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Efficient distributed solutions for sharing energy resources at the local level: a
cooperative game approach.

Diego Kiedanski, Ana Bušić, Daniel Kofman and Ariel Orda

Abstract— Local energy generation as well as local energy
storage represent key opportunities for energy transition. Nev-
ertheless, their massive deployment is being delayed mainly
due to cost reasons. Sharing resources at the local level enables
not only reducing these costs significantly, but also to further
optimize the cost of the energy exchanged with providers
external to the neighbourhood. A key question that arises while
sharing resources is how to distribute the obtained benefits
among the various local players that cooperate. In this paper
we propose a cooperative game model, where the players are
the holders of energy resources (generation and storage); they
cooperate in order to reduce their individual electricity costs.
We prove that the core of the game is non-empty; i.e., the
proposed cooperative game has a stable solution (distribution
of the payoffs among the players) for the case where all players
participate in a unique community, and no strict subset of
players can obtain a better gain by leaving the community.

We propose a formulation of this game, based on the theory
of linear production games, which lead us to the two main
contributions of this paper. First, we propose an efficient (with
linear complexity) centralized algorithm for finding a stable
payoff. Second, we provide an efficient distributed algorithm
that computes an allocation in the core of the game without any
requirement for the players to share any private information.
The distributed algorithm requires the exchange of intermediate
solutions among players. The topology of the network that
enables these exchanges is closely related to the performance
of the distributed algorithm. We show, by way of simulations,
which are the best topologies for these communication graphs.

I. INTRODUCTION

The deep decarbonization of the electricity grid is signif-
icantly facilitated by the massive local deployment of dis-
tributed renewable resources, most of which are intermittent
by nature (e.g. solar and wind). With such technologies, one
of the biggest challenges becomes matching the energy de-
mand with the intermittent generation, which lead to a large
set of proposals for leveraging grid flexibility opportunities
[1], i.e., the ability to adapt the energy demand in real time,
usually with the constrain of avoiding significantly impacting
the quality of experience.

Recently, it has been shown that the ability to lo-
cally match surplus of energy generation with consumption
(namely, same low voltage grid), could further reduce energy
losses and increase the quality of power supplied [2], [3].
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With the above goal in mind, and following the decen-
tralization of the wholesale electricity market, local energy
markets and local trading platforms were proposed and
implemented [2], [4], [5]. Such platforms usually consist
of a series of sequential trading opportunities, which result
in very complex interactions among households (each being
a “game” in the game-theoretic sense), which might not
provide the benefits for which they were designed [6] (the
authors of the present paper have provided clear evidence of
this fact in a separate paper currently under review). These
drawbacks, together with a better understanding that con-
sumers might be prone to cooperate [7], [8], [9], prompted
research of cooperative frameworks [10], [11]. There are
already some simple implementations of such schemes, such
as the “Autoconsommation collective“ in France1.

In this paper, we study the existence of stable coopera-
tion agreements among households with renewable energy
generation resources and, optionally, storage capacity. A
coalition is considered to be stable if the distribution of
the gains is satisfactory for all participants; which means
that no strict subset of participants will benefit from leaving
the coalition. Indeed, we consider that the main objective of
forming coalitions is to optimize the cost of the energy that
has to be exchanged with the traditional electricity company
(usually, at any given time, these companies sell energy at
a higher price than they buy locally generated energy). Our
contributions are the following:

1) We prove that the centralized solution to the coopera-
tive game introduced in [12] can be found efficiently
using techniques from the theory of Linear Program-
ming Games [13], instead of being NP-Complete as
previously believed.

2) We provide a distributed algorithm that computes a
solution to the same problem, in which each participant
of the game can retain its private information. Previous
proposed approaches require players to submit private
information to a centralized solver.

3) In our distributed algorithm, a communication network
enables players to exchange their updated solutions.
We evaluate numerically several families of such net-
work topologies and conclude that faster convergence
of our algorithms is obtained with topologies based on
expander graphs.

The rest of the paper is organized as follows. Section II
introduces some required concepts and notation. In Section
III, we position our paper within the literature. Our math-

1https://www.enedis.fr/lautoconsommation



ematical model is presented in Section IV. The distributed
algorithm used to solve the problem is introduced in Section
V. Numerical results are presented and discussed in Section
VI. Final remarks are presented in Section VII.

II. PRELIMINARIES

A. Cooperative game theory

A coalitional game G = (N , v) is defined by a set of
players N = {1, . . . , N} and a characteristic value function
v : 2N → R that specifies the value obtained by each subset
S ⊆ N of players (i.e., each coalition) if they cooperate
(we denote vS = v(S)). The set of all players is known
as the Grand Coalition. The solution of a cooperative game
consists of a payoff vector y ∈ RN in which each coordinate
yi specifies the value allocated to player i.

A payoff vector y is said to be an imputation for the
Grand Coalition if

∑
i∈N yi = vN (efficiency) and yi ≥ v{i}

(individual rationality). The set of imputations are precisely
the ways of splitting the value obtained by forming the
Grand Coalition, while still guaranteeing that each player
does at least as well as being alone. Furthermore, if y is an
imputation and it satisfies

∑
i∈S yi ≥ vS ,∀ S ⊂ N , then it

is said to belong to the core.
The core is a standard solution concept in cooperative

game theory. The core can be empty, hinting the lack of
a stable solution of the game. Deciding whether a game G
has an empty core is, in general, an NP-Complete problem
[14].

Definition 1: A function γ : 2N \ ∅ → [0, 1] satisfying
Equation (1) is said to be balanced.∑

S⊂N ,i∈S
γS = 1, ∀i ∈ N (1)

Definition 2: A game G = (N , v) is said to be balanced
if for any balanced function γ it holds that∑

S⊂2N \∅

vSγS ≤ vN (2)

Furthermore, a game is said to be totally balanced if each
of its sub-games GS = (S ⊂ N , v|S) is balanced.

A fundamental theorem in the characterization of the core
is due to Bondareva [15], also known as Bondareva-Shapely
(Theorem 1).

Theorem 1: The core of a game G = (N , v) is non-empty
if and only if the game G is balanced.

A particularly interesting family of cooperative games that
we use extensively in this paper is that of linear programming
and linear production games [16], [13].

Definition 3: Let N be the set of N players, A ∈
M(R)M×N a constraint matrix, ~b{i} a vector of resources
controlled by player i, B ∈M(R)M×N a matrix whose j-th
column is the vector ~b{j}, c ∈ RN a cost vector common
to all players and let tS be a binary vector whose j-th
coordinate is 1 if j ∈ S.

A linear programming game (LPG) is a cooperative game
G = (N , v) for which

v(S) = max{cx : Ax ≤ BtS} (3)

Two important results regarding LPGs are summarized by
the following theorem, due to Owen.

Theorem 2: Linear Programming Games have non-empty
cores [16]. Furthermore, the set defined as:

DS = {y ∈ RN : y = uB, for some dual optimal vector u}
(4)

is a subset of the core.
It can be shown [17] that the family of totally balanced

games coincides with the family of linear programming
games.

B. Graph Theoretic Concepts

A graph G = (VG, EG) is defined by a set of nodes VG
and a set of edges EG. In this paper we will assume that
graphs are simple, weighted, undirected and have no loops.
The adjacency matrix of G is denoted AG and its entries
avw are positive if and only if there is an edge between v
and w, v, w ∈ VG. We define the degree of a node v ∈ VG
as dv =

∑
w∈VG

avw. The degree matrix DG is a diagonal
matrix with the degrees of the nodes in its diagonal. The
neighbourhood of a node v ∈ VG, is defined as the set
of adjacent vertices to it: N(v) = {w : avw > 0} and the
Laplacian of G by LG = DG−AG. We will be interested in
the largest eigenvalue of LG, which we shall denote by µG.
We denote the complete graph in N nodes KN , the cycle
graph in N nodes by Cn, the line graph by PN , the wheel
graph (namely, a cycle with a node connected to all other
nodes) as Wn and an arbitrary tree by Tn.

We are particularly interested in expander graphs as
these types of graphs have provided fast convergence for
distributed algorithms in previous studies [18]. We require to
additional definitions before defining expander graphs. Let
∂A = {(v, w) : (v, w) ∈ EG, v ∈ A ⊆ VG, w ∈ VG \ A}
be the edge boundary of a set A. We define the Cheeger
constant as: h(G) = min{ |∂A||A| : A ⊂ VG, 0 < |A| ≤ 1

2 |VG|}
[19]. With those definitions in place, a graph is said to be
expander if it is sparse and its Cheeger constant is high.
Intuitively, they are graphs that achieve good connectivity
properties with only a few edges.

Two types of expander graphs will be used in this paper.
First, a cycle chordal graph (denoted En) as defined in [20,
Theorem 4.4.2], which can be obtained by adding to a cycle,
the edges that connect each node (numbered from 0 to p) to
its inverso moduli p (p prime). Finally, we consider randomly
sampled 4−regular graphs (which we will denote R4,n), as
they are good expander graphs with high probability [21].

III. RELATED WORK

In [12], Han et al. propose the use of energy coopera-
tives among households with batteries and renewable energy
generation with the target of minimizing the total cost paid
to their Traditional Electricity Company (TEC). The authors
model the energy cooperatives using cooperative game theory
and prove that the considered game has a non-empty core.
Their solution is based on the concept of nucleolus and on
the Shapely value. Due to the complexity of solving the



cooperative game, their simulations are run up to 14 players,
which took some 500 minutes to solve.

In [22], the authors study the same cooperative game as in
[12] and propose a technique to estimate the Shapely value
using stratified random sampling. They show that, using a
high sampling rate, a game with 30 players can be solved
in some 300 minutes, while a game with 50 players can
be solved in the same amount of time by sacrificing some
accuracy.

In [23] the authors use K-means to cluster similar con-
sumption profiles in order to reduce the number of players
needed to solve the cooperative game introduced above.
They found that the nucleolus obtained using the number
of clusters instead of the number of players approximated
reasonably well the nucleolus of the original game. With the
proposed technique, they managed to solve a game with up
to 200 players (albeit approximately).

In our paper, we study the same cooperative game as
in [12], [22], [23]. By using techniques based on Linear
Production Games (LPG) [16], we show that the core of the
game is non-empty, and we derive a method for efficiently
computing a payoff in the core that can scale up to several
thousand players. Our second contribution consists in pro-
viding a distributed algorithm that computes such a payoff
over any type of overlay communication network. In addition
to the high efficiency, our solution has the key benefit that
it does not require the disclosure by the households of local
information.

In addition to the articles described above, there are
several studies related to power systems from a cooperative
approach. A review of different models and challenges
associated with energy communities can be found in [24].
In [25], the authors model energy communities that interface
with the wholesale energy market via a community manager,
but they do not analyze their problem through cooperative
game theory nor their consumers have batteries. The authors
in [26] model a cooperative energy management system
as a multi-stage stochastic optimization problem, but only
focus on the optimization problem and not in the game
theoretic aspects of cooperation. Kim et al. [27] model the
trading of energy between Microgrids using a Generalized
Nash Bargaining solution. Their cooperative approach does
not take into account the possibility of deviation of sub-
coalitions. Finally, cooperation for the shared investment in
energy storage has also been extensively considered [9], [10],
[28] [29].

IV. MODEL

Consider a set of players N that aim to minimize their
electricity bill at a given day. Each player has a daily demand
profile xi = (xi1, . . . , x

i
T ) that is observed at discrete time-

slots t ∈ T = {1, . . . , T}. The demand of a player at time-
slot t, denoted by xit, will be positive if the energy consumed
by her appliances (not counting the battery) is greater than
the energy generated by her renewable resources (if any)
and negative otherwise. The demand profiles are fixed and

known at the beginning of the day (a forecast might be known
instead).

Each player owns a battery (possibly of size 0) that
they can use to change their net load as seen from the
grid. Let Si denote the size of player’s i battery, Sis the
initial state of charge and δ

i
, δi the maximum energy that

the battery can charge or discharge at any given time-slot,
respectively. Furthermore, the battery is subject to charging
and discharging efficiencies represented by the coefficients
ηic, η

i
d ∈ (0, 1], respectively.

The only decision that player i can take is whether to
charge or discharge the battery. We denote by cit how much
player i charges the battery at time-slot t and how much
she discharges it by dit. The feasible set of charging and
discharging actions is described in Equation (5).

Fi ={ci, di : 0 ≤ Sis +

j∑
t=1

cit − dit ≤ Si ∀j ∈ T , (5)

cit ∈ [0, δ
i
], dit ∈ [0, δi]}

The net load profile of player i (i.e., her demand profile
plus the effect of the battery), as seen from the grid at time-
slot t, is given by: zit =

cit
ηnc
− ditη

i
d + xit. All players are

charged by their net load according to the same buying and
selling tariff. We will denote by pbt the price at which energy
is bought during time-slot t and by pst the price at which
surplus of energy could be sold to the grid. In this paper we
will assume that pbt > pst ,∀t ∈ T . Finally, the cost paid by
player i, in the absence of collaboration, is given by Equation
(6).

T∑
t=1

[
max{zit, 0}pbt −max{−zit, 0}pst

]
(6)

Remark 1: For the battery model described above, the
authors in [30] empirically showed that implementing a
controller based on a receding horizon and a simple forecast
can be very close to optimality in average.

A. Cooperative game model

We introduce now the model for the case when players
collaborate. We model the system by a cooperative game
formed by their ensemble. The main idea behind the coop-
erative game is that players in a coalition S ⊆ N will only
be charged by their aggregated net load. That is, if players
manage to synchronize the consumption in the coalition with
their surplus, they will be able to reduce their costs.

In order to define a cooperative game, it is required to
define the value of each coalition S. As explained above,
in our case the value vS of a coalition S is (the minus of)
the minimal electricity cost that players in S can achieve by
cooperating. Following [31], the value vS of a coalition S
is given by the optimal solution of the linear maximization
problem (7).



vS = max
ci,di : i∈S

−

[
T∑
t=1

(
zS,+t pbt − z

S,−
t pst

)]
(7)

subject to:

ci, di ∈ Fi ∀i ∈ S

zS,+t − zS,−t =
∑
i∈S

(
cit
ηic
− ditηid + xit

)
∀t ∈ T

ci, di ≥ 0 ∀i ∈ S

where zS,+t = max{zSt , 0}, z
S,−
t = max{−zSt , 0}, and zSt

represents the net energy consumption of the coalition S at
time-slot t. Although zS,+, zS,− are deterministic functions
of the charging and discharging profiles, we define them as
variables for our formal treatment of the problem. We will
prove that the optimal solutions of (7) are well behaved, i.e.,
at every time-slot cit and dit cannot both be strictly positive.
The same holds for zS,+, zS,−.

Proposition 1: In all of the optimal solutions of (7) it
holds that zS,+t zS,−t = 0 and citd

i
t = 0 for all t ∈ T and

i ∈ N .
Proof: By way of contradiction. We begin by looking

at zS,+, zS,−. Suppose that there is a time-slot in which
zS,+t − zS,−t = K and zS,+t zS,−t 6= 0. Then, if K ≥ 0,
The corresponding term in the objective function is ct =
−pbt(K+ zS,−t ) + pstz

S,−
t = −pbtK+ zS,−t (pst − pbt) and it is

maximized when zS,−t = 0. This is analogous for K < 0. We
proceed to look at the charging and discharging variables.

Let us assume that, in an optimal solution, there is one
player i such that citd

i
t 6= 0 at time-slot t and J = cit − dit ,

where J is the desired usage of the battery. Fix the variables
of all other players in that time-slot together with the load
and denote the sum by L. We will denote X(dit) = L +
J 1
ηci

+dit(
1
ηic
−ηid). Note that X(dit) is an increasing function

in dit because 1
ηic
− ηid is always positive.

The cost at time-slot t is given by ct = −pbtX(dit) if
X(dit) ≥ 0 or ct = |pstX(dit)| if X(dit) < 0. In both cases,
ct is maximized by setting dit as small as possible, hence
dit = 0. The result is analogous for cit. This concludes the
proof.

Observation 1: The coalitional game whose characteristic
value function is given by the value of (7) is not an LPG.
This can be seen from the fact that the cost function is piece-
wise linear and the fact that the variables zS,+, zS,− are not
associated with a single player, as required by Definition 3.

In spite of Observation 1, we shall be able to maintain the
results obtained for LPGs (namely, Theorem 2) using the
same techniques as in [16]. First, we need to formulate the
optimization problem defined in (7) as in Equation (3).

We shall use the notation ~V = (α|a)(β|b) . . . (ζ|z) to

represent the vector ~V = (

a︷ ︸︸ ︷
α, . . . , α,

b︷ ︸︸ ︷
β, . . . , β, . . . ,

z︷ ︸︸ ︷
ζ, . . . , ζ).

With each player i, we will associate the vector ~bi defined
as follows:

~bi = (0|i4T − 4T )

I︷ ︸︸ ︷
(Si − Sis|T )

II︷ ︸︸ ︷
(Sis|T )

III︷ ︸︸ ︷
(δ
i|T )

IV︷ ︸︸ ︷
(δi|T ) . . .

(8)

. . . (0|(N − i)4T ) (xi1|1) . . . (xiT |1)︸ ︷︷ ︸
V

(−xi1|1) . . . (−xiT |1)︸ ︷︷ ︸
V I

The vectors ~bi shall be used as the right-hand side con-
straints of linear programs. Therefore, with each entry, there
will be an associated dual variable. The roman numbers
indicated in Equation (8) will be used to cross-reference
those dual variables with the corresponding entry.

Let B be the matrix whose columns are the vectors ~bi,
~bS = BtS , ~x a vector of variables ordered as in Equation
(9) and ~c the cost vector defined in Equation (10).

~x =(zS,+1 , . . . , zS,+T , zS,−1 , . . . , zS,−T , c11, . . . , c
1
T , d

1
1 . . . , d

1
T ,
(9)

. . . , cN1 , . . . , d
N
T )

~c = (−pb1, . . . ,−pbT , ps1, . . . , psT , 0, . . . , 0, . . . , 0) (10)

Finally, let A ∈ M(R)4TN+2T×2TN+2T be the matrix
obtained by writing all the constraints associated with the
optimization problem (7) in the order associated with vectors
~b and ~x.

Proposition 2: The optimization problem defined in (7) is
equivalent to vS = min{~c~x : A~x ≤ BtS , ~x ≥ 0}.

The main advantage of the new formulation is that the
matrix A and the cost ~c do not depend on the coalition.
Furthermore, the right hand sides of the formulation are
additive. With the formulation introduced above, the dual
DS associated with the linear programming formulation of
the optimization problem (7) is given by

DS) min{~λSBtS : AT~λS ≥ ~c, ~λS ≥ 0} (11)

We are ready to prove the main results of the paper.
Theorem 3: The cooperative game G = (N , v) where vS

is obtained by solving optimization problem (7) has a non-
empty core.

Proof: See Appendix .
Theorem 4: The payoff vector y = (u1, . . . , uN ) is in the

core, where ui is defined by Equation (12).

ui =

T∑
t=1

[~λI,i,tN Si + ~λIII,i,tN δ
i
+ ~λIV,i,tN δi (12)

+ ~λV,i,tN xit − ~λ
V I,i,t
N xit] = 〈~λN ,~b{i}〉

where ~λX,i,tS is the optimal dual variable of the problem of
coalition S associated with the constraint of player i at time-
slot t, labelled with the roman number X in the Equation
(8).



Proof: The main idea behind the proof is to observe
that the feasible set of the dual of (7) does not depend
on the coalition, hence the optimal solution of the problem
associated with the Grand Coalition is also feasible in the
problem associated with all the other coalitions S.

Let ~λS be the optimal solution of the dual DS) as defined
in Equation (11). Because of duality in LPs we know that
~λS~bS = vS , for all coalitions S.

Furthermore, we know that ~λS is feasible in the dual
associated with all coalitions.

We proceed to consider the sum of the pay-offs defined
in Equation (12) for a given coalition S.

∑
i∈S

ui =
∑
i∈S
〈~λN ,~b{i}〉 = 〈~λN ,

∑
i∈S

~b{i}〉 = 〈~λN ,~bS〉 = ~λN~bS

(13)
From Equation (13), we can conclude the proof, as fol-

lows. First, when S = N ,
∑
i∈S ui = ~λN~bN = vN , which

implies that the payoff is efficient. Finally, we know that
~λN~bS is the objective value obtained by substituting ~λN in
the dual associated with coalition S. Because the dual is a
minimization problem, ~λN~bS is an upper-bound on vS . We
can derive that

∑
i∈S ui ≥ vS , thus concluding the proof.

Remark 2: From a technological point of view, the de-
scribed model only requires that every households owns a
Home Energy Management System connected to the internet
(which will likely come with the battery). If the centralized
solution is preferred, an additional server will be required,
but this could be hosted in the cloud.

V. DISTRIBUTED ALGORITHM FOR THE DUAL

In the previous section we showed that the cooperative
game considered in this paper has a non-empty core. Fur-
thermore, we showed that a pay-off in the core could be
built from the dual of the optimization problem associated
with the value of the grand coalition vN , DN . In this section
we will establish a distributed algorithm to compute a vector
in the core by solving the dual DN in which players do not
need to transmit their private information.

We assume that the players can exchange information
using a communication network represented by a graph B
with adjacency matrix B. Each player holds an estimate of
the solution of the dual DN and in each iteration of the
algorithm, they send their estimate to all their neighbours (as
defined by the network B). The algorithm finishes when the
players reach a consensus, i.e., their estimates of the solution
coincides.

We begin by rewriting DN in a way that exposes the
information available to each player (the private information
of player i is the vector ~bi). Let Ai ∈ M4TN+2T,2T denote
the block matrix in A obtained by restricting A to only the
columns associated with the variables ci and di. Then, the
dual DN can be written as:

DN ) min
~λ

f i(~λ) =
∑
i∈N

~b{i}~λ

subject to: ⋂
i∈N

Ωi

~λ ≥ 0

where

Ωi = {~λ : ATi
~λ ≥ 0, ~λV,t − ~λV I,t ∈ [−pbt , pst ], ∀t ∈ T}

(14)
Furthermore, denote by Πi : R4TN+2T → Ωi the projec-

tion into the set Ωi.
Our implementation of a distributed algorithm is based

on the consensus protocol introduced in Liu et al. [32]. The
following result can be derived from [32]. Further details
on the proof of convergence can be found in [32] and the
references therein.

Theorem 5: Under the following assumptions:
1) the sets Ωi are closed and convex,
2) the functions f i are convex on Ωi, differentiable and

its gradient is Lipschitz continuous on Ωi,
3) the communication between players occurs through an

undirected and connected graph,
the iteration:


xik+1 = Πi

(
xik − qik+1

)
qik+1 = α

[
∇f i(xik) + wik +

∑
j∈N(i) bij(x

i
k − x

j
k)
]

wik+1 = wik +
∑
j∈N(i) bij(x

i
k+1 − x

j
k+1)

(15)
with α < 1

µB
converges to the optimum.

We used the notation xik to represent the estimate of the
solution held by player i at iteration k and bij (the (i, j)
entry of the adjacency matrix B) to represent the weight of
the edge between i and j in the graph B.

In our setting, the sets Ωi are closed and convex as they are
defined as the finite intersection of half-spaces. The functions
f i are linear, so they are convex in Ωi, differentiable and their
gradient is Lipschitz.

Proposition 3: In each iteration, each player needs to
solve a projection operation Πi. Because the feasible set
is linear, this accounts to solving a quadratic programming
problem. Furthermore, observe that it is possible to imple-
ment the projection step for each player in a way that does
not depend on the number of players.

Proof: Let rji be the j-th row of matrix Ai. The row
rji 6= ~0 if and only if the variables ci or di have positive
coefficients in it (because Ai is restricted to only those
variables). In the original matrix A, there are only 6T rows
in which ci, di or both appear (those associated with entries
denoted with the roman numbers from I to VI in Equation
(8)). Therefore, there are only 6T non-zero rows in Ai, which
proves that the size of the problem Πi does not depend on
the number of players.



In Proposition 3, it was shown that the projection step in
each iteration does not depend on the number of players, but
only on the number of time-slots used. We conclude that the
time required to reach consensus in the distributed algorithm
depends on the number of players only through the required
number of iterations before convergence and the size of the
neighbourhood of each player in the graph B, but not on the
size of the problem that needs to be solved. In spite of this,
the memory requirements do scale linearly with the number
of players as each vector xik+1 ∈ R4TN+2T .

Proposition 4: The structure of the projection step Πi is
the same for all players and time-slots.

Proof: The matrix Ai by definition is obtained by
linearizing the constraints in Fi, and so all the projection
steps have the same constraints and objective. The difference
between them is that the projection step affect different coor-
dinates of the dual ~λ. Nevertheless, this can be surmounted
by selecting the appropriate coordinates to feed into the
projection step and updating only those.

VI. NUMERICAL EXPERIMENTS

In this section we provide numerical evidence on the
(efficient) performance of our proposed algorithms 2

The numerical experiments shall focus on the running time
of the algorithms and not on the economic benefits of the
cooperation. Such benefits have already been studied in [23],
[11], [22], [12], [33].

In our experiments, we assumed that all players owned
energy storage and we modeled the characteristics of those
devices based on a Tesla’s Powerwall 2. That is, we consid-
ered that Si = 13.5 kWh, Sis = 0, δ

i
= 5 = δ kW for all

i ∈ N .
In Proposition 4 it was shown that the structure of the

projection steps is the same for all players and time-slots.
This fact can be exploited by the projection algorithm, which
can reuse the steps of previous executions to increase its
speed. In particular, we use the OSQP solver [34], [35], [36]
to improve the running time of the projection step of each
player.

A. On the impact of the network structure

We begin our numerical study by comparing the perfor-
mance of the distributed algorithm using different graph
families. For the experiments in this section, we assumed
T = 10 time-slots and we sampled the demand profiles of
players from a uniform distribution xit ∼ U [−3, 3] i.i.d 3. We
compare seven families of graphs: the complete graph in n
nodes, the cycle in n nodes, a wheel graph, a path graph,
a randomly sampled 4−regular graph (R4,n), a random tree
and a cycle chordal graph.

In Figure 1, the running times of the distributed algorithm
for the different families of graphs are shown. It can be

2The code used for our numerical experiments can be found in https:
//github.com/gus0k/cdc20_code.

3Since the load distribution does not impact the execution time, which
is the metric we want to evaluate, we chose a simple one, although not
realistic
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Fig. 1. Comparison of the average running time of the distributed algorithm
using different topologies for an increasing number of players.

seen that the regular and chordal graphs provide the better
performance, followed by the Wn, Tn, Pn, Cn. The worst
performance in running time is achieved by the complete
graph.

Our results regarding the performance of the different
families of graphs mirror those in Duchi et al. [18]. In
[18], the authors prove (for a similar but different algorithm,
introduced to solve a different problem) that the fastest
convergence of their distributed algorithm is achieved by
expander graphs.

To study more in detail the reason behind the poor
performance of complete graphs, we measured the number
of iterations before convergence. Figure 2 provides the result
of such an experiment. All simulations were stopped after
10000 iterations, a threshold that was consistently reached
by Pn, Tn and often by Cn. On the other hand, simulations
using Kn as the underlying communication graph managed
to converge before the cut-off, in the neighbourhood of the
6000th iteration.

The observed performance can be explained as follows.
The running time of each iteration of the algorithm is
dominated by two factors: the time required to project into
the sets Ωi and the average size of the neighbourhood of
each node. Observe that there are two vector additions for
each player for each one of her neighbours. In path graphs
or cycles, the last value does not depend on N , whereas in
Kn it does.

In summary, expander graphs require the least number of
iterations to converge and provide the best running times.
Furthermore, complete graphs converge in less iterations than
cycles and trees, but, depending on the specific implementa-
tion, might take longer overall.

Remark 3: Since the exchanges of information among
players are virtual, the topology used by the distributed
algorithm is completely independent of the actual distribution
grid and where participants are located in it.
B. On the impact of players on performance

In this subsection we benchmark three different ap-
proaches to solve the cooperative game discussed in this
paper. The first approach consists of using the traditional
definition of the core, i.e., computing the value of 2N − 1

https://github.com/gus0k/cdc20_code
https://github.com/gus0k/cdc20_code
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Fig. 2. Comparison of the number of iterations before convergence of the
distributed algorithm using different topologies for an increasing number of
players. The simulations had a 10000 cut-off.

coalitions and then finding a vector inside the set. The
second approach consists of solving the dual of the problem
associated with the grand coalition and building a vector in
the core (in a centralized fashion), as described in Theorem
(4). Finally, the third benchmark consists of running the
distributed version of the algorithm, as described in the
previous section. From the results in the previous subsection,
we know that the performance of the distributed algorithm is
better when the underlying topology in an expander graph,
so that is the topology used in our experiments.
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Fig. 3. Running time of the different algorithms with a varying number
of players. The y-axis is in log scale.z

Figure 3 presents the results obtained by running the
algorithms on an increasing number of players. The Naive
implementation is known to be exponential in the number of
players as the results show, so we computed its value only
up to 14 players. The centralized algorithm proposed in this
paper has excellent scaling properties, and its much faster
than the other alternatives. Finally, the distributed algorithm
performs considerably better than the naive implementation,
although it is slightly slower than its centralized counterpart.
This is due to the fact that, as the number of players
increases, so does the required time to reach consensus.

It should be observed that our implementation of the
distributed algorithm has not been optimized, so there is
room for further improvement.

VII. CONCLUSION

In this paper we study the formation of energy commu-
nities in which households with energy resources cooperate
to minimize their electricity costs. We significantly enhance
the results of previous works in this domain, making the
solution scalable and providing a distributed algorithm for
its implementation. These results are obtained by introducing
an appropriate reformulation of the game used to model
the system, which enabled us to harness techniques from
the theory of Linear Programming Games. On these bases,
we derive an efficient algorithm - with linear complexity in
terms of the number of players - to find a vector in the
core, that is, a distribution of the benefits among the players
that guarantees that no subset of players could do better
by leaving the cooperative. Furthermore, using consensus
algorithms’ results, we provide a distributed implementation
of the algorithm in which players do not need to reveal
their private information to any third party. Finally, through
numerical simulations, we show that using expander graphs
as the underling communication network provides the best
running time for the distributed algorithm among several
well-known families of graphs. We consider that, with these
results, the proposed approach has now the required charac-
teristics to be deployed in the field and may represent a driver
for accelerating the deployment of local energy resources.
In order to evaluate the real potential gains, the authors are
currently working on two extensions of the proposed game.
One direction aims to include the investment cost in solar
panels and batteries, while the other one aims to consider
additional recurring costs players must cover, including taxes
on the usage of the grid.
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ski, “Optimal storage arbitrage under net metering using linear
programming,” in 2019 IEEE International Conference on Commu-
nications, Control, and Computing Technologies for Smart Grids
(SmartGridComm), Oct 2019, pp. 1–7.

[32] Q. Liu, S. Yang, and Y. Hong, “Constrained consensus algorithms
with fixed step size for distributed convex optimization over multiagent
networks,” IEEE Transactions on Automatic Control, vol. 62, no. 8,
pp. 4259–4265, Aug 2017.

[33] C. Feng, F. Wen, S. You, Z. Li, F. Shahnia, and M. Shahidehpour,
“Coalitional game based transactive energy management in local
energy communities,” IEEE Transactions on Power Systems, pp. 1–
1, 2019.

[34] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” ArXiv e-prints,
Nov. 2017.

[35] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility
detection in the alternating direction method of multipliers for convex
optimization,” Journal of Optimization Theory and Applications,
vol. 183, no. 2, pp. 490–519, 2019. [Online]. Available: https:
//doi.org/10.1007/s10957-019-01575-y

[36] G. Banjac, B. Stellato, N. Moehle, P. Goulart, A. Bemporad, and
S. Boyd, “Embedded code generation using the OSQP solver,” in
IEEE Conference on Decision and Control (CDC), 2017. [Online].
Available: https://doi.org/10.1109/CDC.2017.8263928

APPENDIX

Proof: We shall prove the theorem by a direct ap-
plication of Theorem 1. The key idea behind the proof
is to show that the linear combination of the solutions for
each coalition S using balanced coefficients is feasible in
the problem associated with the grand coalition. Because the
later is a maximization problem, it holds that the cost of the
linear combination is a lower bound of vN , which proves the
theorem. To do this, let γS be an arbitrary balanced function
satisfying Equation (1).By linearity of the objective function
we have that:∑

S

γSvS =
∑
S

γS(~c~xS∗) = ~c

(∑
S

γS~xS∗

)
where ~xS∗ represents an optimal solution of the optimiza-

tion problem (7) associated with coalition S.
It remains to show that

∑
S⊂N\∅A (γS~xS∗) =∑

S⊂N\∅ γS (A~xS∗) ≤
∑
S⊂N\∅ γS

~bS∗
?
= ~bN

Indeed, by doing so, we will have shown that
∑
S γSvS ≤

vN , because the balanced sum
∑
S γS~xS∗ is feasible in the

maximization problem, hence it is a lower bound.
By construction, ~bS =

∑
i∈S

~b{i}. Consequently,∑
S⊂N\∅

γS~bS∗ =
∑
i∈S

~b{i}
∑

S⊂N\∅,i∈S

γS = ~bN

and this concludes the proof.
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