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Abstract—Energy efficiency has a significant importance to
optimize the wireless communications systems by providing high
data rates. In order to develop energy efficient systems, one of
the promising method is to use multiple device-to-device (D2D)
underlaying multiple antenna cellular systems. The interference
from cellular users to D2D pairs, the interference between D2D
pairs and the interference at the base station (BS) caused by D2D
pairs occur in these communications systems. In this paper, we
propose energy efficient resource allocation algorithms for under-
laying multi-D2D enabled multiple-antennas communications by
employing different multiple antenna processing techniques at the
BS. A joint method based on Dinkelbach algorithm and Message
Passing Algorithm (MPA) and an approach based on deep
learning with multi-layer artificial neural network are proposed
to maximize the global energy efficiency (GEE) while satisfying
the data rate requirements of both cellular users and D2D pairs.
In MPA, the factor graph of the D2D pairs is constructed by
taking into account the interference among the D2D pairs and
the interference level at the BS to avoid any interruption in the
cellular transmission. By relying on the training based on the
proposed joint algorithm, a deep neural network approach is
presented for off-line implementation. The performance results
of the proposed energy efficient resource allocation algorithms
are illustrated the superiority of multi-D2D communications over
conventional single-D2D communications.

I. INTRODUCTION

Future wireless communication networks will allow users to
communicate at much higher data rates to support immersive
virtual reality services, cloud-based gaming and real-time HD
streaming in addition to conventional multimedia services
while designing energy efficient systems [1]. In order to
provide these improvements at the radio access level, one
solution is to employ device-to-device (D2D) communications
underlaying cellular transmission [2] [3]. In the D2D enabled
cellular communications systems, this task is challenging due
to employing multiple D2D pairs in the same radio resource
without interrupting cellular transmission [4] [5]. Therefore,
effective resource allocation is required to increase overall sys-
tem performance considering global energy efficiency (GEE).
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Resource allocation in such a scenario is a combinatorial and
highly non-trivial problem. Known near optimal solutions are
highly complex, while greedy solutions are suboptimal.

In this paper, we propose a communications system in-
cluding multi-D2D pairs sharing the same resource block
(RB) with a cellular user through the Base Station (BS) with
multiple antennas to maximize the GEE under the constraints
om maximum transmitted power and required data rate. Since
uplink resources are usually underutilized compared to down-
link resources in the cellular communications and co-channel
interference caused by D2D pairs can be handled more easily
by a BS than cellular users, we consider uplink transmission
for the underlaying D2D systems.

In order to maximize the achievable energy efficiency,
resource allocation and power control has been examined for
D2D communications underlaying cellular networks in the
literature. In [6], a joint resource allocation and power control
has been given to improve the energy efficiency (EE) for each
cellular user and D2D pair rather than increase the GEE. In
[7] [8] [9] [10], several joint resource allocation (RA) and
power control algorithms have been provided to maximize the
EE of D2D communications while guaranteeing the quality
of service of cellular users. In [11], a channel and power
allocation that maximizes the minimum EE of the D2D links
has been given. For an energy efficient RA framework with
Hybrid Automatic Repeat Request (HARQ), four EE-related
optimization problems with a constraint on the minimum
goodput and on the maximum transmit power per link have
been examined in [12]. In [13] [14], the maximization of
EE for D2D communication under the constraints of both
D2D pairs and cellular users quality of service has been
investigated. The fairness aware energy-efficient RA algorithm
has been examined in [15] to improve the EE of individual
nodes. However, in all the cited literature, only one D2D
pair and one cellular user can be allocated per RB. In the
present paper, we perform a resource allocation to maximize
GEE by multiplexing multiple D2D pairs to one cellular RB,
which causes interference between the D2D pairs as well as
cumulative interference at the BS.

In order to maximize sum data rate, the resource allocation
algorithms employing multiple D2D pairs for RB sharing
with one cellular user have been intensively addressed in the
literature. The data rate of D2D pairs has been maximized
in [16] through the design of a distributed RA scheme. In
[17], a two-phase-based resource sharing algorithm has been
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examined to improve the network throughput. In [18], the
interference through power control has been handled for the
weigthed sum rate maximization of D2D pairs. The problem
of designing a joint uplink subcarrier assignment and power
allocation scheme has been investigated in [19] in order to
maximize the sum data rate of D2D pairs while satisfying data
rate requirements of cellular users. A joint channel and power
allocation in a time-varying environment for underlaying D2D
network has been addressed in [20] in a fully distributed
approach. In order to maximize overall sum data rate for
multi-D2D multiple antennas cellular systems, an interference
management algorithm has been presented for the multiuser
systems in [21] and Message Passing Algorithm (MPA) [22]
based on the resource allocation in [23] has been examined.
In contrast to these works, in this paper, we focus on the
maximization of the GEE while employing multi-D2D pairs
for each RB.

Deep learning with multi-layer Artificial Neural Network
(ANN) has raised much attention recently for applications in
wireless resource allocation. The recent works in [24] [25]
[26] demonstrated that deep learning is one of the promising
techniques for resource allocation in fifth generation (5G)
and beyond 5G wireless systems. Resource allocation can
indeed be seen as a non-linear mapping between some input
parameters (that are network and channel-dependent) and the
final allocation outcome. For instance, the allocation outputs
of the Weighted Minimum Mean Squared Error (WMMSE)
algorithm [27] aiming at maximizing the weighted sum rate of
a multi-cell interference network have been emulated with an
ANN in [28] and with a convolutional neural network in [29].
In [30], the ANN has been trained to perform max-min and
max-product power allocation in the downlink of a Massive
multiple input multiple output (MIMO) network. In [31], 3
dimensional MPA with its neural network-based deep learning
scheme have been recently considered for resource allocation
in cognitive radio networks. Some other recent references on
ANN for wireless resource allocation can be found in [32].

In the underlaying multi-D2D enabled multiple-antennas
cellular communications, three different kind of interferences
occur: the interference from cellular users to D2D pairs, the
interference between D2D pairs and the interference at the BS
caused by D2D pairs. In this work, in order to manage these
interferences, we propose energy efficient resource allocation
algorithms and our main contributions are summarized as
follows:
• The system model including multi-cellular users and

multi-D2D pairs is examined in a single cell with a
BS with multiple antennas. We derive an optimal GEE
formulation under the constraints of transmitted powers
and signal-to-interference-noise-ratio (SINR) values for
both cellular users and D2D pairs. As this optimization
problem is NP-hard, it is divided into sub-problems and
solved in a tractable way.

• Cellular users are firstly allocated with the objective to
maximize the energy efficiency, as priority is given to
cellular transmissions over D2D communications. Since
orthogonal RA is assumed for cellular users, only one
cellular user is allocated to one RB.

• Once the cellular user is allocated, the GEE optimization
problem to allocate multi-D2D pairs for one RB is re-
formulated. A joint algorithm including a power control
based on Dinkelbach algorithm and a resource allocation
based on MPA is proposed to solve this problem by
employing two different multiple antenna techniques at
the BS to mitigate cumulative interference coming from
multi-D2D pairs.

• An approach based on Deep learning with multi-layer
ANN is also investigated. A training set is generated
with the proposed joint Dinkelbach and MPA algorithm.
Once trained, the ANN can be used and leads to low-
complexity online implementation.

The rest of this paper is organized as follows: Section II
presents the system model and the optimization problem to
maximize GEE. Section III describes the proposed energy
efficient resource allocation algorithms. Section IV provides
extensive performance results of the proposed algorithms with
numerical simulations. Finally, some concluding remarks are
drawn in Section V.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We examine uplink underlaying multi-D2D based communi-
cations in a single cell including one BS with Nr antennas, Kc

cellular users having single antenna and Kd D2D pairs with
single antenna as illustrated in Fig 1. While defining system
model, we consider only one RB whose bandwidth is Bc and
allocate only one cellular user and multi-D2D pairs for each
RB.

D2D pair 1

GGG

Interference from cellular to device

Interference from device to BS

Cellular useful signal

D2D useful signal

Interference from device to device

D2D pair 4

D2D pair 2

D2D pair 3

Figure 1: Underlaying multi-D2D enabled cellular communi-
cations.

The data rate of D2D pair kd is determined by,

Rkd
= log2 (1 + γkd

) (1)
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where γkd
is SINR for D2D pair kd and is calculated by,

γkd
=

Pkd
gkd,kd

N0Bc + Jkd
+ Ikd

(2)

In Eq. (2), Pkd
is the transmitted power of D2D transmitter

kd, ga,b is the channel gain from D2D transmitter a to D2D
receiver b and N0 is the noise power spectral density of the
Additive White Gaussian Noise (AWGN) channel.
Ikd

is the total received interference at the D2D receiver kd
generated by all remaining D2D transmitters. This interference
is calculated by,

Ikd
=

Kd∑
j=1
j 6=kd

Pjgj,kd
(3)

Jkd
is the received interference at the D2D receiver kd gen-

erated by cellular transmission. This interference is determined
by,

Jkd
=

Kc∑
kc=1

x̃kc
P̃kc

g̃kc,kd
(4)

where P̃kc
is the transmitted power of cellular user, x̃kc

is the
boolean indicator that the cellular user kc is allocated or not
and g̃kc,kd

is the channel gain between the cellular user kc
and D2D receiver kd. In the considered system model, only
once cellular user is active, so the summation in Eq. (4) only
contains one non-null element.

The data rate of cellular user kc is calculated as,

R̃kc
= log2 (1 + γ̃kc

) (5)

where γ̃kc is the SINR of the cellular user kc evaluated after
post-coding at the BS and is given by,

γ̃kc
=

P̃kcG̃kc,0

N0Bc + Ikc,0
(6)

with G̃kc,0 the channel gain obtained after applying post-
coding at the BS and is given by,

G̃kc,0 = |h̃kc,0wkc,0|2 (7)

where h̃kc,0 with 1 × Nr as the channel vector between the
cellular user kc and the BS and wkc,0 is the post-coding vector
of size Nr × 1.

The gain for the multiple antennas system can be achieved
by performing Maximum Ratio Combining (MRC) or Mini-
mum Mean Square Error (MMSE) receiver at the BS.

For the MRC case, the post-coding vector is determined
only by considering the cellular user kc:

w′kc,0 = (h̃kc,0)
H (8)

For the MMSE receiver, the post-coding vector is obtained
by taking into account both the cellular user kc and the D2D
pairs to mitigate interference coming from D2D pairs at the
BS:

w′kc,0 =

(
Kd∑

kd=1

xkd
Pkd

(
hH
kd,0

hkd,0

)
+ (N0Bc)INr

)−1
(h̃kc,0)

H

(9)

where hkd,0 with 1 × Nr as the channel vector between the
D2D transmitter kd and the BS, xkd

is the indicator that the
D2D pair kd is active or not.

Then, the post-coding vector is normalized as follows:

wkc,0 =
w′kc,0

||w′kc,0
||

(10)

Ikc,0 is the received interference at the BS coming from all
D2D transmitters and is calculated as,

Ikc,0 =

Kd∑
kd=1

Ikd,kc,0 (11)

where Ikd,kc,0 is the interference generated by the D2D
transmitter kd after postcoding based on the cellular user kc
at the BS. This interference is determined as,

Ikd,kc,0 = Pkd
Gkd,kc,0 (12)

with Gkd,kc,0 the channel gain of D2D pair kd after post-
coding at the BS and given by,

Gkd,kc,0 = |hkd,0wkc,0|2 (13)

Let define the set of cellular users and D2D pairs as
Sc = {1, . . . ,Kc} and Sd = {1, . . . ,Kd}, respectively.
Considering that the optimization variables are the vector of
allocation indicators of Xd = [x1 . . . xKd

], X̃c = [x̃1 . . . x̃Kc
]

and the vector of power values of Pd = [P1 . . . PKd
], P̃c =

[P̃1 . . . P̃Kc ] for the D2D pairs and cellular users respectively,
the GEE problem can be defined as follows:

max
Xd;X̃c;Pd;P̃c

Kc∑
kc=1

x̃kc
R̃kc

+
Kd∑

kd=1

xkd
Rkd

Kc∑
kc=1

x̃kc
(P̃kc

+ pc) +
Kd∑

kd=1

xkd
(Pkd

+ pd)

(14)

subject to

x̃kc
∈ {0, 1} ∀kc ∈ Sc (C1)

Kc∑
kc=1

x̃kc = 1 (C2)

γ̃kc
≥ x̃kc

γ̃th ∀kc ∈ Sc (C3)

0 ≤ P̃kc ≤ Pmax ∀kc ∈ Sc (C4)
xkd
∈ {0, 1} ∀kd ∈ Sd (C5)

γkd
≥ xkd

γth ∀kd ∈ Sd (C6)
0 ≤ Pkd

≤ Pmax ∀kd ∈ Sd (C7)
Ikd,kc,0 ≤ NrImax ∀kc ∈ Sc, kd ∈ Sd (C8)

where the constraint (C2) indicates that only one cellular
user is allocated, γ̃th and γth are the target SINRs for the
cellular user and the D2D pair, respectively, pc and pd are
the fixed circuit power for the cellular and D2D transmitters,
respectively when the node is active, Pmax is the maximum
transmitted power at each RB for any node.

The constraint (C8) represents the interference constraint at
the BS for each D2D pair and is proportional to Nr and Imax
which is the maximum allowed interference level.
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In order to satisfy the SINR requirements defined in the
constraints (C3) and (C6), the transmitted power of cellular
user kc and D2D pair kd are determined by Eq. (15) and
Eq.(16), respectively:

P̃kc
= min

{
Pmax,

γ̃th × (N0Bc + Ikc,0)

G̃kc,0

}
(15)

Pkd
= min

{
Pmax,

γth × (N0Bc + Ikd
+ Jkd

)

gkd,kd

}
(16)

III. PROPOSED ENERGY EFFICIENT RESOURCE
ALLOCATION

In this paper, our objective is to maximize the GEE by
considering both cellular and D2D transmissions under the
condition that cellular users are allocated prior to the D2D
pairs and under the maximum interference constraint at the BS
for each D2D pair. In order to manage the objective, firstly
one cellular user is allocated and then multiple D2D pairs are
multiplexed in order to maximize the GEE.

A. Resource Allocation for Cellular Users

In order to maximize the energy efficiency in cellular
transmissions while satisfying the constraints (C1) − (C3),
we allocate the cellular user having the highest channel gain
among Kc cellular users. Then, the transmitted power of the
selected cellular user is determined to satisfy the constraint
(C4). The RA algorithm for cellular transmission is provided
in Algorithm 1.

Algorithm 1 RA for cellular users

1: Initialization: Set x̃kc
= 0;∀kc ∈ Sc.

2: Select the cellular user with highest channel gain:

k∗c = arg max
kc∈Sc

|(h̃kc,0)(h̃kc,0)
H |2 (17)

3: Set the allocation indicator of the selected user:

xk∗c = 1. (18)

4: Determine the post-coding vector at the BS using MRC
in Eq. (8) considering the selected cellular user k∗c since
the multiplexed D2D pairs are not known at that stage.

5: Calculate the transmitted power P̃k∗c for the selected cel-
lular user using Eq.(15) by replacing Ik∗c ,0 by Î0 which is
the estimated interference level at the BS and is calculated
considering the worst case as:

Î0 = KNrImax (19)

6: Calculate the data rate R̃k∗c for the selected cellular user
k∗c using Eq.(5) with P̃k∗c and Î0.

In the Step 5 of Algorithm 1, we consider the worst case
that all D2D pairs are allocated. This assumption avoids to
underestimate the received interference at the BS since the
maximum interference level at the BS is considered.

For the sake of simplification, in the rest of the paper, once
the selected cellular user k∗c is determined, we will replace

P̃k∗c by P̃0, R̃k∗c by R̃0, wk∗c ,0 by w0, Ikd,k∗c ,0 by Ikd,0, Ik∗c ,0
by I0 and Gkd,k∗c ,0 by Gkd,0.

B. Joint Dinkelbach Method and MPA based RA

Once the cellular user was allocated to maximize the
energy efficiency as described in Algorithm 1, the optimization
Problem (14) can be re-written in the following:

max
Xd;Pd

R̃0 +
Kd∑

kd=1

xkd
Rkd

(P̃0 + pc) +
Kd∑

kd=1

xkd
(Pkd

+ pd)

(20)

subject to

xkd
∈ {0, 1} ∀kd (C5)

γkd
≥ xkd

γth ∀kd (C6)
0 ≤ Pkd

≤ Pmax ∀kd (C7)
Ikd,0 ≤ NrImax ∀kd (C8)

In order to tackle Problem (20), one of the widely used
approaches is fractional programming, particularly, the popular
Dinkelbach’s algorithm.

Considering Problem (20) with the set of feasible power
values, an auxiliary function F : λ ∈ R → F (λ) is defined
as:

F (λ) =

(
R̃0 +

Kd∑
kd=1

xkd
Rkd

)

− λ

(
(P̃0 + pc) +

Kd∑
kd=1

xkd
(Pkd

+ pd)

)
(21)

Dinkelbach algorithm provides the global solution of Prob-
lem (20) by iteratively solving Problem (21) and then updating
parameter λ, as described in Algorithm 2.

Problem (21) with the constraints (C5) - (C8) can be solved,
at each iteration, with a MPA referred to as Algorithm 3. It
will be described in detail in the next section.

C. Message-Passing Algorithm

At each iteration j, Algorithm 2 requires to solve the
following optimization problem:

max
Xd;Pd

F (λj) (24)

subject to the constraints (C5) - (C8).
The constraints (C6) and (C7) provide the minimum value

of Pd for given Xd. If xkd
= 1, the power is calculated by

Eq. (16). Otherwise, it is equal to 0. Consequently, Problem
(24) can be written as a discrete problem as follows:

min
Xd

−F (λj) (25)

subject to the constraints (C5) and (C8).
The discrete optimization Problem (25) can be solved with

the min-sum message-passing algorithm, which is a variant
of the sum-product message-passing algorithm introduced in
[22]. The sum-product algorithm is well-adapted to solve dis-
crete optimization problems with variables where the objective
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Algorithm 2 Proposed Joint Dinkelbach and MPA Algorithm

1: Initialization: λ0 = 0, εth > 0. xkd
= 1;∀kd ∈ Sd.

Iteration j = 0. ε(0) =∞.
2: while ε(j) > εth do
3: Inputs: gkd,kd

; hkd,0; I0,kd
; gk∗c ,kd

,∀kd ∈ Sd; λ; P̃0;
w0.

4: Call Algorithm 3
5: Outputs: x∗kd

;∀kd ∈ Sd.
6: Update Pkd

;∀kd ∈ Sd as in Eq. (16) where

Ikd
=

Kd∑
j=1
j 6=kd

x∗jPjgj,kd

7: Update Rkd
;∀kd ∈ Sd using Eq.(1).

8: When the MMSE receiver is selected to be imple-
mented at the BS, then the post-coding vector is given
Eq. (9) is used by considering x∗kd

;∀kd.
9: Update R̃0 using Eq.(5) where

I0 =

Kd∑
kd=1

x∗kd
Ikd,0

10: Set the parameter λ for the next iteration:

λj+1 =

R̃0 +
Kd∑

kd=1

x∗kd
Rkd

(P̃0 + pc) +
Kd∑

kd=1

x∗kd
(Pkd

+ pd)

(22)

11: Update the optimization function:

F (λj+1) =

(
R̃0 +

Kd∑
kd=1

x∗kd
Rkd

)

− λj+1

(
(P̃0 + pc) +

Kd∑
kd=1

x∗kd
(Pkd

+ pd)

)
(23)

12: ε(j + 1) = F (λj+1)− F (λj).
13: j = j + 1
14: end while

function can be factorized into a product of several local
functions and each function only depends on a subset of the
variables. Then the corresponding factor-graph is a by-partite
graph that consists on the one hand on variable nodes that
represent all the discrete variables of the optimization problem,
and on the other hand on factor nodes, that represent the local
functions after factorization. A given factor node is connected
to a specific variable node by an edge if the local function
that it represents depends on this variable. The sum-product
algorithm computes the marginal local functions iteratively
by exchanging messages between factor nodes and variables
nodes. It finally provides the A Posteriori Probability (APP)
of the variables. The sum-product algorithm may be replaced
by a variant called max-product algorithm, that does not
compute all the APP, but only provides the set of variables with

the largest APP, thus leading to maximum-likelihood (ML)
detection if all variables have the same a priori probability.
Finally, the max-product algorithm can be turned into the min-
sum algorithm by computing the opposite of the logarithm of
the objective function.

After having defined the factor-graph for the studied prob-
lem, we will show how it can be solved with the min-sum
algorithm, and recall of the different messages that must be
exchanged between factor nodes and variables nodes.

For the Problem (25), the factor graph is composed of Kd

variables nodes (one per D2D transmitter) and Kd + 1 factor
nodes (one per D2D receiver and the BS). Then, the objective
function in Problem (25) is a summation of Kd + 1 terms
that each depends on a subset of the optimization variables.
Given that these subsets contain a low number of elements,
Problem (25) can be solved by applying the MPA on a factor
graph that represents the interference interactions between all
transmitters and receivers.

In order to have a factor graph with low degree, which
reduces the complexity of MPA, we neglect some interference
while building the factor graph by taking into account given
threshold values. Then, the factor graph is constructed as
follows: Variable node a ∈ Sd is always connected to factor
node a since it represents active transmission for D2D pair
a. Factor node b ∈ Sd is connected to variable node a ∈ Sd,
with a 6= b, if the estimated interference generated by D2D
transmitter a on D2D receiver b is higher than a given
threshold value. Then, the connectivity constraint consequently
is given by,

ga,bPa > Ith (26)

where Ith is the threshold on interference and the transmit
power of D2D transmitter kd for a given SINR requirement:

Pkd
= min

{
Pmax,

γth × (N0Bc + Îkd
+ Jkd

)

gkd,kd

}
(27)

where Îkd
is the estimated interference level at D2D receiver

kd. At this stage, the worst case in which all D2D pairs are
assumed to be active is considered to avoid any underestima-
tion of interference between D2D pairs. At the D2D receiver
kd, it is determined as follows:

Îkd
= KdIth (28)

Similarly, the BS factor node 0 is connected to variable
node kd ∈ Sd if the estimated interference generated by D2D
transmitter kd is larger than a given threshold. This constraint
that is proportional to Nr and Imax, is given by,

Gkd,k∗c ,0Pkd
> NrImax (29)

Since some interference is neglected in underlaying D2D
cellular communications system, the factor graph is not fully
connected. The complexity of MPA is in O(2c), where c is
the maximum number of interferers at the BS or the maximum
number of D2D interferers plus one (accounting for the active
cellular user) at the D2D receivers. c will be limited to cmax
for complexity reduction purposes.
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Our optimization objective is to determine the optimal
values of xkd

∈ {0, 1} for each D2D pair, and subsequently
the optimal transmit power values of Pkd

in order to maximize
the GEE, given that the cellular user k∗c was already allocated.
Besides, the maximum interference threshold per D2D pair at
the BS must be hold to avoid degradation on the cellular user
transmission.

Firstly, we define the variables in the factor graph. The
factor and variable nodes are labeled respectively as Mi; i =
0, 1, . . . ,Kd and xj ; j = 1, 2, . . . ,Kd in the factor graph.
Since the data rate of D2D receiver kd depends on the vector
Xd and some interference is neglected as previously explained,
Rkd

can be expressed as a function of a subset of D2D
allocation indicators. Similarly, the data rate at the BS is a
function of the subset X0, where this subset is restricted to
the variable nodes that are connected to the factor node 0. Let
Xkd

be the subset that only contains the allocation indicators
of the variable nodes that are connected to the factor node Mkd

and let XXi be the vector obtained by taking only the elements
of Xd with the indices in the set Xi. Finally, we also define
Mkd

as the subset that only contains the allocation indicators
of the function nodes that are connected to the variable node
xkd

.
For the BS, we can define the optimization function by,

F0(X0) = R̃0(X0)− λj(P̃0(X0) + pc) (30)

If the interference constraint given in (C8) is not fulfilled by
D2D transmitter kd, then, this D2D transmitter should not be
active. Therefore, this condition is included to the optimization
objective as a penalty function. For the case of Ikd,0 ≤ NrImax,
the optimization function for D2D pair kd is defined as:

Fkd
(Xkd

) = Rkd
(Xkd

)− λj(Pkd
(Xkd

) + pd) (31)

Otherwise, this optimization function is determined as fol-
lows:

Fkd
(Xkd

) = −∞ (32)

Then, neglecting some interference terms, the above the
optimization Problem (25) with the constraints (C5) and (C8)
can be re-written as follows:

min
Xd

−

(
F0(X0) +

Kd∑
kd=1

Fkd
(Xkd

)

)
(33)

In order to better illustrate how the factor graph is built,
Fig. 2 represents the factor graph corresponding to the scenario
depicted on Fig. 1. The variable nodes are pictured by 4 circles,
each corresponding to the optimization variable at each of the
4 D2D transmitters, and the factor nodes are represented by 5
squares, the first one (indexed M0) representing the function
to be optimized at the BS, and the four next representing the
function to be optimized at each of the 4 D2D receivers. These
functions are expressed in Eq. (30) and (31), respectively.
In Fig. 2, we assume that some of the interference terms
have been neglected and consequently, that the data rate at
the BS only depends on the interference received from D2D
transmitter 2, but not on the interference received from the
other D2D transmitters. This expresses that Eq. (29) only holds
for D2D transmitter kd = 2. Of course, the cellular data rate

M0 M1 M2 M3 M4

x1 x2 x3 x4

BS D2D_RX1 D2D_RX2 D2D_RX3 D2D_RX4

D2D_TX1 D2D_TX2 D2D_TX3 D2D_TX4

Factor5
nodes

Variable5
nodes

Figure 2: Example of Factor Graph corresponding to the
system model in Fig. 1.

at the BS depends on the cellular transmitted power set by Eq.
(15), but it is not an optimization variable and therefore does
not appear in the factor graph. Finally, even though D2D pairs
4 and 1 are not too far away on Fig. 1, we assume that the
interference generated by D2D transmitter 4 on D2D receiver
1 and vice-versa does not fulfill the constraint in Eq. (26).
Consequently, variable node x1 and factor node M4 are not
connected in the factor graph, contrary to variable node x2 and
factor node M3. The maximum degree of this factor graph is
2 and even-though the factor graph is not cycle-free, it can be
called sparse, as the number of connections is equal to 7 out
a possible maximum of 20 connections.

During the execution of MPA, two types of messages are
used: messages passed from variable nodes to factor nodes and
messages passed from factor nodes to variable nodes. These
messages are iteratively exchanged between factor nodes and
variable nodes which are connected in the factor-graph for
multi-D2D based multiple antenna cellular communications
system. At iteration n, we denote the message passed from
factor node Mj to variable node xkd

as µn
Mj→xkd

(xkd
) and

denote the message passed from variable node xkd
to factor

node Mj as µn
xkd
→Mj

(xkd
). Besides, Xi\{j} represents the

set of indices in Xi except index j.
Algorithm 3 summarizes the min-sum MPA as proposed

by [22] in order to obtain the set of variable following ML
optimization.

We can notice that, since the factor graph may contain
cycles, the MPA does not necessarily lead to the global
optimum of Problem (25) subject to the constraints (C5) and
(C8). However, as shown in the simulation results and in other
papers using MPA for resource allocation [33] [34] [35] [36],
it still achieves performances that are very close to those of
exhaustive search.

D. ANN based RA

Even though the computational complexity of the proposed
joint Dinkelbach and MPA algorithm is not prohibitive, it
may be interesting in practical networks not to use it online

Authorized licensed use limited to: ULAKBIM UASL - IZMIR YUKSEK TEKNOLOJI ENSTITUSU. Downloaded on March 19,2020 at 16:27:44 UTC from IEEE Xplore.  Restrictions apply. 



0018-9545 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2020.2981409, IEEE
Transactions on Vehicular Technology

7

Algorithm 3 Message-Passing Algorithm

1: Initialization: All messages are set to zero.
2: for n = 0 : N − 1 do
3: Message from factor node to variable node ∀i ∈ V

with V = Sd ∪ {0}, ∀kd ∈ Xi:

µ
(n+1)
Mi→xkd

(xkd
)

= min
XXi\{kd}

Fi(Xi) +
∑

j∈Xi\{kd}

µ
(n)
xj→Mi

(xj)

 (34)

4: Message from variable node to factor node: ∀kd ∈ Sd
and ∀i ∈Mkd

:

µ
(n+1)
xkd
→Mi

(xkd
) =

∑
j∈Mkd

\{i}

µ
(n+1)
Mj→xkd

(xkd
) (35)

5: end for
6: Determine the allocation parameters for all D2D pairs:

x∗kd
= argmin

xkd

 ∑
j∈Mkd

µ
(N)
Mj→xkd

(xkd
)

 (36)

in order to gain some computational time. The behavior of
this algorithm can be learned by a deep ANN, by studying
the mapping between the system parameters and the obtained
allocation values Xd that maximize GEE. Specifically, the
resource allocation problem for D2D users in Eq. (20) under
the constraints (C5) - (C8) can be modeled as a non-linear
map between the system parameters and Xd as follows:

Fm : G ∈ R(Kd+1)2 7−→ Xd (37)

where the system parameters G are the channel gains between
any D2D transmitter and any D2D receiver, the channels gains
between any D2D transmitter and the BS, as well as the
channels gains between the selected cellular user and any D2D
receiver and and the channel gain between the selected cellular
user and the BS. In order to improve the learning process, the
following pre-processing is performed: all channel gains are
divided by the noise power and then expressed in dB. The
total number of input parameters consequently is (Kd + 1)2.
We assume that the other parameters (Imax, γth) are fixed, but
they could of course also be input parameters of the ANN.

If the allocation outcomes are discrete and of reasonable
size, they may further be seen as classes. In this paper, we
choose the classifying approach [32] in order to optimize the
ANN. This approach has not been taken yet in the literature for
resource allocation, because most papers used ANN to model
power allocation with continuous variables such as [27]–[30].
When seen as a classifying problem, the resource allocation
Problem (20) can be modeled as:

Fc : G ∈ R(Kd+1)2 7−→ C ∈ C (38)

where C =
{
C0, C1, . . . , C2Kd−1

}
is the set of classes.

Each possible vector Xd is equal to a class. The number
of classes consequently is 2Kd . Even though this classifying
technique may become too complex for large values of Kd, it

is more efficient than directly learning the mapping between
the channel gains, that would require larger training sets.

{G,C} correspondance

in input and output 

databases

ANN training
ANN final 

configuration

Figure 3: ANN off-line training

ANN final 

configuration
Channel gains G 

Estimated 

class C 

Figure 4: Online resource allocation with ANN.

The chosen ANN is a feed-forward neural network with
fully-connected layers. A multi-layer feedforward ANN is
generated and optimized. The weights and bias are obtained
with the objective to minimize the cross-entropy [37] using
the scaled conjugate gradient method [38].

Once the ANN has been trained off-line with a sufficiently
large training set, it can be used online in order to emulate the
outputs of the proposed joint MPA and Dinkelbach algorithm
with low computational complexity, as represented on Fig. 3
and Fig. 4.

IV. PERFORMANCE EVALUATIONS

We consider a single cell scenario with cell radius R =
0.5km. There are Kc = 25 cellular users which are uniformly
distributed in the cell In the considered system, only one
cellular user is allocated to establish transmission with target
SINR of γ̃th = 20dB. The target SINR value of D2D pairs
is also equal to γth = 20dB. D2D transmitters are uniformly
located in the cell edge region at a distance from R/2 to R
from the BS. For both D2D transmitters and cellular users,
the maximum transmit power is fixed to Pmax = 11dBm at
one RB. In the proposed joint algorithm in Algorithm 2, the
threshold value is set to εth = 1.1. In the MPA described in
Algorithm 3, the maximum number of iterations is chosen as
N = 3.

For both cellular users and D2D pairs, the channel is
modeled by using Rayleigh fading and a shadowing with log-
normal distribution whose parameters depend on whether the
receiver is the BS or a device. If the receiver is the BS, the path
loss model is L = 128.1 + 37.6 log10(d(km)) where d is the
distance between the transmitter and receiver and the standard
deviation for shadowing is equal to 9dB. If the receiver is a
device, the path loss model is L = 140 + 36.8 log10(d(km))
and the standard deviation for shadowing is 4dB. The power
spectrum density of AWGN is N0 = −174dBm/Hz and
the bandwidth of one RB is Bc = 180kHz. The circuit
powers pc and pd are set to 100mW and 50mW, respectively.
The maximum degree per factor node in the factor graph is
cmax = 8.
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A. Performance Results of Joint Dinkelbach and MPA algo-
rithm

In this section, we provide the performance of the proposed
joint algorithm that consists of Algorithm 1 (RA for cellular
users) followed by Algorithm 2 (Joint Dinkelbach and MPA
algorithm).

Firstly, the effect of threshold values of Imax and Ith on the
GEE of the proposed joint algorithm is evaluated.

We analyze the effect of maximum allowed interference per
D2D on GEE in Table I by fixing the connectivity constraint
as Ith = −121dBm. While Imax reduces, the GEE is improved
at the expense of less number of multiplexed D2Ds. Therefore,
we set it as Imax = −121dBm which is also equal to BcN0.

Table I: The effect of Imax on the GEE.

Imax (dBm) −114 −121 −128
GEE 149.3 152.1 152.5

Multiplex D2Ds 3.51 3.24 2.72

We analyze the effect of the connectivity constraint for
Imax = −121dBm in Table II. It has an equivalent impact
on GEE and the number of multiplexed D2D pairs. In the
remaining parts, it is also chosen as Ith = −121dBm.

Table II: The effect of Ith on the GEE.

Ith (dBm) −114 −121 −128
GEE 151.4 152.1 152.2

Multiplex D2Ds 3.65 3.24 2.99

In Fig. 5, we illustrate cumulative density function (CDF) of
GEE of the proposed joint algorithm by employing both MRC
and MMSE receiver for underlaying D2D communications
with Kd = 8 and Nr = 4. We compare the proposed solution
with the one given in [23], that first applies Algorithm 1 and
then uses MPA to maximize the sum data rate and with the
optimal exhaustive search, where Algorithm 1 is followed by
an exhaustive search on resource allocation for D2D aiming at
maximizing the GEE. According to the performance results,
the GEE of the proposed algorithm is significantly increased
compared to the MPA for the sum data rate maximization and
gives almost the same GEE results as the exhaustive search.

In Fig. 6, the influence of the number of D2D pairs on
the GEE is illustrated for the proposed joint Dinkelbach and
MPA algorithm. It is compared with an algorithm that only
allocates on D2D pair per RB and performs joint selection
of cellular user and D2D pair. The chosen D2D pair and the
chosen cellular user are the ones that maximize the GEE. Since
the proposed algorithm allocates more than one D2D pairs per
RB, it provides much higher GEE performance compared to
single-D2D pair allocation. As shown in Table III, the number
of multiplexed D2Ds is increased proportional to the number
of D2D pairs and the proposed algorithm with MMSE receiver
is multiplexed slightly higher number of D2Ds compared to
MRC case. As a result, the performance of the proposed joint
algorithm is increased with the number of D2D pairs since
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Figure 5: Comparison results of GEE with MRC and MMSE
receiver for Nr = 4 and Kd = 8.

the interference levels at D2D receivers as well as at the
BS still remain low. In addition to that, we demonstrate that
the proposed joint algorithm achieves almost the same GEE
performance than the exhaustive search for different number of
D2D pairs, while having much less computational complexity
thanks to the sparse structure of the factor-graph.
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Figure 6: Comparison results of GEE versus different number
of D2D pairs for Nr = 4.

Table III: The average number of multiplexed D2D pairs for
the proposed joint algorithm with Nr = 4.

Nr = 4 Kd = 4Kd = 8Kd = 12Kd = 16
Multiplexed D2Ds,MRC 2.31 3.27 3.72 3.95

Multiplexed D2Ds,MMSE 2.34 3.32 3.83 4.09
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In Fig. 7, the effect of the number of antennas at the BS on
the GEE is illustrated for the proposed joint Dinkelbach and
MPA algorithm considering different number of D2D pairs in
the underlaying multi-D2D communications. It is shown that
GEE is improved by increasing the number of antennas at the
BS since the proposed joint algorithm is more robust to the
interference coming from D2D pairs. Because, the maximum
interference threshold level increases proportionally with the
number of antennas at the BS through NrImax. Besides, the
proposed joint algorithm with MMSE receiver provides higher
GEE when the number of antennas is increased by further
mitigating the interference coming from multiplexed D2Ds at
the BS. As shown by Fig. 8, compared to the single antenna
case, the number of multiplexed D2D increases proportionally
with the number of antennas.
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Figure 7: The effect of number of antennas at the BS on the
GEE for the proposed joint algorithm.

The complexity of the proposed joint algorithm depends on
the number of iterations in Dinkelbach algorithm and on the
maximum degree of factor nodes in the factor graph. As given
in the Table IV, the complexity of the proposed joint algorithm
is very low compared to that of exhaustive search, even though
it is able to reach almost the same GEE performance, as seen
on Fig. 5 and Fig. 6. Besides, the complexity of Dinkelbach
algorithm is further decreased through the proposed joint
algorithm with MMSE receiver.

Table IV: The complexity analysis of the proposed joint
algorithm with Nr = 4 for different number of D2D pairs.

Kd = 4 Kd = 8 Kd = 12 Kd = 16
Max. degree of factor nodes 2 3.2 5.5 7.5

Iterations in Dinkelbach,MRC 4.4 4.3 4.2 4.1
Iterations in Dinkelbach,MMSE 4.2 4.1 4.15 4.05

B. Performance Results for ANN based RA
The ANN based RA presented in section III-D is tested

with Kd = 4 and Kd = 8 with 3 layers and with training
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Figure 8: The average number of multiplexed D2D pairs for
different number of antennas at the BS for the proposed joint
algorithm with MMSE receiver.

sets of 30000 samples obtained through the proposed joint
algorithm with MRC receiver. When Kd = 4, the number
of classes is 16. The number of neurons per layer has been
arbitrarily set to 20, 15 and 10. Fig. 9 shows the CDF of the
GEE on a test set when Kd = 4 (corresponding to 16 classes).
Online classifying with ANN almost perfectly emulates the
complete joint Dinkelbach and MPA algorithm, leading to a
tight match between both CDFs. The difference in terms of
average GEE is only 0.11% compared to using the complete
joint Dinkelbach and MPA algorithm. Therefore, ANN-based
RA is a very effective strategy for low values of Kd. Fig. 10
represents the CDF of the GEE when Kd = 8 (corresponding
to 64 classes). The number of neurons per layer is equal to
63, 45 and 27. Even though Fig. 10 shows that the CDF of the
GEE with online clustering sligthly differs from that obtained
with off-line clustering at medium values of the GEE, the
difference on the average GEE is still very low, as it is only
equal to 1.81%. These results validate the use of classifying
with ANN for practical online implementation.

V. CONCLUSION

In this paper, we have examined an energy efficient frame-
work for underlaying multi-D2D multi-antenna communica-
tions systems. In order to manage the various sources of
interferences, we have proposed a joint resource allocation
algorithm based on Dinkelbach and MPA approaches to in-
crease GEE by employing MRC and MMSE receiver while
satisfying data rate requirements of both cellular user and
D2D pairs. In the MPA, the factor graph of the D2D pairs
is constructed based on the interference level at the BS and
between D2D pairs. The proposed algorithm allocates several
D2D pairs on the same radio resource, while guaranteeing the
interference constraint at the BS. We have shown that the joint
proposed algorithm provides almost the same performance
than exhaustive search and outperforms underlaying single
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Figure 9: Comparison of off-line and online algorithms when
Kd = 4.
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Figure 10: Comparison of off-line and online algorithms when
Kd = 8.

D2D multi-antenna cellular systems. Since the convergence
time in Dinkelbach algorithm is very short and the constructed
factor graph in MPA is not fully connected, the complexity
of the proposed algorithm is significantly low compared to
the exhaustive search. We have also proposed a deep learning
approach with multi-layer ANN based RA that uses offline
classifying, and can then be used online for practical imple-
mentation. As a future work, we will extend the proposed
framework to the case of multiuser multiantenna multicell
systems in order to increase GEE of underlaying multi-D2D
cellular communications.
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