previous study using a collection of sediment records from the
Indian sector of the Southern Ocean, including MD88-773, that
although MAR cannot be used quantitatively, the overall glacial-
interglacial patterns observed in MAR records remained largely
the same after 230Th-normalisation39. Preservation changes are
not corrected for here, but Dezileau et al.39 showed that changes
in preservation were not important drivers of opal accumulation
variability in the region over the last 40 ka.

Supply of DSi to the Southern Ocean surface. The initial
δ30Sidiat rise observed from the LGM through the first Antarctic
warming interval associated with Heinrich Stadial 1 (HS1)
(~23–15 ka) coincides with a reduction in dust-borne iron
flux40,41 and may represent a gradual progression towards iron
limitation, favouring an increase in the DSi demand by the dia-
tom community36. Together the opal accumulation and δ30Sidiat
records provide little indication that DSi supply markedly chan-
ged across this interval. Globally, gradients between δ30Sidiat
records (Fig. 3a) display very little change across HS1, suggesting
that the relative utilisation of DSi between sites and any regional
differences in supply of DSi changed little over this interval.

After the early deglacial rise in δ30Sidiat within all three cores,
MD84-551 and MD88-773 exhibit a period of maximum δ30Sidiat
coinciding with the Antarctic Cold Reversal (ACR). Unfortu-
nately, no δ30Sidiat data are available for MD88-772 from this
interval. Maximum δ30Sidiat is reached when the dust fluxes fall to
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a minimum suggesting comparable relative uptake of the DSi
pool at the ACR and Holocene. However, the low opal fluxes in
the two AZ cores suggest DSi supply over the ACR was low.

The δ30Sidiat converge towards markedly light values during the
YD in all three records, suggesting the relative utilisation of DSi
was low across this interval. The pronounced δ30Sidiat conver-
gence during the YD cannot be explained by an episode of
iron fertilisation as it does not correspond to regional
reconstructions of dust flux40 nor reconstructions of local
lithogenic flux (see Supplementary Note 2 and Supplementary
Fig. 4). Any influence of sea ice at the core locations on the
fractionation of Si isotopes42 is unlikely to have been important
based on regional reconstructions of sea ice cover (see
Supplementary Note 3 and Supplementary Fig. 5).

Opal accumulation records indicate that absolute silica export
during the YD was similar or greater than during the Holocene
(Fig. 2)39,43. Therefore, we suggest the δ30Sidiat minimum reflects
an overwhelming DSi supply greater than that during the
Holocene epoch. Such a pulse of DSi supply is supported by the
compilation of Southern Ocean δ30Sidiat records (Fig. 3a). The
pronounced δ30Sidiat minimum during the YD is a common
feature in Southern Ocean records (see compilation Fig. 3a) and
the values tend to converge towards ~1‰ in all but one record
during this interval. Such global uniformity implies a flattening of
the meridional DSi gradients at the YD driven by a large-scale
supply of DSi to the Southern Ocean. The large influx of DSi
overwhelmed the increasing DSi demand levied on the diatom
community as the dust-borne iron supply reached a minimum by
the end of the ACR (Fig. 2a)40. This enhanced DSi supply

coincides with a breakdown of the vertical DSi gradient in the
upper Southern Ocean as indicated by the convergence of
radiolarian silicon isotope (δ30Sirad) and δ30Sidiat records
(Fig. 3b)44.

The DSi supply to the Southern Ocean during the YD can be
quantified by applying the mass balance model setup adapted
from Beucher et al.33 for the Antarctic and Subantarctic that
evaluates the budgets of DSi, opal export and silicon isotopes
based on available data (see Supplementary Note 5 and
Supplementary Figs. 8–11). In this case we use the averages of
the Antarctic (AZ) and Subantarctic (PFZ & SAZ) δ30Sidiat values
of the YD (12.5–11.8 ka), estimated as 1.06 and 1.27 ‰,
respectively, to constrain the model. A solution to the mass
balance model is presented in Fig. 4, assuming the same opal
exports and isotope system models as the modern ocean (open
system Antarctic, closed system Subantarctic, see Supplementary
Note 5 for justification). The assumption that opal export was the
same during the YD relative to the modern was made for
simplicity, however, many Southern Ocean records show
increased opal flux at the YD, suggesting opal exports were
greater. Consequently, our mass balance estimations of the DSi
supply to and export from the Southern Ocean are likely
underestimates.

Using the mass balance model, we estimate that the
concentration of DSi in deep waters supplying Antarctic mixed
layer during the YD was 84 µM (Fig. 4), an elevation of 18 µM
(27%) relative to the Holocene (65 µM). This additional supply
went unutilised thus increasing the export of DSi to the low
latitudes45,46.
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Deep Si mixing recorded by sponges. A δ30Sisponge record has
been produced from MD84-551 and is compared with similar
records from the Pacific and Atlantic sectors47 in order to
reconstruct zonal changes in deep DSi gradients across the
deglaciation (Fig. 3d). Together the three records display a
strong gradient in δ30Sisponge during the LGM, with the more
negative Pacific δ30Sisponge values suggesting an accumulation of
DSi in that basin relative to the Holocene47. The DSi con-
centration and isotopic composition of modern circumpolar deep
water is largely uniform between sectors of the Southern
Ocean48,49. The δ30Sisponge records shown here suggest that zonal
DSi gradients were expanded and the concentration of DSi con-
tent of the Pacific sector was greater during the LGM relative to
the Holocene.

During HS1 the Indian record (MD84-551) converges toward
the Atlantic record (ODP177-1089) and the records of all three
basins converge following the ACR. This suggests that transition
towards homogenisation of DSi between the sectors occurred in
two stages: First, the Atlantic sector and at least a portion of the
Indian sector zonally homogenised during HS1 followed by the
mixing of all three sectors at the YD.

Discussion
The broadening of deep δ30Sisponge gradients in the Southern
Ocean during the LGM and the simultaneous collapse of these
gradients along with those recorded in Southern Ocean δ30Sidiat
records indicates DSi accumulated within the Pacific during the
LGM and was subsequently released at the YD via upwelling in

the Southern Ocean. We suggest that the fate of this DSi pulse
was to be incorporated into intermediate waters and transported
to lower latitudes. This is corroborated by δ30Sisponge data from
the Brazilian margin45 that suggest a pulse of DSi-rich waters
entered intermediate depths during the YD. The northward
transport of high DSi waters may have promoted the enhanced
diatom productivity observed at this time within low latitude
upwelling regions46,50.

The interpretation given above suggests that the breakdown of
stratification in the deep Pacific was delayed until the late
deglaciation. Incomplete ventilation of the Pacific until the late
deglaciation is also suggested by benthic foraminifera δ13C
records in the southwest Pacific18,19, four of which are presented
in Fig. 3e. δ13C reflects a balance between surface ocean processes
(photosynthesis and air-sea gas exchange) that tend to increase
δ13C, and the deep ocean processes (isolation from the atmo-
sphere and remineralisation of organic carbon) that tend to
decrease δ13C. Thus, the expanded gradient between the shallow
record (87 JPC) and the two deeper records (79 JPC and 41 JPC)
indicates that vertical mixing was reduced at the LGM18. The
increase in δ13C within the intermediate depth core (79 JPC)
during the HS1 interval and its convergence towards the shal-
lower ocean record (87 JPC) suggests that chemical gradients
were broken down in the upper 1165 m of the southwest Pacific
during HS1 due to ventilation of the intermediate ocean. This
agrees well with radiocarbon records from Siani et al.7 that sug-
gest ventilation of the south-eastern Pacific down to 1536 m upon
the first warming interval.

δ30
S

i d
ia

t (
‰

)

MD88-772

MD88-773

MD84-551

Age (ka BP)

 
 

 

O
pa

l f
lu

x 
(g

 c
m

–2
ky

r–1
)

A
tm

os
ph

er
ic

 p
C

O
2 

(p
pm

v)

180

200

220

240

260

280

0

5

10

15

20

0

0.5

1

1.5

2

2.5

3

0 10 20 30
0

1

2

3

4

5

6

7

O
pa

l M
A

R
 (

g 
cm

–2
ky

r–1
)

0.8

1.2

1.6

2

a

b

c

Increasing DSi demand with
decreasing dust-borne Fe flux

D
us

t f
lu

x 
(m

g 
m

–2
 y

r–1
)

Increased DSi
supply

ACR
/BA

Holocene YD HS1 LGM

5 15 25

Fig. 2 Deglacial δ30Sidiat and opal records from the three Indian sector cores. a Atmospheric CO2
1 and Antarctic dust flux40 recorded in EPICA Dome C.

b δ30Sidiat data from MD84-551, MD88-773 and MD88-772 with ± 1SE. c 230Th-normalised opal flux records from MD84-551 and MD88-773 (230Th-
normalisation data from Francois et al.80,) and opal mass accumulation rate (MAR) from MD88-772.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15101-6

4 NATURE COMMUNICATIONS |         (2020) 11:1534 | https://doi.org/10.1038/s41467-020-15101-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


The minimal response in deeper Pacific records such as 41 JPC at
that time suggests that the vertical mixing did not reach to abyssal
depths where DSi concentrations are highest. This partial ventila-
tion of the Pacific Ocean during HS1 is also supported by studies
that demonstrate both delayed ventilation in the deep Pacific17,18

and a discrepancy in the onset of ventilation between basins11,13,14.

On the other hand, several radiocarbon records indicate that
the deep Atlantic5,6 and at least some of the deep Pacific15,51,52

became ventilated at HS1 rather than just during the YD. This is
also supported by Nd data that have been interpreted to as
indicating enhanced production of southern-sourced bottom
waters at that time52,53.
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To aid in the interpretation of these studies we shall use the
schematic of global overturning circulation in Fig. 5. Each of the
panels in Fig. 5 illustrate a simplified two-dimensional view of
ocean circulation based on the work by Ferrari et al.54, with the
lower circulatory cell (white arrows) representing overturning in
the Pacific, Southern and Indian Oceans and the upper circula-
tory cell representing the Atlantic overturning. It has been shown
that during the LGM the boundary between the two overturning
cells shoaled54,55, the Southern Ocean wind-driven mixing was
stifled by expanded sea ice cover56 and diapycnal mixing was
reduced due to the production of denser bottom waters57 and the
shoaling of the boundary water masses above important bathy-
metric mixing depths54. Together the processes given above may
have chemically isolated the deeper portions of the ocean from
the surface favouring the trapping of DSi within the lower cell.
Reduced diapycnal mixing54 and penetration of Atlantic deep
waters14 during the LGM could have also inhibited mixing
between deep waters separated by large topographic features such
as the Drake Passage, Kerguelen Plateau and Macquerie Rise14,58.
DSi may be more sensitive to the formation of inter-basin che-
mical gradients relative to other nutrients due to its deeper pro-
file. Zonal gradients are not depicted in Fig. 5 for simplicity.

During HS1 the initiation of deglacial sea ice retreat59–61 and
southward westerly wind migration62 is thought to have induced
greater overturning in the Southern Ocean6,52. This could have

permitted an increase in Antarctic bottom water production52,53

and a greater exchange of carbon between the deep ocean and
atmosphere thus decreasing deep ocean radiocarbon reservoir
ages5,6. However, an incomplete loss of sea ice from the Southern
Ocean may have inhibited some of the ocean-atmosphere carbon
exchange63, maintaining a poorly ventilated signal in sinking
Pacific AABW52. We propose that the invigorated overturning in
the Southern Ocean during HS1 released some of the deeply
sequestered DSi to the surface ocean, indeed many of the more
southerly AZ δ30Sidiat records indicate utilization was low during
HS1 despite the decline in dust flux, suggesting DSi supply
had risen relative to the LGM (Fig. 3a)34,35. However, the deep
glacial ocean DSi gradients largely remained intact through HS1
(Fig. 3d)47 along with the deep δ13C gradients (Fig. 3e)18. Hence,
we suggest that despite the greater Southern Ocean overturning
during HS1, the deep ocean remained stratified keeping DSi
trapped within the lower overturning cell.

At the Bølling-Allerød (BA)/ACR it is thought that the AMOC
strengthened64,65, which could have contributed to the weakening
of vertical and inter-basin chemical gradients14. However, the
return to stratified conditions in the Southern Ocean surface in
response to a reversal in winter sea ice coverage59 may have
limited the redistribution of DSi between the two circulatory cells.

A resumption of sea ice coverage loss59 and a southward shift
of westerlies62 at the YD could have enabled vertical mixing to
strengthen in the Southern Ocean leading to the tapping of
deeper, DSi-rich waters by upwelling circumpolar water66. This
may have been supported by the moderate weakening of the
AMOC during the YD in contrast to the intensely weakened
AMOC at HS164, enabling greater deep mixing between the two
overturning cells. We suggest that together these processes initi-
ated a massive redistribution of DSi from the deep ocean into
intermediate waters45.

The ventilation scenario depicted in Fig. 5 has important
implications for the redistribution of chemical species such as DSi
that have a deeper remineralisation profile. We suggest that the
deep flushing of DSi from the abyssal ocean during the late
deglaciation is an important process that helps reconfigure both
the carbon storage within the oceans52 as well as the marine Si
cycle between glacial and interglacial states.

This new proposal, which we term the Abyssal Silicon
Hypothesis, envisions the massive redistribution of DSi from the
abyss during the second phase of CO2 increase (YD) marking the
reorganisation of the Si cycle between glacial and interglacial
periods. This differs from previous hypotheses that have
attempted to describe how silicon cycling is altered across glacial-
interglacial cycles. One such hypothesis is the Silicic Acid Leakage
Hypothesis, which suggests that higher DSi delivery to the low
latitudes during glacials due to an iron-regulated reduction in DSi
utilization in the Southern Ocean36,67 enhanced diatom produc-
tion there and resulted in net atmospheric CO2 drawdown.
However, this hypothesis does not fully account for the changes
in deep circulation and sequestration of DSi in the deep ocean
that would in fact act against a greater delivery of DSi to low
latitudes during the LGM. Furthermore, we demonstrate that
when leakage of DSi from the Southern Ocean is at a maximum
during the deglaciation, dust fluxes to the Southern Ocean were
not significantly different from today (Fig. 2a). Hence, the
Abyssal Silicon Hypothesis places a greater importance on deep
diapycnal mixing and overturning in driving the redistribution of
DSi across the global ocean.

The Abyssal Silicon Hypothesis also differs from the Silicic
Acid Ventilation Hypothesis30, which argues that the redis-
tribution of DSi occurs primarily during deglaciations but with
little overall change between glacial and interglacial states. Firstly,
an important difference in light of the high-resolution records
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Fig. 4 Solutions to the mass balance model for Si cycling in the Southern
Ocean during the Holocene (top) and Younger Dryas (bottom). In each of
the reconstructions an open and closed isotope system models were
applied to the Antarctic and Subantarctic, respectively. Black and grey
arrows and text denote the transfer of DSi and opal, respectively. Bold data
are those extracted from the literature and available data. The remaining
data have been calculated from the simple mass balance model. The term, f,
is the fraction of the available DSi pool remaining after utilization by
diatoms. More details on the construction of this model can be found in
Supplementary Note 5, along with the justification for the isotope system
models applied here.
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presented here is that much of the redistribution of DSi appears
to have occurred after HS1 when dust-borne iron inputs were
low. Therefore, the deglacial leakage was not necessarily assisted
by a lower DSi demand by iron-replete diatoms. Secondly, it is
argued here that global distribution of DSi is indeed altered
between glacial and interglacial states, with an enhancement of
DSi concentrations in the deep Pacific as a result of deep strati-
fication. However, we do share the characterization of the
deglaciation as an interval of massive DSi leakage, but primarily
as a product of the reconfiguration of the global DSi distribution
between the glacial and interglacial states.

Changes in the distribution of DSi have important implications
for the biological pump and thus atmospheric CO2

36,67,68. On an
initial assessment, the accumulation of DSi in the abyssal ocean
(and removal of DSi from the upper ocean) during glacials as
described above would appear to favour the initiation of a
negative feedback similar to that described by Dugdale et al.69, in
which the decline in CO2 during glaciations is limited by an
decrease in the Corg:CaCO3 rain ratio as diatoms are replaced by
calcifiers in the DSi-depleted upper ocean.

However, the lack of an apparent reduction in diatom pro-
duction in many regions70–72 and the lower DSi utilization in
many parts of the glacial world ocean35,50,73 suggest that an
ecosystem shift away from diatom-dominance as a result of
declining DSi availability was curtailed. This may have been
achieved by a reduction in DSi uptake by diatoms through a
combination of iron-induced alteration of diatom Si:C stoichio-
metric demand74,75 as well as a reduction in biogenic silica export
in the more extensively ice-covered waters of the glacial
Antarctic76,77 allowing more DSi to be used in lower latitudes.
Hence, we invoke the processes behind the silicic acid leakage
hypothesis to help mitigate against the sequestration of DSi into
the deep ocean by permitting a greater proportion of the DSi
upwelled to the Southern Ocean to leak to lower latitudes thus
sustaining diatom growth24.

A complete depletion of DSi in the upper ocean may have also
been partially alleviated by an increase in the whole-ocean
inventory of DSi, thus allowing the deep ocean DSi content to rise
while maintaining a sufficiently large DSi pool in the upper ocean.
Indeed, the higher DSi content of the Pacific as interpreted from
δ30Sisponge and sponge Ge:Si data47,78 without a concomitant
reduction elsewhere provide evidence for a larger oceanic DSi
inventory during the LGM. This interpretation is further sup-
ported by a compilation of global opal flux data presented in
Supplementary Table 4 and Supplementary Note 6 that on
average exhibit enhanced opal burial during the deglaciation. The
total terrestrial DSi input into the ocean is thought to have
decreased across the deglaciation79, therefore the enhanced opal
burial during the deglaciation would lower the global oceanic DSi
inventory during the climatic transition. The higher glacial DSi
inventory may have been driven by a combination of greater
terrestrial input79 and reduced opal burial in response to sea ice
cover in the Antarctic80,81 and reduced silicification of iron-
replete diatoms36.

Although the evidence given above suggests that glacial whole-
ocean Si inventory increased, this may not have benefited diatom
production in the surface ocean in its entirety and would have at
least partially offset the tendency for DSi sequestration in the
abyssal ocean due to deep ocean stratification. On balance, we
suggest that the lower DSi demand by diatoms due to Fe-
fertilization combined with a greater DSi inventory maintained at
least a similar degree of diatom dominance within glacial phy-
toplankton communities compared to interglacials. Conse-
quently, the average Corg:CaCO3 rain ratio, which is influenced by
the relative dominance of silicifying plankton such as diatoms
over calcifying plankton, would not have decreased or may have

even increased24. This could have enabled continued sequestra-
tion of carbon into the deep ocean through glacial periods and a
concomitant decline in atmospheric CO2 to its lowest levels
observed during the Cenozoic82,83.

Our new results reveal the global-scale reconfiguration in the
marine Si cycle between glacial and interglacial periods as a result
of both ocean circulation changes responsible for DSi supply to
the surface ocean and changes in the bio-geochemical cycling of Si
by diatoms and the associated shifts in C and Si stoichiometry of
the biogenic export fluxes under variable iron concentrations. Our
study also suggests that the timing of CO2 release from the abyss,
which occurred in two stages (~18–14.5 ka and 13–11.5 ka)6,8 was
decoupled from the release of Si, which occurred primarily during
the YD (13–11.5 ka). This decoupling is attributed to the deeper
regeneration depth of Si relative to C causing the Si:C ratio of
upwelling water to be dependent on vertical mixing and deep
stratification. Given these finding, what role did the reorganisation
of the Si cycle play in glacial-interglacial changes in CO2?

We propose that glacial stratification acts to progressively strip
DSi from the surface ocean. This reduces the efficiency of the
biological pump in the surface ocean, counteracting the impact of
carbon sequestration in the deep ocean. However, the reduced
efficiency of the biological pump is moderated by the decrease in
Si:C uptake by diatoms due to additional iron supply24,36,66. A
higher glacial Si inventory may also have played a role in this
process47,77,78. Collectively, this allowed atmospheric CO2 con-
centrations to remain lower during glacial periods. Conversely,
the release of DSi from the abyss at glacial terminations would
have increased the availability of DSi for diatom production in the
upper ocean (Fig. 3). This should have increased the efficiency of
the biological pump and limited the rise in atmospheric CO2.
However, the biological pump is moderated by a greater Si:C use
by diatoms under reduced Fe availability allowing relatively high
CO2 levels to be maintained during warm periods36,66. Therefore,
we propose that ocean circulation and stratification to a large
extent determine the timing of CO2 release during glacial-
interglacial transition; however, the concomitant Si cycle changes
is part of the tightly coupled biological feedback mechanism that
determines the magnitude and sets the limits on glacial-
interglacial variability in atmospheric CO2 concentrations
across the Pleistocene.

Methods
Setting. Piston cores MD84-551 (55.01oS, 73.17oE, 2230 m water depth), MD88-
773 (52.90oS, 109.87oE, 2460 m water depth) and MD88-772 (50.02oS, 104.90oE,
3240 m water depth) were retrieved by the Marion Dufresne in the Indian sector of
the Southern Ocean. MD84-551 is situated on the south-western flank of the
Kerguelen Plateau, MD88-773 and MD88-772 are both located on the southern
flank of the South-East Indian Ridge.

δ30Sidiat. Isolated diatom samples were produced from bulk sediment through
mechanical separation and chemically cleaning following that of Morley et al.84

using a size fraction of 10–75 μm. The quality of the cleaning procedure was
assessed by inspection through scanning electron microscopy. The procedure
produced samples that appeared to contain >98% diatoms, with the remaining
fraction consisting of silicoflaggelates, radiolaria fragments and sponge spicule
fragments. The clay fraction was reduced such that <0.5% of the surface area of
samples inspected by SEM were clay.

The method for δ30Si analysis follows that of Georg et al.85. 10 ml of cleaned
diatoms suspended in Milli-Q water were digested in 0.1 M suprapure NaOH
before neutralisation with 1M double-distilled HCl and dilution to 20 ppm. 0.5 ml
of the DSi analyte was then loaded into a pre-cleaned 1.8 ml BioRad AG 50W-X8
cation exchange resin column and eluted with Milli-Q water. Isotopic compositions
of samples were analysed by MC-ICP-MS on a Nu Plasma II instrument at the
University of Edinburgh using sample-standard bracketing with isotopic reference
material, NBS28. All δ30Si values quoted are with respect to NBS28. Average
internal reproducibility at 1SE is 0.06 ‰ (n ≥ 3 per sample, total 124 samples
including repeats) and is displayed as error bars in Fig. 2. Average external
reproducibility is 0.09 ‰ (n ≥ 3 per sample, total 14 samples).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15101-6

8 NATURE COMMUNICATIONS |         (2020) 11:1534 | https://doi.org/10.1038/s41467-020-15101-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


δ30Sisponge. Sponge spicules were hand-picked from chemically cleaned and
mechanically separated bulk sediment through the same method as the diatoms
above using a size fraction of >75 μm. Due to the scarcity of spicules within some
sediment layers, multiple sampling intervals were combined and plotted as hor-
izontal error bars in Fig. 3d. The method for δ30Si analysis is identical to the
δ30Sidiat method given above.

Opal. The percentage opal content by dry weight of bulk sediment samples was
determined via dissolution in NaOH and the heteropoly blue method (also referred
to as the molybdenum-blue method)86. Opal fluxes were produced using the
230Th-normalisation method38. Excess 230Th used to perform the 230Th-
normalisation was determined by acid digestion of bulk samples followed by anion
exchange column chemistry and isotope dilution inductively coupled plasma mass
spectrometry87–90.

Age models. Where possible, the age models for the three cores were constructed
based on accelerator mass spectrometry 14C data, with analysis performed at the
NERC Radiocarbon Laboratory, East Kilbride. 14C ages were calibrated using the
Calib 7.04 software with the Marine13 calibration curve. Reservoir effects were
applied to the dates, see Supplementary Note 1 for more details. Poor CaCO3

preservation prevented the use of 14C dating for MD88-773 and MD88-772 during
the early deglaciation and LGM. The age models at these intervals were constructed
by graphical correlation of titanium with detritus fluxes in nearby 14C-dated
sediment cores (see Supplementary Note 1, Supplementary Tables 1–3 and Sup-
plementary Figs. 2 and 3 for more details).

Data availability
The data that support the findings of this study are available in the PANGAEA database
https://doi.org/10.1594/PANGAEA.911189 [https://doi.pangaea.de/10.1594/
PANGAEA.911189]91.
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