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Tolerancing decisions can profoundly impact the quality and cost of the mechanism. To evaluate the
impact of tolerance on mechanism quality, designers need to simulate the influences of tolerances with
respect to the functional requirements. This paper proposes a mathematical formulation of tolerance
analysis which integrates the notion of quantifier: ‘‘For all acceptable deviations (deviations which are
inside tolerances), there exists a gap configuration such as the assembly requirements and the behavior
constraints are verified’’ & ‘‘For all acceptable deviations (deviations which are inside tolerances), and for
all admissible gap configurations, the assembly and functional requirements and the behavior constraints are
verified’’. The quantifiers provide a univocal expression of the condition corresponding to a geometrical
product requirement. This opens a wide area for research in tolerance analysis. To solve the mechanical
problem, an approach based on optimization is proposed. Monte Carlo simulation is implemented for the
statistical analysis. The proposed approach is tested on an over-constrained mechanism.
1. Introduction

1.1. Context

Mechanical product reliability is an important product quality
factor and is dependent on different parameters among which
tolerance design is an important activity. Proper tolerance design
enables complex mechanical assemblies consisting of numerous
parts to assemble and work together in a proper manner so that
they fulfill their design objectives. As technology increases and
performance requirements continually tighten, the cost and the
required precision of assemblies increase as well. There is a strong
need for increased attention to tolerance design in order to enable
high-precision assemblies to be manufactured at lower costs.

To improve the tolerancing process in an industrial context,
there exists a strong need for tolerance analysis to estimate
the probability expressed in ppm (defected product per million)
with high-precision computed at lower cost. The engineers need
tolerance analysis methods:

• to improve product quality,
• to decrease the manufacturing cost,
• to reduce scrap in production (eco-aware attitude), and cus-

tomer returns.

1.2. Related works

A substantial amount of research has been devoted to the
development of tolerance analysis. Tolerance analysis concerns the
verification of the value of functional requirements after tolerance
has been specified on each component.

There are three main issues in tolerance analysis.

(1) The models for representing the geometrical deviations and
gaps: the variation of the real entity from the ideal entity in
3D can be described in any one of the following manners:
• With the help of the vectors [1] or vectorial tolerancing [2],
• By the torsors of the small displacements [3,4],
• By matrices [5,6],
• By kinematic formulation [7] or a kinematic approach [8,9],
• By stream of variations (SOVA) [10].

(2) A mathematical model for calculating the system behavior
with deviations,

(3) The development of the solution techniques or analysis me-
thods, such as worst-case searching and statistical analysis
[11,1,12,13].
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Worst-case analysis considers the worst possible combination
of each deviation and examines the functional characteristic.
Consequently, worst-case tolerancing can lead to excessively tight
part tolerances and hence high production costs [12]. Statistical
tolerancing on other hand works by setting the tolerances so
as to assure a desired yield. By permitting a small fraction of
assemblies to not assemble or function as required, an increase in
tolerances for individual dimensions may be obtained, and in turn,
manufacturing costs may be reduced significantly [13].

The Tolerance analysis methods are divided into two distinct
categories based on the type of accumulation input: displacement
accumulation or tolerance accumulation. The aim of displacement
accumulation is to simulate the influences of deviations on
the geometrical behavior of the mechanism. Usually, tolerance
analysis uses a relationship of the form [13]:

Y = f (X), (1)

where Y is the response (characteristic such as gap or functional
characteristics) of the mechanism and X = {x1, x2, . . . , xn} are the
values of some characteristics (such as situation deviations or/and
intrinsic deviations) of the individual parts or subassemblies
making up the mechanism. The function f is the mechanism
response function which represents the deviation accumulation.
The relationship can exist in any form for which it is possible
to compute a value for y given values of X = {x1, x2, . . . , xn}.
It could be an explicit analytic expression or an implicit analytic
expression. In a particular relative configuration of parts of a
mechanism consisting of gapswithout interference between parts,
the composition relations of displacements in some topological
loops of the mechanism permits to determine the response
function f . Mechanism can be divided into two main categories
in terms of degree of freedom, Iso-constrained mechanisms,
and over-constrained mechanisms [14]. Given their impact on
the response function formulation for the problem of tolerance
analysis, a brief discussion of these two types is given by Ballu
et al. [15]:

‘‘Isoconstrained mechanisms are quite easy to grasp. Geometrical
deviations within such products do not lead to assembly problems;
the deviations are independent and the degrees of freedom catch
the deviations. When considering small deviations, functional
deviations may be expressed by linear functions of the deviations’’.

‘‘Considering overconstrained mechanisms is much more
complex. Assembly problems occur and the expression of the
functional deviations is no more linear.

Depending on the value of the manufacturing deviations:
• the assembly is feasible or not;
• the worst configuration of contacts is not unique for a given

functional deviation.
For each overconstrained loop, events on the deviations have to

be determined:
• events ensuring assembly,
• events corresponding to the different worst configurations of

contacts.
As there are different configurations, the expression of the

functional deviation cannot be linear’’.

For over-constrained mechanism, determination of explicit
function f is very complex, whereas this determination is easy for
an open kinematic chain [14].

For statistical tolerance analysis, the input variables X =

{x1, x2, . . . , xn} are continuous random variables which enable to
represent part deviations. In general, they could be mutually de-
pendent. A variety of methods and techniques (Linear Propaga-
tion (Root Sum of Squares), Non-linear propagation (Extended
Taylor series), Numerical integration (Quadrature technique),
Monte Carlo simulation . . . ) are available for estimation of the prob-
ability distribution of Y and the probability of the respect to the
geometrical requirement [13].

The aim of tolerance accumulation is to simulate the composi-
tion of tolerances i.e. linear tolerance accumulation, 3D tolerance
accumulation. Based on the displacement models, several vector
space models map all possible manufacturing variations (geomet-
rical displacements between manufacturing surfaces or between
manufacturing surface and nominal surface) into a region of hy-
pothetical parametric space. The geometrical tolerances or the di-
mensioning tolerances are represented by deviation space [16–19],
T-Map r⃝ [20,21] or specification hull [22,23]. These three concepts
are a hypothetical Euclidean volume which represents all possible
deviations in size, orientation and position of features. For toler-
ance analysis, this mathematical representation of tolerances al-
lows calculation of accumulation of the tolerances by Minkowsky
sum of deviation and clearance domains [16,18,20]; to calculate
the intersection of domains for parallel kinematic chain; and to
verify the inclusion of a domain inside other one. The methods
based on this mathematical representation of tolerances are very
efficient for the tolerance analysis.

Current methods of displacement and tolerance accumulation
are believed to have major drawbacks that reduce the accuracy of
tolerance stack-up evaluation. These drawbacks are:
• The limited scope of the statistical approaches: explicit func-

tions without gap and numerical simulations without gap. To
use a statistical approach, it needs to simplify the mechanical
model of an over-constrained system with gaps. This simplifi-
cation is the current industrial practice.

• The limited scope of the tolerance accumulation approaches:
linear problem (linear accumulation by Minkowsky sum).

1.3. Issue

This paper focuses on the development of an analysis method.
Moreover, the proposal is independent of the adopted solution
of geometrical modeling (vector, torsor, matrix, . . .), it includes
a mathematical formalization based on the quantifier notion
and an implementation based on optimization and Monte Carlo
simulation. The quantifier notion translates the concept that
a functional requirement must be respected in at least one
acceptable configuration of gaps (existential quantifier ‘‘there
exists’’), or that a functional requirement must be respected in
all acceptable configurations of gaps (universal quantifier ‘‘for
all’’) [11,22,23]. A configuration is a particular relative position
of parts of a mechanism consisting of gaps without interference
between parts. In previous papers, this formalization based on
quantifier allows to deduce some rule for the definition of
the virtual boundary (Least Material Condition and Maximum
Material Condition) [23] and to propose a first approach for
tolerance analysis based on Quantified Constraint Satisfaction
Problem for linear problem [11]. An extension of themathematical
formulation [23] based on the quantifier with help of formal
logic in order to provide an integrated formalization is detailed in
Section 2.

The quantifier impacts the result of the tolerance analysis [11].
Therefore, we propose an algorithm to compute this mathematical
formulation based on coupled optimization and Monte Carlo
simulation. This algorithm and its application are detailed in
Section 3.

2. Quantifier and mathematical formulation of tolerance
analysis

The aim of this section is to formalize the tolerance analysis
problem based on the quantifiers. The quantified formulation is
illustrated with geometrical requirement and assembly require-
ment. Moreover, an extension is proposed with the help of formal
logic.



2.1. Quantifier notion for geometrical product requirement

A mechanism is a set of parts with joints. Most of joints
have functional gap. These gaps induce displacements between
parts. Each relative position defines a configuration of the joint.
A configuration is a particular relative position of parts of a
mechanism consisting of gapswithout interference between parts.
The product geometrical requirement limits the variation between
two surfaces of the mechanism, which are in functional relation.
This requirement is a condition on the functional characteristic
between these surfaces. For any given mechanism with gaps,
the relative orientation or position of these surfaces depends
on the configuration, which is not single. Therefore, the value
of the functional characteristic depends on the configuration
of the mechanism. There is an ambiguity in the expression of
the requirement because the considered configuration is not
described. In order to address this problem, it is necessary to
specify: in which configuration, the condition of the geometrical
requirement must be checked. The expression of the geometrical
product requirement is not univocal [24]. So, to define a univocal
expression of the condition corresponding to a geometrical
product requirement, this expression is completed by a quantifier
(∃ or ∀). The quantifier translates the concept that the condition
must be respected in at least one configuration of the mechanism
(∃), or that the conditionmust be respected in all configurations of
the mechanism (∀).

• In the case of the quantifier ∃, if there exists one configuration
of the mechanism such as the value of the functional
characteristic is less than or equal to the tolerance, then the
geometrical product requirement is respected.

• In the case of the quantifier ∀, if for all configurations of the
mechanism, the value of the functional characteristic is less
than or equal to the tolerance, then the geometrical product
requirement is respected.

2.2. Mathematical formulation of tolerance analysis for geometrical
product requirement

The approach used in this paper is a parameterization of devi-
ations from theoretic geometry, the real geometry of parts is ap-
prehended by a variation of the nominal geometry. The substitute
surfaces model these real surfaces. This parameterization of vari-
ations is detailed in the following sub section, and it enables us to
define a variations parametric space, inwhich each coordinate sys-
tem axis represents a parametric variable.

The mathematical formulation of tolerance synthesis takes
into account not only the influence of geometrical deviations
on the geometrical behavior of the mechanism and on the
geometrical product requirements, but also the influence of the
types of contacts on the geometrical behavior; all these physical
phenomena aremodeled by hulls (compatibility hull, interface hull
and functional). With this description by hulls, a mathematical
expression of the admissible deviations of parts is detailed in the
section Relations between hulls.

2.2.1. Geometrical description by variations parametric space
The geometrical behavior model needs to be aware of the

surface deviations of each part (situation deviations and intrinsic
deviations) and relative displacements between parts according
to the gap (gaps and functional characteristics). Compared with
the nominalmodel, each substitute surface has situation variations
and intrinsic variations:

• The situation deviations define the orientation and position
variations between a substitute surface and the nominal sur-
face,
Table 1
Subspace description.

Subspace name Column vector Designation

Situation S Space of all situation deviations of
parts

Intrinsic I Space of all intrinsic deviations of
parts

Gap G Space of all gaps between parts
Functional
characteristic

Fc Space of all functional
characteristics between parts

• The intrinsic deviations of substitute surface are specific to
their type. They define the surface variations. For instance, the
intrinsic variation of a substitute cylinder is radius variation be-
tween the substitute cylinder and the nominal cylinder,

also two types of relative displacements between parts:
• The gapsdefine the orientation andposition variations between

two substitute surfaces in contact,
• The functional characteristics define the orientation and po-

sition variations between two substitute surfaces in functional
relation.

The deviation of part surfaces, the gaps between parts and
the functional characteristics between parts are described by
parameters. Thereafter, the geometrical behavior of parts will be
defined in space such as each coordinate axis corresponds to a
parameter that is the variations parametric space. Four types of
subspace corresponding to the four types of parameters are defined
in Table 1 [22]:

2.2.2. Geometrical behavior description by convex hulls
The tolerance synthesis model is based on the expression of the

geometrical behavior of the mechanism; various hulls modeling
the geometrical behavior of the mechanism are defined for 1D and
3D applications.
• the compatibility hull (Dcompatibility)

Composition relations of displacements in the various topo-
logical loops express the geometrical behavior of the mechanism
[11,4]. The composition relations define compatibility equations
between the situation deviations and the gaps. The set of compat-
ibility equations, obtained by the application of composition rela-
tion to the various cycles, makes a system of linear equations. So
that the system of linear equations admits a solution, it is neces-
sary that compatibility equations are checked. These compatibility
equations characterize some hyperplanes in the Situation × Gap
× Functional characteristic space.
• the interface hull (Dinterface)

Interface constraints limit the geometrical behavior of the
mechanism and characterize non-interference or association be-
tween substitute surfaces, which are nominally in contact [11,17,
18,20,22,23,25,26]. These interface constraints limit the gaps be-
tween substitute surfaces. These constraints define the interface
hull in Gap × Intrinsic space. In the case of floating contact, the
relative positions of substitute surfaces are constrained technolog-
ically by the non interference, the interface constraints result in in-
equations defined in Gap × Intrinsic space. In the case of slipping
and fixed contact, the relative positions of substitute surfaces are
constrained technologically in a given configuration by amechani-
cal action. An associationmodels this type of contact; the interface
constraints result in equations defined in Gap × Intrinsic space.
• the functional hull (Dfunctional)

The functional requirement limits the orientation and the
location between surfaces, which are in functional relation. This
requirement is a condition on the relative displacements between
these surfaces. This condition could be expressed by constraints,
which are inequations. These constraints define the functional hull
in Functional characteristic × Intrinsic space.



2.2.3. Relations between hulls
The objective of this mathematical formulation is to formalize

the necessary and optimal constraints on deviations of each
part, i.e. the vectors s and i. The previous geometrical behavior
description and the quantifier expression enable to define the
admissible deviations of parts such as the functional requirement is
respected. These admissible deviations form a hull in situation and
intrinsic spaces called specification hull. To define it, we formalize
a textual relation and a mathematical relation between various
hulls [11,22,23].

For assembly requirement, the quantifier is ∃. The specification
hull is defined as:

‘‘The deviations are admissible’’ is equivalent to ‘‘there exists
an admissible gap configuration of the mechanism such as the
geometrical behavior and the assembly requirement (interface
constraints) are respected’’. The mathematical expression of this
equivalence is:

(s, i) ∈ Dspecification
⇔∃ g ∈ Gap : (s, g, i) ∈ Dcompatibility ∩ Dinterface.

(2)

For functional requirement, the quantifier is ∀, the specification
hull is defined as:

‘‘The deviations are admissible’’ is equivalent to ‘‘for all
admissible gap configurations of the mechanism, there exists a
functional characteristic such as the geometrical behavior and the
functional requirement are respected’’. Themathematical expression
of this equivalence is:

(s, i) ∈ Dspecification
⇔∀g ∈ {g ∈ Gap : (s, g, i) ∈ Dcompatibility ∩ Dinterface},

∃ fc ∈ Functional characteristic
: (s, g, i, fc) ∈ Dcompatibility ∩ Dinterface ∩ Dfunctional.

(3)

This quantifier notion enables to formalize the relations between
hulls (compatibility hull, interface hull and functional hull) and
specification hull. These relations are a theoretical formulation
of tolerance analysis. Moreover, it is possible to impose the
requirement is true for each point of the functional surface, or
simultaneously for all point of the functional surface, it is possible
to express the specification hull with many requirements (The
requirements are translated into constraints which characterize
the functional hull).

2.3. Mathematical formulation based on first order logic

The basic syntactic elements of First-order logic (FOL) are
connectives, quantifiers, predicates, functions and the variables.
The theory presented here generalizes the quantifier based
tolerance expression and using the framework and syntax of
formal logic, generalizes the quantifier based expression into a
logical expression of tolerance analysis for mechanism. In order
to formalize the problem, we proceed by adopting the semantics
of the generic model: V represents the set of all variables in
the tolerance analysis problem. V consists of sets of Situation
and Intrinsic deviations, Gaps and functional characteristics. The
universe or domain D for the tolerance analysis problem includes
the possible assignments for the members of the variable V . These
assignments play an important role in the analysis problem as
they contribute to or control the search for the design solution.
These assignments include the values that the variables in the
functional characteristics space can take on as established from
the client requirements or as needed by the different constraints.
The domain also includes the assignment values for the variables
related to the nominal dimensions. The interpretation functions
or constraints for the tolerance analysis problem are based on
the expression of the geometric behavior of the mechanism. The
mathematical form of these constraints is in terms of linear or
non-linear expressions involving members of V . The relations may
be of type equality or inequality. The relations coming under the
compatibility Hull Dcompatibility are in the form of linear equations
where as the relations from interface hull and functional hull
(Dinterface and Dfunctional) are in the form of inequality or equality.

The objective of themathematical formulation for the tolerance
analysis problem is to formalize the necessary and optimal
constraints on deviations of each part. In order for a mechanism to
assemble successfully, the different components in the presence
of deviations should assemble without interference and should
have a specific set of gaps that characterize the instance of the
mechanism. An acceptable solution sg can than be defined as a
solution that allows the mechanism which validates the existence
of gaps with values from universe such that all the constraints
are satisfied. This condition stipulates the use of an existential
quantifier for an initial search for the existence of a feasible
configuration of gaps. Therefore using the existential quantifier,
the solution sg is defined as:
‘‘the deviations are admissible’’ is equivalent to ‘‘there exists an
admissible gap configuration of the mechanism and a functional
characteristic such that the geometrical behavior and the functional
requirement are respected’’. It can be translated as:

∃ sg ∈ S : sg = Dassembly � (D, C)
sg � ∃GC(V , ā) : ā ∈ D.

(4)

In the same way, the solution sFc is defined textually as:
‘‘The deviations are admissible’’ is equivalent to ‘‘for all admissible
gap configurations of the mechanism; there exists a functional
characteristic such that the geometrical behavior and the functional
requirement are respected’’. This may be written as:

∃ sFR ∈ S : sFR = DFR � (D, C)
sFR � ∀G ∃ Fc C(V , ā) : ā ∈ D.

(5)

Based on this formalization, we will propose in the following
section an algorithm for statistical tolerance analysis of complex
systems (over-constrained mechanism with non linear behavior).

3. Statistical tolerance analysis based on optimization and
Monte Carlo simulation

In order to ensure the robustness of design, it is necessary
to simulate and study the effect of variations on mechanism
due to variation on parts. Variations may take place in any
randompattern concurrently in the concerned dimension andmay
affect the assemblability and function of the mechanism. In the
following section, the approach discussed above will be modified
and integrated with the Monte Carlo simulation tool to obtain an
algorithm which performs the tolerance analysis of a mechanical
assembly from a sample population of components generated by
Monte Carlo simulation.

The tolerance analysismethod adopted in this article is based on
usingMonte Carlo simulation and quantifier notion to a solution of
optimization in order to calculate the probability of assembly and
functioning of a given assembly. The application of this approach
to 3D tolerance analysis will be discussed.

3.1. Transformation of the formalization

In order to implement the proposed formulation by quantifier,
we need to transform it into mathematical expression. First of all,
we consider the more general framework of quantified constraint
satisfaction problems formalization, which are defined as follows,
and we illustrate its application for the transformation of the
formalization.



The quantified constraint satisfaction problem (QCSP) is an
extension of the Constraint Satisfaction Problem (CSP) in which
variables are totally ordered and quantified either existentially
or universally [27]. QCSP provides a better expressiveness for
modeling problems. The goal in a QCSP can be either to determine
satisfiability or to find a consistent instantiation of the existential
variables for all instantiations of the universal ones. A Quantified
Constraint Satisfaction Problem (QCSP) is a formula of the form QC
where Q is a sequence of quantifiers Q1×1 . . .Qn×n, where each
Qi quantifies (∃ or ∀) a variable xi and each variable occurs exactly
once in the sequence. C is a conjunction of constraints (c1 . . . cm)
where each ci involves some variables among x1, . . . , xn.

Based on the QCSP formalization, the mathematical expression
of tolerance analysis for assembly requirement is: ‘‘For all
acceptable deviations (deviations which are inside tolerances), there
exists a gap configuration such as the assembly requirement (interface
constraints) and the compatibility equations are verified’’.

∀x1, ∀x2, ∀x3, . . . ,∀xn, ∃xn+1, . . . , ∃xm ;

D(x1),D(x2),D(x3), . . . ,D(xn),D(xn+1), . . . ,D(xm) ;

C1, . . . , Cp

• x1, x2, . . . , xn are the variables which represent each part
deviation (s, i),

• xn+1, . . . , xm are the variables which represent each gap
between parts (g),

• the mathematical representation of geometrical specifications
is a set of intervals which limit each part deviation like vectorial
tolerancing: xi ∈ D(xi) with xi a part deviation and D(xi) its
tolerance interval, D(x1) × · · · × D(xn) = Dspecification

• themathematical representation of interface constraints is a set
of inequationswhich limit each gap: xj ∈ D(xj)with xj a gap and,
D(xn+1) × · · · × D(xm) = Dinterface

• themathematical representation of the compatibility equations
is a set of constraints: C1, . . . , Cp.

The expressive power of QCSP integrates the notion of quanti-
fier in the expression. But this expression does not integrate the
stochastic aspect of the statistical tolerance analysis. To do so, the
first term of the expression ‘‘For all acceptable deviations (deviations
which are inside tolerances)’’ is modified for computation of the de-
fect probability:

For assembly requirement, the mathematical expression is:
‘‘For each sample (Monte Carlo simulation) of acceptable deviations
(deviations which are inside tolerance limit), there exists a gap config-
uration such as the assembly requirement (interface constraints) and
the compatibility equations are verified’’.

For functional requirement, the mathematical expression is:
‘‘For each sample (Monte Carlo simulation) of acceptable deviations
(deviations which are inside tolerances), the worst case of functional
characteristics must be respected the functional requirements such as
the interface constraints and the compatibility equations are verified’’.

3.2. Algorithm for statistical tolerance analysis by Monte Carlo
simulation and optimization

A new algorithm is proposed based on statistical sampling
power of Monte Carlo simulation and on optimization to find the
worst gap configuration. The following section details the general
description of the algorithm.

A general flow chart describing the module for tolerance
analysis is shown in Fig. 1. Themain principle behind the algorithm
is to simulate and evaluate the influence of the manufacturing
deviations on the nominal dimensions of an assembly. In order
to achieve this, Monte Carlo simulation is used to simulate
the deviations and the optimization to identify the worst gap
configuration. This process is repeated recursively for a large
Fig. 1. General scheme of tolerance analysis with Monte Carlo simulation.

sample of deviations to estimate assembly probability in order to
perform the tolerance analysis of any given mechanism consisting
of sub components.

A mathematical model of the mechanism is expressed in form
of the compatibility, interference and functional hulls (step 2 of the
algorithm), it is defined by a set of variables and a set of constraints
on subsets of the variables:
Constraints describing the compatibility hull generally formulated
as:

Cc(s, g, fc) = 0 ⇔ (s, g, fc) ∈ Dcompatibility. (6)

Constraints describing the interface hull:

Ci(i, g) ≤ 0 and Ci(i, g) = 0 ⇔ (i, g) ∈ Dinterface. (7)

Constraints describing the functional hull

Cf(i, fc) ≤ 0 ⇔ (i, fc) ∈ Dfunctional. (8)

The part deviations (s, i) are then simulated recursively within
the algorithm. Monte Carlo simulation is used to generate random
variables simulating the part deviations (step 4 of the algorithm)
with all the generated deviations being within the Dspecification. A
sample of part deviations is noted:

s′ = {s′1, s
′

2, . . . , s
′

n}, i′ = {i′1, i
′

2, . . . .i
′

o}. (9)

For any given instance of iteration, the part deviations generated
by Monte Carlo simulation should satisfy the set of constraints:

(s′, i′) ∈ Dspecification. (10)

For verifying assembly requirement (steps 5 & 6 of the algorithm),
the aim is to verify the existence of gap configuration. For
each sample (instance of part deviations), we verify if there
exists an admissible gap configuration of the mechanism such
as the assembly requirement (interface constraints) and the
compatibility equations are verified:

(s′, i′, g) ∈ Dcompatibility ∩ Dinterface. (11)



This check is performed with help of translation of the relation (2).
In the algorithm, for an instance of iteration, itsmathematical form
becomes

∃ g : (s′, i′, g) ∈ Dcompatibility ∩ Dinterface. (12)

Depending on this decision process it may be desirable:

• to determine whether a solution exists (verify the consistency
of the Constraint Satisfaction Problem),

• to find one solution, to compute the space of all solutions of the
Constraint Satisfaction Problem,

• or to find an optimal solution relative to a given cost function
which respects all constraints (Cc and Ci).

In our case, the goal is not to find a particular solution. But
the check of the solution existence is made possible by using
optimization to reduce the computing time. To do that, a numerical
algorithm is used to find the global minimum of sum of the
gaps subject to the constraints. By this method, a minimum
solution (worst case) is obtained for gap configuration such that the
assembly requirement is verified. In fact, the aim is to find if there
are values of gaps such that all the constraints are satisfied and gaps
have values more than 0 (there is no interference). That means the
system is assembled. The result of this step effectively establishes
if the individual parts with the simulated deviations would be able
to assemble.

The constraints are a logical combination of equalities, in-
equalities, and domain specifications. This optimization problem
includes non-linear constraints which may be equalities or in-
equalities. An example of non linear constraint is detailed in the
following section: Application. Therefore we use Numerical Non-
linear Global Optimization techniques. Numerical algorithms for
constrained nonlinear optimization can be broadly categorized
into gradient-basedmethods and direct searchmethods. Gradient-
based methods use first derivatives (gradients) or second deriva-
tives (Hessians). Direct search methods do not use derivative
information. The functions used in this case implement several al-
gorithms for finding constrained global optima (Tool box of Math-
ematica). The methods are flexible enough to cope with functions
that are not differentiable or continuous and are not easily trapped
by local optima. The implemented algorithms include a tolerance
for accepting constraint violations. Therefore, we add a step to
check the consistency of the identified solution.

To evaluate the respect of the functional requirements (steps 7
& 8 of the algorithm) of each sample (instance of part deviations)
that assembles, we verify if for all admissible gap configuration of
the mechanism there exists functional characteristics such as the
functional requirements are verified:

(s′, i′, g, fc) ∈ Dcompatibility ∩ Dinterface ∩ Dfunctional. (13)

This check is performed with help of translation of the relation (3).
In the algorithm, for an instance of iteration, itsmathematical form
becomes

∀g ∈ {g ∈ Gap : (s, g, i) ∈ Dcompatibility ∩ Dinterface}

∃fc ∈ Dfunctional

: (s′, i′, g, fc) ∈ Dcompatibility ∩ Dinterface ∩ Dfunctional. (14)

Depending on this decision process, it may be desirable to
determine the space of all solutions of the Constraint Satisfaction
Problem, or to find an optimal solution relative to a given cost
function which respects all constraints (Cc, Ci and Cf).

Two alternative approaches to translate relation (3) have been
formalized which are (a) optimization of worst-case values [28],
(b) interval propagation with help of interval arithmetic to reduce
the domain of the variables (functional characteristics). To reduce
Fig. 2. Case study.

the computing time, we use the optimization approach to find the
worst case values of the functional characteristics:

fcmax = Max(fc(g, s′, i′))
S.T.
Cc(s′, g, fc) = 0
Ci(i′, g) ≤ 0 and Ci(i′, g) = 0
Cf(i′, fc) ≤ 0
fcmin = Min(fc(g, s′, i′))
S.T.
Cc(s′, g, fc) = 0
Ci(i′, g) ≤ 0 and Ci(i′, g) = 0
Cf (i′, fc) ≤ 0

fcmax ∈ Dfunctional and fcmin ∈ Dfunctional. (15)

For this step, we use the same Numerical Nonlinear Global
Optimization techniques followed by the verification of the assem-
bly requirement.

The result evaluates if the individual parts with the simulated
deviations would be able to assemble as well as if the resultant
mechanism would respect the functional requirements.

4. Application to an over-constrained mechanism

The approach developed for the tolerance analysis for 3D
mechanical assemblies has been applied and validated over
different models with and without GD & T specifications. For the
sake of brevity and clarity of application, in this paper, a simple
over-constrained mechanism as shown in Fig. 2 is taken as an
example. This example is the simplified version of a forging tool



Fig. 3. Deviation modeling.
with omission of some parts. Fig. 2 illustrates the different views
of the case study mechanism. The two main parts are assembled
by three guide shafts. The contact between the shafts and the part
2 is fixed, and the contact between the shafts and the part 1 is
floating. The functional characteristic (FC) is coaxiality between the
center holes of the two parts. In terms of the tolerance analysis,
this example is not simple. The position of the three guide shafts
(120°) generate dependence of the displacements along y and z
axes and of the rotations around the three axes regarding to the
non linear constraints of non interference (gaps between the shafts
and part 1).

This example includes 32 part deviation variables, 24 gap vari-
ables, 6 functional characteristic variables, 3 assembly requirement
topological loops therefore 18 assembly requirement compatibility
equations (linear equations), 3 functional requirement topological
loops therefore 18 functional requirement compatibility equations
(linear equations), 6 non interference constraints (6 non linear in-
equations), 6 fixed joint constraints (12 linear equations), and 2
functional requirement constraints (2 non linear inequations).

4.1. Geometrical description

As discussed in Section 2.2, the deviation of part surfaces, the
gaps between parts and the functional characteristics between
parts are described by four types of parameter. The proposed
formalization is tool independent but for the sake of illustration,
in this section the tool chosen to model the geometrical deviation
is the Small Displacement torsors (SDT).
The SDT Dka/k,M defines the part deviation (position and ori-
entation) between the substitute surface ka and the nominal ge-
ometry of part k, expressed at the point M . The components of
a SDT can also be seen as different parameters for orientation
and position: Dka/k,M = {adka/k, bdka/k, gdka/k, udka/k,M , vdka/k,M ,
wdka/k,M}. adka/k, bdka/k, gdka/k are the rotation deviation parameters
and udka/k,M , vdka/k,M , wdka/k,M are the position deviation param-
eters expressed at the point M . Fig. 3 illustrates this geometrical
modeling.

In the same way, the gap can also be modeled by SDT. The
SDT Gka/ib,M defines the gap (position and orientation) between
the substitute surface ka of part k and the substitute surface ib of
part i. The gap parameters characterize the displacement between
the situation features of the two contact surfaces. In the case of a
cylindrical joint, the gap parameters characterize the displacement
between the two axes of the cylinders. Fig. 4 illustrates this gap
modeling.

As mentioned in Section 2.2, the vector s is defined by all
situation deviation parameters of all surfaces. For the case study,
the vector s is given as:

s = {bd11a, gd11a, vd11aA, wd11aA, bd11b, gd11b,
vd11bB, wd11bB, bd11c, gd11c, vd11cC, wd11cC,

bd11d, gd11d, vd11dD, wd11dD, bd22a, gd22a,
vd22aAA, wd22aAA, bd22b, gd22b, vd22bBB,
wd22bBB, bd22c, gd22c, vd22cCC, wd22cCC,

bd22d, gd22d, vd22dDD, wd22dDD}.



Fig. 4. Gap modeling.
The vector i is defined all intrinsic deviation parameters of all
surfaces. For the case study, the vector i includes the diameter of
each cylinder:

i = {d1b, d1c, d1d, d4, d5, d6}.

In the same way, the vector g and fc is defined:

g = {ag2b4b, ag1b4b, bg1b4b, gg1b4b, ug2b4bBB,
ug1b4bB, vg1b4bB, wg1b4bB, ag2c5c, ag1c5c,
bg1c5c, gg1c5c, ug2c5cCC, ug1c5cC, vg1c5cC,
wg1c5cC, ag2d6d, ag1d6d, bg1d6d, gg1d6d,
ug2d6dDD, ug1d6dD, vg1d6dD, wg1d6dD}

fc = {afc1a2a, bfc1a2a, gfc1a2a, ufc1a2aA,
vfc1a2aA, wfc1a2aA}.

This geometrical parameterization allows the modeling of the
geometrical behavior which is detailed in the following section.

4.2. Geometrical behavior

The geometrical behavior of themechanism is expressed by the
composition relations of small displacements in the various loops
of mechanism graph. The sum of the deviation situations and gaps
along a loop of a mechanism graph must be equal to zero:

AR1: D1/1d + G1d/6d + G6d/2d + D2d/2 + D2/2c
+G2c/5c + G5c/1c + D1c/1 = 0

AR2: D1/1d + G1d/6d + G6d/2d + D2d/2 + D2/2b
+G2b/4b + G4b/1b + D1b/1 = 0

AR3: D1/1c + G1c/5c + G5c/2c + D2c/2 + D2/2b
+G2b/4b + G4b/1b + D1b/1 = 0

FR1: D1/1b + G1b/4b + G4b/2b + D2b/2 + D2/2a
+G2a/fc + fc + Gfc/1a + D1a/1 = 0

FR2: D1/1c + G1c/5c + G5c/2c + D2c/2 + D2/2a
+G2a/fc + fc + Gfc/1a + D1a/1 = 0

FR3: D1/1d + G1d/6d + G6d/2d + D2d/2 + D2/2a
+G2a/fc + fc + Gfc/1a + D1a/1 = 0.

The following equations show the set of equations generated
through the compatibility hull:

−ag1c5c + ag1d6d + ag2c5c − ag2d6d = 0
−bd11c + bd11d + bd22c − bd22d − bg1c5c + bg1d6d = 0
−gd11c + gd11d + gd22c − gd22d − gg1c5c + gg1d6d = 0
240 ·
√
3 · bd11c + 240 ·

√
3 · bd11d − 240 ·

√
3 · bd22c

− 240 ·
√
3 · bd22d + 240 ·

√
3 · bg1c5c + 240 ·

√
3 · bg1d6d

+ 240 · gd11c − 240 · gd11d − 240 · gd22c + 240 · gd22d
+ 240 · gg1c5c − 240 · gg1d6d − ug1c5cC + ug1d6dD
+ ug2c5cCC − ug2d6dDD = 0

−240 ·
√
3 · ag1c5c − 240 ·

√
3 · ag1d6d

+ 240 ·
√
3 · ag2c5c + 240 ·

√
3 · ag2d6d

− 300 · gd22c + 300 · gd22d − vd11cC
+ vd11dD + vd22cCC − vd22dDD − vg1c5cC + vg1d6dD = 0

. . .

(32 linear constraints)
240, 240 ·

√
3, 300 are some nominal distances. These nominal

distances amplified the effect of the rotation at the considered
point.

An interface constraint limits the geometrical behavior of the
mechanism and characterizes non-interference constraint or press
fit constraint. For joints 1/4, 1/5, 1/6, the gap is limited by the non-
interference constraint. Fig. 5 illustrates a worst configuration of
gap.

The following equations show the set of equations generated
through the interface hull:
(100 · gg1b4b + vg1b4bB)2 + (−100 · bg1b4b + wg1b4bB)2

≤ ((d1b − d4)/2)2

(−100 · gg1b4b + vg1b4bB)2 + (100 · bg1b4b + wg1b4bB)2

≤ ((d1b − d4)/2)2

(100 · gg1c5c + vg1c5cC)2 + (−100 · bg1c5c + wg1c5cC)2

≤ ((d1b − d5)/2)2

(−100 · gg1c5c + vg1c5cC)2 + (100 · bg1c5c + wg1c5cC)2

≤ ((d1b − d5)/2)2

(100 · gg1d6d + vg1d6dD)2 + (−100 · bg1d6d + wg1d6dD)2

≤ ((d1b − d4)/2)2

(−100 · gg1d6d + vg1d6dD)2 + (100 · bg1d6d + wg1d6dD)2

≤ ((d1b − d4)/2)2

100 is a nominal distance.
In the same way, the functional requirement is modeling. The
distances between the two axes at the extreme points (A1 and
A2) of the FR must be smaller than the FR. Fig. 6 illustrates a
product configuration and the considered distance to formalize the
coaxiality between the two holes (the datum is the hole of the
part 2).



Fig. 5. Gap configuration.
Fig. 6. Functional requirement.
4.3. Optimization

For the sake of brevity, the algorithm is not detailed; to illustrate
the non linear optimization problem, the related part is detailed:
the maximization of one functional characteristic:

Maximization of (−100 · gfc1a2a + vg1a2aA)2

+ (100 · bfc1a2a + wg1a2aA)2

S.T.
−ag1c5c + ag1d6d + ag2c5c − ag2d6d = 0
−bd11c + bd11d + bd22c − bd22d − bg1c5c + bg1d6d = 0
−gd11c + gd11d + gd22c − gd22d − gg1c5c + gg1d6d = 0
240 ·

√
3 · bd11c + 240 ·

√
3 · bd11d − 240 ·

√
3 · bd22c

− 240 ·
√
3 · bd22d + 240 ·

√
3 · bg1c5c

+ 240 ·
√
3 · bg1d6d + 240 · gd11c − 240 · gd11d

− 240 · gd22c240 · gd22d + 240 · gg1c5c
− 240 · gg1d6d − ug1c5cC + ug1d6dD + ug2c5cCC
− ug2d6dDD = 0

−240 ·
√
3 · ag1c5c − 240 ·

√
3 · ag1d6d

+ 240 ·
√
3 · ag2c5c + 240 ·

√
3 · ag2d6d

− 300 · gd22c + 300 · gd22d − vd11cC
+ vd11dD + vd22cCC − vd22dDD − vg1c5cC
+ vg1d6dD = 0

. . .
(100 · gg1b4b + vg1b4bB)2 + (−100 · bg1b4b + wg1b4bB)2

≤ ((d1b − d4)/2)2

(−100 · gg1b4b + vg1b4bB)2 + (100 · bg1b4b + wg1b4bB)2

≤ ((d1b − d4)/2)2

(100 · gg1c5c + vg1c5cC)2 + (−100 · bg1c5c + wg1c5cC)2

≤ ((d1b − d5)/2)2

(−100 · gg1c5c + vg1c5cC)2 + (100 · bg1c5c + wg1c5cC)2

≤ ((d1b − d5)/2)2

(100 · gg1d6d + vg1d6dD)2 + (−100 · bg1d6d + wg1d6dD)2

≤ ((d1b − d4)/2)2

(−100 · gg1d6d + vg1d6dD)2 + (100 · bg1d6d + wg1d6dD)2

≤ ((d1b − d4)/2)2.

A numerical algorithm was applied to find the global maximum of
the functional characteristic subject to the constraints.

4.4. Results

The tolerance analysis of the mechanism shown in Fig. 2 was
performed using normal distribution, for each displacement of the
extreme points of each hole, with mean at zero and dimension
specific standard deviations derived from specified tolerance. The
program also calculated the worst case values of the gaps ‘‘g’’ for
which the assembly conditions and functional requirements by
optimization were respected.



Table 2
Results for the over-constrained case study for 5 different runs.

Run Nominal dimensions
(mm)

Standard deviation
(mm)

Number of accepted
samples

Number of constraint
violations

Probability of AR
(%)

Probability of
AR & FR (%)

1 d1i = 20; d4 = 19.5 0.03 9996 4 99.81 95.98
2 d1i = 20; d4 = 19.8 0.03 8898 1102 59.87 59.87
3 d1i = 20; d4 = 19.8 0.05 8786 1214 22.65 22.64
4 d1i = 20; d4 = 19.8 0.08 9440 560 3.55 3.42
5 d1i = 20; d4 = 19.8 0.01 10000 0 99.91 99.91
The program was tested with 10 000 simulations for different
nominal values and standard deviations. The results show the
importance of the verification step. The worst case is 10% of
constraint violation (see Table 2).

5. Discussion

We introduce a new approach about tolerance analysis, and we
compare this tolerance analysis approach with the mathematical
approaches developed by Davidson and Shah [20], Giordano [17],
Teissandier [18]. In these approaches, the geometrical tolerances,
the dimensioning tolerances or the contact constraints are
represented by deviation domain/clearance domain or T-Map r⃝.
These three concepts are a hypothetical Euclidean volume
which represents all possible deviations in size, orientation and
position of features. For tolerance analysis, this mathematical
representation of tolerances allows to calculate the composition of
tolerances byMinkowsky sumof deviation and clearance domains;
to calculate the intersection of domains for parallel kinematic
chain; and to verify the inclusion of a domain inside other one.
The methods are very efficient for the tolerance analysis, but the
computational cost depends on the number of Minkowsky sums.
Moreover, these methods have a major drawback: the limited
scope. We can only use these methods for linear problem (linear
accumulation by Minkowsky sum).

In the proposed approach, we use the same mathematical
representation, and we add the compatibility domain which
represents the composition relations of displacements in the
various topological loops, and themathematical formulation based
on the quantifier notion. Therefore, we do not use Minkowsky
sum for the resolution, we use a hybrid approach which include
Monte Carlo simulation and optimization.

Moreover, we compare this tolerance analysis approach with
the mathematical approach developed by Ballu [15]. In fact,
Ballu proposes a mathematical approach for tolerance analysis
of over-constrained mechanism. The differences between the
two approaches are the format of the functional response
function and the probabilistic approach (FORM/SORM for Ballu’s
approach and Monte Carlo simulation for this approach). To apply
Ballu’s approach, we need an explicit function; that reduces the
scope of this approach. For explicit function, Ballu’s approach is
very efficient; using the approach FORM/SORM can reduce the
computational cost.

This approach allows the tolerance analysis of over-constrained
mechanisms without explicit response function and without
linearization of the non linear constraints.

6. Conclusion

Tolerancing decisions can profoundly impact the quality and
cost of the mechanism. To evaluate the impact of a tolerance on
the mechanism quality, designers need to simulate the influences
of this tolerance with respect to the functional requirements.
Therefore, the objective of this paper is ‘‘How to analyze the impacts
of geometrical deviations of over-constrained mechanism with non
linear behavior?’’
The following are the outcome of the study:

• Mathematical formulation of tolerance analysis with integra-
tion of the Quantifier notion is a new technique that uses the
notion of the universal quantifiers ∀ and ∃which provide a uni-
vocal expression of the condition corresponding to a geometri-
cal product requirement. The application of tolerance analysis
developed in thiswork relies on the integrated concept of quan-
tifiers to quantify, control and verify the respect of the required
functional requirement (∃ quantifier) as well as the geometrical
product requirement (∀ quantifier). This addition adds a quali-
tative and quantitative nature to the tolerance analysis process
allowing the user to specify the control elements in a model as
well providing the necessary tools for validation via probability
based statistical analysis.

• The algorithm developed in this research paper addresses the
3D application of the tolerance analysis for complex system
(over-constrained mechanism with non linear behavior). The
fundamental steps of the algorithm however remains same for
all the applications i.e. the definition of the product parametric
model with help of variation parametric space in either 3
dimensions using convex hulls, use of Monte Carlo simulation
in case of statistical tolerance analysis, application of ‘‘there
exists’’ quantifier to ascertain that the model with generated
deviations conforms to different convex hulls i.e. respect
of compatibility hull, interface hull and functional hull and
display of results of calculation regarding the conformity of
the assembly with respect to the individual hulls. Monte Carlo
simulation has been used in conjunction with the optimization
to calculate the probability of the functional operation of an
assembly.

For the consistent and reliable application of the Monte Carlo
simulation to the statistical tolerance analysis, the number of
samples is the key of precision. By a large number of samples,
the precision can be improved, but the computational cost will be
increased. The improvement of this approach should be an area for
some intense research on stochastic methods coupled with worse
case methods.
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