M. Z. Bazant, B. D. Storey, A. A. Kornyshev, G. Shi, L. Chen et al., Two-dimensional Na?Cl crystals of unconventional stoichiometries on graphene surface from dilute solution at ambient conditions, Phys. Rev. Lett, vol.106, issue.046102, pp.776-779, 2011.

A. A. Lee, D. Vella, S. Perkin, and A. Goriely, Are roomtemperature ionic liquids dilute electrolytes?, J. Phys. Chem. Lett, vol.6, pp.159-163, 2015.

S. Tsuzuki, H. Tokuda, K. Hayamizu, and M. Watanabe, Magnitude and directionality of interaction in ion pairs of ionic liquids: Relationship with ionic conductivity, J. Phys. Chem. B, vol.109, pp.16474-16481, 2005.

M. A. Gebbie, M. Valtiner, X. Banquy, E. T. Foxd, and . Foxd,

W. A. Hendersond and J. N. Israelachvilia, Ionic liquids behave as dilute electrolyte solutions, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.9674-9679, 2013.

A. C. Forse, C. Merlet, J. M. Griffin, and C. P. Grey, New perspectives on the charging mechanisms of supercapacitors, J. Am. Chem. Soc, vol.138, pp.5731-5744, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01985713

S. Kondrat and A. A. Kornyshev, Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors? Nanoscale Horiz, vol.1, pp.45-52, 2016.

E. Paek, A. J. Pak, and G. S. Hwang, A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid, J. Electrochem. Soc, vol.160, 2013.

M. D. Levi, L. Daikhin, D. Aurbach, and V. Presser, Quartz crystal microbalance with dissipation monitoring (EQCM-D) for in-situ studies of electrodes for supercapacitors and batteries: A mini-review, Electrochem. Commun, vol.67, pp.16-21, 2016.

C. Prehal, C. Koczwara, H. Amenitsch, V. Presser, and O. Paris, Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors, Nat. Commun, vol.9, 2018.

S. Kim, T. Choi, B. Lee, S. ;. Lee, K. Choi et al., Ultraclean patterned transfer of single-layer graphene by recyclable pressure sensitive adhesive films, Nano lett, vol.15, pp.3236-3240, 2015.

J. L. Ye, H. B. Tan, S. L. Wu, K. Ni, F. Pan et al., Direct Laser Writing of Graphene Made from Chemical Vapor Deposition for Flexible, Integratable Micro-Supercapacitors with Ultrahigh Power Output, Adv. Mater, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02049100

R. P. Janek, W. R. Fawcett, and A. Ulman, Impedance spectroscopy of self-assembled monolayers on Au (111): evidence for complex double-layer structure in aqueous NaClO4 at the potential of zero charge, J. Phys. Chem. B, vol.101, pp.8550-8558, 1997.

S. Randström, M. Montanino, G. B. Appetecchi, C. Lagergren, A. Moreno et al., Effect of water and oxygen traces on the cathodic stability of N-alkyl-Nmethylpyrrolidinium bis (trifluoromethanesulfonyl) imide, Electrochim. Acta, vol.53, pp.6397-6401, 2008.

M. L. He, K. Fic, E. Fra, P. Novák, and E. J. Berg, Ageing phenomena in high-voltage aqueous supercapacitors investigated by in situ gas analysis, Energy Environ. Sci, vol.9, pp.623-633, 2016.

C. Prehal, C. Koczwara, H. Amenitsch, V. Presser, and O. Paris, Salt concentration and charging velocity determine ion charge storage mechanism in nanoporous supercapacitors, Nat. Commun, vol.9, p.4145, 2018.

A. Uysal, H. Zhou, G. Feng, S. S. Lee, S. Li et al., Structural origins of potential dependent hysteresis at the electrified graphene/ionic liquid interface, J. Phys. Chem. C, vol.118, pp.569-574, 2013.

E. Paek, A. J. Pak, and G. S. Hwang, A computational study of the interfacial structure and capacitance of graphene in [BMIM][PF6] ionic liquid, J. Electrochem. Soc, vol.160, pp.1-10, 2013.