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Abstract

Variance estimation is a challenging problem in surveys, for which bootstrap is an important

tool. In this work, we are interested in the use of the with-replacement bootstrap for household

surveys, with or without sub-sampling of individuals. We make explicit the benchmark variance

estimators that the with-replacement bootstrap aims at reproducing. We also explain how

the with-replacement bootstrap can be used for sampling, treatment of unit non-response and

calibration. For clarity, the proposed methods are illustrated on a running example. They are

evaluated through a simulation study, and applied to a French Panel for Urban Policy. Two

SAS macros to perform the bootstrap methods are also developed.

1 Introduction

Variance estimation is a challenging problem in surveys. In particular, the final weights used for

estimation involve several statistical treatments (e.g., correction of unit non-response and calibra-

tion) which need to be accounted for. Bootstrap is an interesting tool, leading to the creation of

so-called bootstrap weights released with the survey data set. These random weights can be used

to compute repeatedly the bootstrap version of the parameter of interest, leading to a simulation-

based variance estimator or confidence interval. The interest for practitioners is that no information

other than the bootstrap weights is needed for variance estimation. In particular, a comprehensive

description of the original sampling design and estimation process is not required, which would be

the case under an analytic approach where the variance estimator needs to be explicitly written.
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There is an extensive literature on bootstrap in survey sampling, see for example Shao and Tu (1995,

Chapter 6),Davison and Hinkley (1997, Section 3.7),Davison and Sardy (2007),Chauvet (2007) and

Mashreghi et al. (2016) for detailed reviews. One of these techniques is the so-called rescaled boot-

strap proposed by Rao and Wu (1988), which may be summarized as follows. First, initial bootstrap

weights are obtained by using the classical i.i.d. bootstrap on the first-stage sample. Then, these

weights may be rescaled so as to reproduce an unbiased variance estimator for the estimation of a

total (linear case). As explained by Rao and Wu (1988), the rescaled bootstrap may be applied to a

variety of sampling designs including two-stage sampling and with/without-replacement sampling

at the first stage. However, it is not straightforward to account for some practical features of a

survey such as the treatment of unit non-response.

Alternatively, the classical i.i.d. bootstrap may be applied on the first-stage sample, without fur-

ther rescaling. This is sometimes referred to as the bootstrap of Primary Sampling Units (PSUs)

or with-replacement bootstrap. It leads to conservative variance estimation, in the sense that

the sampling variance is overestimated if the first-stage sampling design is more efficient than

with-replacement sampling. This is the approach that we pursue here, our paper aiming at being

user-oriented. In particular, we do not propose particular modifications of the with-replacement

bootstrap. Rather, we explain how this bootstrap method may be applied to account for sampling,

treatment of non-response and calibration, and in so doing, what is the variance estimator that

we aim at reproducing when estimating a total. We give some running examples to illustrate how

bootstrap weights are computed in simple cases. Two SAS macros implementing the proposed

bootstrap methods are presented, evaluated through a simulation study, and illustrated on a real

survey dataset from the Panel for Urban Policy.

For simplicity of presentation, our terminology is that of household surveys, which is our original

motivation for this paper. We consider two cases: first, when a sample of households only is se-

lected; secondly, when a subsample of individuals is selected inside the selected households. Despite

this specific terminology, our approach is general and may be applied to any other situation when

a survey is performed by one-stage sampling (first case) or by two-stage sampling (second case).

We are in particular interested in household phone surveys, which have been extensively used at

the French National Institute for Demographic Studies (INED) over the last decades. Originally, a

sample of phone numbers was selected from a register of fixed-line numbers, and more recently the

phone numbers used in the survey are randomly generated to account for households not covered

in the registers (unlisted or cell numbers). In a second step, individuals are selected within the

households, using classic selection methods (e.g., Kish individual). Phone surveys have proved to

be efficient, specifically for sensitive subjects like sexuality, violence, or addictions. Some examples
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of surveys performed by INED include the national survey on violence against women in France in

2000 (ENVEFF), the national survey on violence and gender exchange in 2015 and 2018 (VIRAGE

and VIRAGE overseas, respectively), or the national survey on the context of sexuality in France

in 2006. The same protocol is likely to be used in a near future for surveys on similar subjects, like

the one on young adults’ sexuality or the one on birth control, to begin between 2021 and 2023.

The paper is organized as follows. In Section 2, our main notations are defined, and we consider

the estimation of a total by accounting for sampling, unit non-response and calibration. We treat

in Section 2.1 the situation when a sample of households only is selected (one-stage case), and

in Section 2.2 the case when individuals are sub-sampled inside households (two-stage case). The

basic bootstrap method is described in Section 3: the one-stage case is considered in Sections 3.1

and 3.2, and the two-stage case is considered in Sections 3.3 and 3.4. We explain in Section 3.5 how

the basic bootstrap procedure may be applied to obtain an estimator of variance or a confidence

interval. The proposed bootstrap methods are evaluated in Section 4 through a simulation study.

We present in Section 5 the SAS program to perform bootstrap for the one-stage case, and apply

it for illustration on a sample of households from the French Panel for Urban Policy. We present in

Section 6 the SAS program to perform bootstrap for the two-stage case, and apply it for illustration

on a sample of individuals from the French Panel for Urban Policy. The SAS programs are available

as Supplementary material.

2 Notation and estimation

In this Section, we define our main notations and we describe the sampling and estimation process.

We first consider in Section 2.1 the case when a sample of households only is selected, and we

describe the estimation process which includes treatment of unit non-response and calibration.

We indicate in each case what is the benchmark variance estimator considered, i.e. the variance

estimator that we aim at reproducing for the estimation of a total with the bootstrap method

proposed in Section 3. The case when individuals are sub-sampled inside households is covered in

Section 2.2. The benchmark variance estimators for this second case are given in Appendix A.

2.1 Case of a sample of households only

We consider estimation for a population Uhou of households. We let yk denote the value taken by

some variable of interest for the household k. We are interested in the estimation of the total

Yhou =
∑

k∈Uhou

yk. (2.1)
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2.1.1 Sampling design

We suppose that a sample Shou is selected in Uhou by means of a stratified one-stage sampling

design. The population Uhou is partitioned into H strata U1
hou, . . . , U

H
hou, the samples S1

hou, . . . , S
H
hou

are selected inside independently, and the sample Shou is the union of these samples. We let πk

denote the inclusion probability of some household k. The design weight is

dk =
1

πk
. (2.2)

In case of full response, the estimator of Yhou is

Ŷhou =
∑

k∈Shou

dkyk. (2.3)

We consider as a benchmark variance estimator

vmult(Ŷhou) =

H∑
h=1

nh
nh − 1

∑
k∈Sh

hou

dkyk − 1

nh

∑
k′∈Sh

hou

dk′yk′

2

, (2.4)

with nh the size of the sample Shhou. This variance estimator is unbiased if the samples are selected

inside strata by multinomial sampling (Tillé, 2011, Section 5.4), a.k.a. sampling with replacement.

It is conservative if the sampling designs used inside strata are more efficient than multinomial

sampling (Särndal et al., 1992, Section 4.6), which we assume to hold true in the rest of the paper.

The positive bias of this variance estimator is expected to be negligible if the sampling rates inside

strata are so, which is often the case in phone surveys. This is illustrated by the results of our

simulation study, see Section 4.

2.1.2 Treatment of non-response

In practice, the sample Shou is prone to unit non-response, which leads to the observation of a

sub-sample of respondents Sr,hou only. We let rk denote the response indicator of a household

k, and pk denote the response probability of the household k. We suppose that the households

respond independently of one another. Also, we suppose that unit non-response is handled through

the method of Response Homogeneity Groups (RHGs), which is popular in practice (e.g. Brick,

2013; Juillard and Chauvet, 2018). Under this framework, it is assumed that the sample Shou may

be partitioned into C RHGs denoted as S1,hou, . . . , SC,hou such that the response probability pk is

constant inside a RHG.

We let pc denote the common response probability inside the RHG Sc,hou. It is estimated by

p̂c =

∑
k∈Sc,hou

ωkrk∑
k∈Sc,hou

ωk
, (2.5)
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with ωk some weight attached to the household k. The choice ωk = 1 leads to estimating pc by

the unweighted response rate inside the RHG. The choice ωk = dk leads to estimating pc by the

response rate inside the RHG, weighted by the sampling weights (e.g. Kott, 2012).

Accounting for the estimated response probabilities leads to the weights corrected for non-response

drk =
dk
p̂c(k)

, (2.6)

with c(k) the RHG of the household k. The estimator of Yhou adjusted for non-response is

Ŷr,hou =
∑

k∈Sr,hou

drkyk. (2.7)

Building on the multinomial variance estimator in (2.4) and on linearization for estimators reweighted

for unit-non-response (Kim and Kim, 2007, Section 2), our benchmark variance estimator is

vmult(Ŷr,hou) =

H∑
h=1

nh
nh − 1

∑
k∈Sh

hou

dku1k − 1

nh

∑
k′∈Sh

hou

dk′u1k′

2

, (2.8)

with u1k = ωkπkȳrc(k) +
rk
p̂c(k)

{
yk − ωkπkȳrc(k)

}
,

and ȳrc =

∑
k∈Sc,hou

dkrkyk∑
k∈Sc,hou

ωkrk
.

This is a conservative estimator for the asymptotic variance of Ŷr,hou. A key assumption for this is

that the response indicators rk are mutually independent.

2.1.3 Calibration

Lastly, the weights adjusted for non-response are calibrated on some auxiliary totals known on

the population. For simplicity, we describe only the Generalized REGression estimator (GREG

Särndal et al., 1992, Chapter 6). Let xk denote the vector of calibration variables at the household

level, and Xhou the total on the population Uhou. For the sample Sr,hou, this leads to the calibrated

weights

wk = drk

(
1 + x>k λhou

)
,

with λhou =

 ∑
k∈Sr,hou

drkxkx
>
k

−1 (Xhou − X̂r,hou

)
, (2.9)

and where X̂r,hou is the estimator of Xhou, obtained by plugging xk into (2.7). The calibrated

estimator is

Ŷcal,hou =
∑

k∈Sr,hou

wkyk. (2.10)
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The sampling and estimation steps are summarized in Figure 1.

Figure 1: Sampling and estimation steps for a household sample

Using linearization for estimators reweighted for unit-non-response and calibrated (Kim and Kim,

2007, Section 5), our benchmark variance estimator is

vmult(Ŷcal,hou) =
H∑
h=1

nh
nh − 1

∑
k∈Sh

hou

dku2k − 1

nh

∑
k′∈Sh

hou

dk′u2k′

2

, (2.11)

with u2k = ωkπkērc(k) +
rk
p̂c(k)

{
ek − ωkπkērc(k)

}
,

and ērc =

∑
k∈Sc,hou

dkrkek∑
k∈Sc,hou

ωkrk
,

where we let

ek = yk − B̂>r,houxk with B̂r,hou =

 ∑
k∈Sr,hou

drkxkx
>
k

−1 ∑
k∈Sr,hou

drkxkyk (2.12)

denote the estimated regression residuals of the variable of interest on the calibration variables.

This is a conservative estimator for the asymptotic variance of Ŷcal,hou.

2.1.4 Computation of household weights on an example

To fix ideas, we describe a small example. We consider a population Uhou of Nhou = 100 households.

We suppose without loss of generality that a single stratum is used, and that a sample of nhou = 10
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households is selected.

The sample is S = {A,B, . . . , J}. The inclusion probabilities of the selected units are (say)

πA = πB = πC = πD =
1

4
and πE = πF = πG = πH = πI = πJ =

1

16
, (2.13)

resulting in the design weights

dA = dB = dC = dD = 4 and dE = dF = dG = dH = dI = dJ = 16. (2.14)

Among the 10 selected households, 7 only are surveyed due to non-response. It is accounted for

by using the method of Response Homogeneity Groups (RHGs), and we suppose that there are

two RHGs: the units A, B, F and J in the first one, and the units C, D, E, G, H, and I in the

second one. The units B, C and G are non-respondents. Inside each RHG, we compute estimated

response probabilities, weighted by the design weights (ωk = dk). This leads to

p̂1 =

∑
k∈S1,hou

dkrk∑
k∈S1,hou

dk
=

dA + dF + dJ
dA + dB + dF + dJ

=
9

10
,

p̂2 =
dD + dE + dH + dI

dC + dD + dE + dG + dH + dI
=

13

18
. (2.15)

The weights accounting for non-response are obtained for the respondents by dividing the sampling

weights by the estimated response probabilities. This leads to the weights

drA =
40

9
drD =

72

13
drE = drH = drI =

288

13
drF = drJ =

160

9
. (2.16)

Finally, the weights are calibrated to match exactly the population size Nhou = 100 and an auxiliary

total X1,hou = 60. Note that, using the sample of respondents, we obtain N̂r,hou = 112 and

X̂1r,hou = 66.53. The calibrated weights are

wA = 4.01, wD = 4.87, wE = wH = 19.98,

wF = 15.63, wI = 19.49, wJ = 16.03. (2.17)

The sampling and estimation steps are summarized in Figure 2.

2.2 Case of a sample of households and individuals

We are interested in the population Uind of individuals associated to the population Uhou of house-

holds considered in Section 2.1. If we let yl denote the value taken by some variable of interest for

the individual l, the parameter of interest is

Yind =
∑
l∈Uind

yl. (2.18)

7



Figure 2: Estimation steps for the weighting of households

2.2.1 Sampling design

Inside any sampled household k ∈ Shou, a subsample Sind,k of individuals is selected, and the sample

Sind is the union of these samples. We let πl|k denote the conditional inclusion probability of the

individual l inside the household k. The conditional design weight of l is

dl|k =
1

πl|k
for any l ∈ k, (2.19)

and the non-conditional design weight is

dl = dl|k × dk for any l ∈ k. (2.20)

In case of full response, the estimator of Yind is

Ŷind =
∑

k∈Shou

dk
∑

l∈Sind,k

dl|kyl =
∑

k∈Sind

dlyl. (2.21)

8



The benchmark variance estimator for Ŷind is obtained from (2.4), by replacing yk with

ŷk =
∑

l∈Sind,k

dl|kyl. (2.22)

2.2.2 Treatment of non-response

The weights of individuals accounting for the non-response of households are

drl = drk(l)dl|k(l) with k(l) the household containing l, (2.23)

with drk the weight of household k corrected for unit non-response (see equation 2.6), and dl|k the

conditional sampling weight of individual l inside the household k (see equation 2.19). We let

Sr,ind =
⋃

k∈Sr,hou

Sind,k (2.24)

denote the set of all sampled individuals inside the responding households.

The individuals in Sr,ind are themselves prone to non-response, though it is usually expected to

be to a smaller extent. This leads to the observation of a sub-sample of respondents Srr,ind only.

We let rl denote the response indicator and pl denote the response probability of the individual l.

We suppose that the individuals respond independently of one another. Also, we suppose that this

non-response is handled through the method of RHGs: the sample Sr,ind may be partitioned into D

RHGs denoted as Sr1,ind, . . . , SrD,ind such that the response probability pl is constant inside a RHG.

We let pd denote the common response probability inside the RHG Srd,ind. It is estimated by

p̂d =

∑
l∈Srd,ind

ωlrl∑
l∈Srd,ind

ωl
, (2.25)

with ωl some weight attached to the individual l. The choice ωl = 1 leads to estimating pd by the

unweighted response rate inside the RHG. The choice ωl = dl leads to estimating pd by the response

rate inside the RHG, weighted by the individual sampling weights. The choice ωl = drl leads to

estimating pd by the response rate inside the RHG, weighted by the individual sampling weights

corrected of household unit non-response. We compare these different choices in the simulation

study performed in Section 4.

Accounting for the estimated response probabilities leads to the individual weights corrected for

household/individual non-response

drrl =
drl
p̂d(l)

with d(l) the RHG containing l. (2.26)
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The estimator of Yind adjusted for household/individual non-response is

Ŷrr,ind =
∑

l∈Srr,ind

drrlyl. (2.27)

2.2.3 Calibration

We let zl denote the vector of calibration variables at the individual level, and Zind denote the total

on the population Uind. For the sample Srr,ind, this leads to the calibrated weights

wl = drrl

(
1 + z>l λind

)
,

with λind =

 ∑
l∈Srr,ind

drrlzlz
>
l

−1 (Zind − Ẑrr,ind) , (2.28)

and where Ẑrr,ind is the estimator of Zind, obtained by plugging zl into (2.27). The calibrated

estimator is

Ŷcal,ind =
∑

l∈Srr,ind

wlyl. (2.29)

The sampling and estimation steps are summarized in Figure 3.

Figure 3: Sampling and estimation steps for a household sample with sub-sampling of individuals
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2.2.4 Computation of individual weights on an example

We continue the example initiated in Section 2.1.4. Recall that the sample of responding households

is Sr,hou = {A,D,E, F,H, I, J}. The set of all individuals inside the responding households is as

follows (say):

(i1, i2, i3)︸ ︷︷ ︸
A

(i4)︸︷︷︸
D

(i5, i6)︸ ︷︷ ︸
E

(i7, i8, i9)︸ ︷︷ ︸
F

(i10, i11)︸ ︷︷ ︸
H

(i12)︸︷︷︸
I

(i13)︸︷︷︸
J

. (2.30)

We suppose that the sampling design consists in selecting one individual exactly inside each house-

hold. The set Sr,ind of all sampled individuals inside the responding households is

Sr,ind = {i1, i4, i6, i8, i11, i12, i13}. (2.31)

From equations (2.23) and (2.16), the individual weights corrected for household non-response are

therefore

dr1 =
40

3
, dr4 =

72

13
, dr6 =

576

13
, dr8 =

160

3
, dr11 =

576

13
, dr12 =

288

13
, dr13 =

160

9
.(2.32)

Among these 7 selected individuals, 4 only are surveyed due to non-response, accounted for by using

the method of Response Homogeneity Groups (RHGs). We suppose that there are two RHGs: the

units i1, i6, i8 and i11 in the first one, and the units i4, i12 and i13 in the second one. The units

i4, i11 and i13 are non-respondents. Inside each RHG, we compute unweighted estimated response

probabilities (ωl = 1). This leads to

p̂1 =

∑
l∈Sr1,ind

rl∑
l∈Sr1,ind

1
=

3

4
,

p̂2 =

∑
l∈Sr2,ind

rl∑
l∈Sr2,ind

1
=

1

3
. (2.33)

The weights accounting for household/individual non-response are obtained for the respondents by

dividing the weights in (2.32) by the estimated response probabilities. This leads to the weights

drr1 =
160

9
, drr6 =

2304

39
, drr8 =

640

9
, drr12 =

864

13
. (2.34)

Finally, the weights are calibrated to match exactly the population size Nind = 200 and an auxiliary

total Z1,ind = 450. Note that, using the sample of respondents, we obtain N̂r,ind = 214.4 and

Ẑ1r,ind = 451.3. The calibrated weights are

w1 = 19.61, w6 = 53.93, w8 = 78.43, w13 = 48.04. (2.35)

The sampling and estimation steps are summarized in Figure 4.
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Figure 4: Estimation steps for the weighting of individuals

3 Bootstrap variance estimation

We begin in Section 3.1 with the description of the basic step of the bootstrap method when a sample

of households only is selected. An illustration is given in Section 3.2 on the example initiated

in Section 2.1.4. The bootstrap method when individuals are sampled inside the households is

described in Section 3.3, and an illustration is given in Section 3.4. In Section 3.5, we explain how

the basic step of the proposed bootstrap method is used to perform variance estimation and to

produce confidence intervals.

3.1 Basic step of the bootstrap for households

Using the with-replacement bootstrap, we first draw inside the original sample Shhou selected in the

stratum Uhhou a with-replacement resample Shhou∗ of nh − 1 units, with equal probabilities. For any

k ∈ Shhou, we take

Wk =
nh

nh − 1
×Number of times the household k is selected in the resample Shhou∗. (3.1)

12



The computation of the bootstrap weights accounting for the sampling design, for unit non-response

and for the calibration is described in Algorithm 1. The steps refer to Figure 1.

The treatment of unit non-response in the bootstrap process deserves some explanations. Firstly,

our approach is conditional on the response indicators rk. Contrarily to the sample membership

indicators which are bootstrapped at Step 1 of Algorithm 1, the response indicators remain fixed

in the bootstrap process. This is due to the fact that we aim at reproducing a variance estimator

which considers the sample Shou as selected with replacement, and that in such case bootstrapping

the rk’s is not needed. Secondly, accounting for unit non-response at Step 2 of Algorithm 1 is

performed conditionally on the RHGs: we do not bootstrap the process leading to the building of

the RHGs (e.g., Haziza and Beaumont, 2017). Finally, bootstrapping the response probabilities as

described in equation (3.4) accounts for the estimation of the response probabilities pc. If we do

not bootstrap these response probabilities and if we plug in equation (3.5) the original estimated

probabilities p̂c, the response probabilities are treated as if they were known, which usually results

in an overestimation of the variance (Beaumont, 2005; Kim and Kim, 2007).

In the bootstrap process presented in Algorithm 1, the calibration step is performed on the true

population total Xhou. Following the bootstrap principle which states that the sample Shou is to

the bootstrap sample Shou∗ what the population Uhou is to the sample Shou, it could seem more

intuitive to rather calibrate on the estimated totals X̂hou obtained by plugging xk into equation

(2.3). Both approaches seem valid for variance estimation, but the calibration variables xk may be

prone to non-response on the sample Shou, making the estimator X̂hou not possible to compute,

while the total Xhou is known from an external source.

3.2 An example of computation of bootstrap household weights

We continue with the example initiated in Section 2.1.4. The bootstrap is performed by first

selecting a resample of n = 9 households, with replacement and with equal probabilities, among

the original sampled households. In this example, we suppose that the household A is selected

three times, that the household G is selected twice, and that the households D, E, H and I are

selected once. Making use of equation (3.2), this leads to the bootstrap sampling weights

dA∗ =
40

3
dD∗ =

40

9
dE∗ = dH∗ = dI∗ =

160

9
dG∗ =

320

9
. (3.9)

The bootstrap sampling weights are corrected for non-response in the same way than in the original

correction of non-response: using the same RHGs, and weighted estimated probabilities. In this

case, the first RHG contains only the unit A which is a respondent, so that p̂1∗ = 1. The second

RHG contains D, E, G (non-respondent), H and I. This leads to

p̂2∗ =
dD∗ + dE∗ + dH∗ + dI∗

dD∗ + dE∗ + dG∗ + dH∗ + dI∗
=

13

21
, (3.10)
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Algorithm 1 Computation of bootstrap household weights accounting for non-response and cali-

bration
• Step 1: we account for the sampling of households by computing, for any k ∈ Shou, the

bootstrap sampling weight

dk∗ = Wkdk. (3.2)

The bootstrap version of the full-response estimator given in (2.3) is

Ŷhou∗ =
∑

k∈Shou

dk∗yk. (3.3)

• Step 2: we account for household unit non-response by computing the bootstrap estimated

probabilities inside the RHGs

p̂c∗ =

∑
k∈Sc,hou

Wkωkrk∑
k∈Sc,hou

Wkωk
, (3.4)

and we compute the bootstrap weights corrected for non-response

drk∗ =
dk∗
p̂c(k)∗

, (3.5)

with c(k) the RHG containing the household k. The bootstrap version of the estimator

corrected for unit non-response given in (2.7) is

Ŷr,hou∗ =
∑

k∈Sr,hou

drk∗yk. (3.6)

• Step 3: we account for the calibration by calibrating the weights drk∗ on the totals Xhou.

This leads to the bootstrap calibrated weights

wk∗ = drk∗

(
1 + x>k λhou∗

)
, (3.7)

with λhou∗ =

 ∑
k∈Sr,hou

drk∗xkx
>
k

−1 (Xhou − X̂r,hou∗

)
and X̂r,hou∗ =

∑
k∈Sr,hou

drk∗xk.

The bootstrap version of the calibrated estimator given in (2.10) is

Ŷcal,hou∗ =
∑

k∈Sr,hou

wk∗yk. (3.8)
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and to the bootstrap weights corrected for non-response

drA∗ =
40

3
drD∗ =

280

39
drE∗ = drH∗ = drI∗ =

1120

39
. (3.11)

Finally, the weights are calibrated to match the population size Nhou = 100 and the auxiliary total

X1,hou = 60. This leads to the bootstrap calibrated weights

wA∗ = 11.30 wD∗ = 8.00 wE∗ = wH∗ = 24.35 wI∗ = 32.00 (3.12)

The computation of the bootstrap weights is summarized in Figure 5.

Figure 5: Computation of bootstrap household weights

3.3 Computation of bootstrap weights for individuals

The computation of the bootstrap weights accounting for the sampling design, for household/indi-

vidual non-response and for calibration is described in Algorithm 2. The steps refer to Figure 3. In

addition to the bootstrap steps in Algorithm 1, note that Algorithm 2 involves bootstrapping the
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computation of response individual probabilities only. Note that the sub-sampling of individuals

inside households does not need to be bootstrapped, as discussed in Section 3.1.

3.4 An example of computation of bootstrap individual weights

We continue with the example in Section 3.2. The bootstrap sample of households is constituted

of A (three times), G (two times), and D, E, H and I (one time). Due to household non-response,

we observe A, D, E, H and I only. From equations (2.29) and (2.30), this results in the bootstrap

sample of individuals

Sr,ind∗ = {i1, i4, i6, i11, i12}. (3.19)

The bootstrap weights of households corrected for unit non-response are given in equation (3.11).

From equation (3.13), the bootstrap weights of individuals adjusted for household non-response are

dr1∗ = 40 dr4∗ =
280

39
dr6∗ =

2240

39
dr11∗ =

2240

39
dr12∗ =

1120

39
. (3.20)

These bootstrap weights are corrected for individual non-response in the same way than in the

original correction of individual non-response: using the same RHGs, and unweighted estimated

probabilities. However, we need to account in these probabilities for the original bootstrap weights

Wk. In our case, the first RHG contains the individuals i1, i6 and i11, and i11 is a non-respondent.

The individual i1 belongs to the household A, which has been selected three times (WA = 3) in the

bootstrap sample. The individual i6 belongs to the household E and the individual i11 belongs to

the household H, which have both been selected one time in the bootstrap sample (WE = WH = 1).

The computation is similar for the second RHG, and leads to

p̂1∗ =
WA +WE

WA +WE +WH
=

4

5
,

p̂2∗ =
WI

WD +WI
=

1

2
, (3.21)

and to the bootstrap individuals weights corrected for household/individual non-response

drr1∗ = 50 dr6∗ =
5600

39
dr12∗ =

2240

39
. (3.22)

Finally, the weights are calibrated to match the population size Nind = 200 and the auxiliary total

Z1,ind = 450. This leads to the bootstrap calibrated weights

w1∗ = 66.69 w6∗ = 116.62 w12∗ = 16.69. (3.23)

The computation of bootstrap individual weights is summarized in Figure 6.
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Algorithm 2 Computation of bootstrap individual weights accounting for non-response of house-

holds, for non-response of individuals and for calibration

• Perform Steps 1 and 2 of Algorithm 1. The bootstrap weights of households corrected for

non-response are d∗rk, as given in equation (3.5).

• Step 3b: we first account for the sampling of individuals by computing the bootstrap indi-

vidual weights corrected for household unit non-response

drl∗ = drk(l)∗dl|k(l) with k(l) the household containing l. (3.13)

We then account for individual unit non-response. We compute the bootstrap estimated

probabilities inside the RHGs

p̂d∗ =

∑
l∈Srd,ind

Wk(l)ωlrl∑
l∈Srd,ind

Wk(l)ωl
. (3.14)

We compute the bootstrap weights of individuals corrected for household/individual non-

response, namely

drrl∗ =
drl∗
p̂d(l)∗

, (3.15)

with d(l) the RHG containing the individual l. The bootstrap version of the estimator cor-

rected for unit non-response given in (2.27) is

Ŷrr,ind∗ =
∑

l∈Srr,ind

drrl∗yl. (3.16)

• Step 4b: we account for the calibration by calibrating the weights drrl∗ on the totals Zind.

This leads to the bootstrap calibrated weights

wl∗ = drrl∗

(
1 + z>l λind∗

)
, (3.17)

with λind∗ =

 ∑
k∈Srr,ind

drrl∗zlz
>
l

−1 (Zind − Ẑrr,ind∗) and Ẑrr,ind∗ =
∑

l∈Srr,ind

drrl∗zl.

The bootstrap version of the calibrated estimator given in (2.29) is

Ŷcal,ind∗ =
∑

l∈Srr,ind

wl∗yl. (3.18)
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Figure 6: Computation of bootstrap household weights

3.5 Bootstrap variance estimation and confidence intervals

In this Section, we are interested in parameters which may be written as smooth functions of to-

tals. We explain how the basic step of the proposed bootstrap method is used to perform variance

estimation and to produce confidence intervals. For brevity, we focus on parameters defined over

the population of households Uhou. The treatment for parameters of interest in the population of

individuals Uind is similar.

Suppose that yk is a q-vector of interest variables, and that we are interested in some parameter

θhou = f(Yhou) with f : Rq → R a known, smooth function. In case of full response, the substitution

estimator of θhou is

θ̂hou = f(Ŷhou), (3.24)

see for example Deville (1999). In case of unit non-response at the household level, the estimator
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of θhou corrected for unit non-response is

θ̂r,hou = f(Ŷr,hou), (3.25)

and the calibrated estimator of θhou is

θ̂cal,hou = f(Ŷcal,hou). (3.26)

In each case, a bootstrap variance estimator is obtained by applying a large number of times (say

B) the basic step of the bootstrap method in Algorithm 1, and then by computing the dispersion of

the bootstrap estimators. This is summarized in Algorithm 3. A rigorous proof for the consistency

of this bootstrap variance estimator is beyond the scope of this paper, but a heuristic justification

is given in Appendix B.

Algorithm 3 Bootstrap variance estimation for an estimation over the population of households

1. Repeat B times the bootstrap procedure described in Algorithm 1. Let us denote Ŷ b
hou∗,

Ŷ b
r,hou∗ and Ŷ b

cal,hou∗ for the bootstrap estimators of totals computed on the b-th sample.

Also, let us denote θ̂bhou∗, θ̂
b
r,hou∗ and θ̂bcal,hou∗ for the associated bootstrap estimators of θhou.

2. The Bootstrap variance estimator for θ̂hou is

V̂boot

(
θ̂hou

)
=

1

B − 1

B∑
b=1

{
θ̂bhou∗ −

1

B

B∑
b′=1

θ̂b
′
hou∗

}2

, (3.27)

and similarly for θ̂r,hou and θ̂cal,hou.

The bootstrap variance estimator may be used to compute a normality-based confidence interval

with targeted level 1 − 2α. For example, the confidence interval when using the full-response

estimator θ̂hou is

ICnor(θhou) = [θ̂hou ± u1−α
{
V̂boot

(
θ̂hou

)}0.5
], (3.28)

with u1−α the quantile of order 1−α of the standard normal distribution. This confidence interval

is expected to be conservative, since the proposed bootstrap method is conservative too.

We also consider the percentile and the reverse percentile (a.k.a. basic) bootstrap confidence

intervals. They can be directly computed from the bootstrap weights and are therefore attractive

from a data user’s perspective, unlike more computationally intensive methods like the t-bootstrap

(e.g. Davison and Hinkley, 1997; Shao and Tu, 1995). For θ̂hou, the percentile confidence interval
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is obtained by using the distribution of θ̂hou∗ as an approximation of the distribution of θ̂hou. It

makes use of the ordered bootstrap estimates θ̂
(1)
hou∗, . . . , θ̂

(B)
hou∗ to form the confidence interval

ICper(θhou) =
[
θ̂
(L)
hou∗, θ̂

(U)
hou∗

]
, (3.29)

with targeted level 1−2α, where L = αB and U = (1−α)B. The reverse percentile confidence inter-

val is obtained by viewing the distribution of (θ̂hou∗− θ̂hou) as an approximation of the distribution

of (θ̂hou − θhou). It leads to the confidence interval

ICrev(θhou) =
[
2θ̂hou − θ̂

(U)
hou∗, 2θ̂hou − θ̂

(L)
hou∗

]
. (3.30)

The properties of the bootstrap variance estimator and of the three confidence intervals are evalu-

ated in the simulation study performed in Section 4 for the estimation of a total.

4 Simulation Study

In order to evaluate the proposed bootstrap method, we conducted a simulation study on an arti-

ficial population. We first generate a population Uhou containing Nhou = 100, 000 households, with

four auxiliary variables x1, . . . , x4 generated from a gamma distribution with shape and scale pa-

rameters 2 and 5. Inside the population, we generate three variables of interest y1, . . . , y3 according

to the following models

y1k = 10 + x1k + x2k + σεεk,

y2k = 10 + x1k + x3k + σεεk, (4.1)

y3k = 10 + x3k + x4k + σεεk,

where εk is generated according to a standard normal distribution. We set σε = 10, which results

in a coefficient of determination of approximately 0.50 for each model. The auxiliary variables

1, x1k, x2k are used as calibration variables at the household level in this simulation study. The

three variables of interest therefore correspond to cases when the calibration model is well specified

(y1), partly well specified (y2), or poorly specified (y3). The population Uhou is randomly split into

five response homogeneity groups (RHG) of equal sizes. The response probability pc inside the

RHG c is equal to 0.5 for the first group, 0.6 for the second group, ..., and 0.9 for the fifth group,

resulting in an average response rate of 70% for the households.

Inside each household k, we generate Nk individuals, where Nk − 1 is generated according to

a Poisson distribution with parameter 1, which results in an average number of 2 individuals per

household. Inside the corresponding population Uind, we generate four auxiliary variables z1, . . . , z4

with shape and scale parameters 2 and 0.5. Also, we generate three variables of interest y4, y5, y6
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according to the following models

y4l = 5 + 0.5z1l + 0.5z2l + σηηl,

y5l = 5 + 0.5z1l + 0.5z3l + σηηl, (4.2)

y6l = 5 + 0.5z3l + 0.5z4l + σηηl,

where ηl is generated according to a standard normal distribution. We set ση = 0.4, which results in

a coefficient of determination of approximately 0.6 for each model. The auxiliary variables 1, z1l, z2l

are used as calibration variables at the individual level in this simulation study. The three variables

of interest therefore correspond to a case when the calibration model is well specified (y4), partly

well specified (y5), or poorly specified (y6).

The population Uind is split into five RHGs as follows. The individuals which are alone in their

household form a separate RHG, with a response probability of 1. The rationale behind this

choice is that in such case, the individual is somewhat equivalent to his/her household, and that

the non-response is modeled at the household level. Among the rest of the individuals living in a

household k with Nk = 2 individuals or more, the variables z1 and z2 are used to form four RHGs

of approximately equal size. The response probability pd ranges from 0.80 to 0.95 in these four

remaining RHGs. This results in an overall response rate of approximately 90% for the individuals.

Inside the population Uhou, we select a sample Shou of nhou = 1, 000 households by simple random

sampling without replacement. Note that the sampling rate is small (1 % ), so that simple random

sampling with/without replacement are not much different, and the bias of the bootstrap variance

estimators is expected to be small under this set-up. The non-response is generated according to

the RHG household model, which results in a sample Sr,hou of responding households. The esti-

mated response probabilities p̂c are obtained from equation (2.5), with equal weight ωk = 1. Inside

each k ∈ Sr,hou, one Kish individual is randomly selected with equal probabilities, which results in

the sample of individuals Sr,ind. Inside Sr,ind, the non-response is generated according to the RHG

individual model, resulting in a sample Srr,ind of responding individuals. The estimated response

probabilities p̂d are obtained from equation (2.25), in three possible ways: equal weights ωl = 1,

sampling weights ωl = dl, or individuals weights corrected for the household non-response ωl = drl.

The sampling and non-response steps are repeated C = 1, 000 times. On each sample Shou, we

compute the full-response estimator given in (2.3), and on each sample Sr,hou, we compute the

estimator adjusted for non-response Ŷr,hou given in (2.7) and the estimator Ŷcal,hou given in (2.10)

with the set of calibration variables xk = (1, x1k, x2k)
>. On each sample Srr,ind, we compute the

estimator adjusted for non-response Ŷrr,ind given in (2.27) and the estimator Ŷcal,ind given in (2.29)

with the set of calibration variables zl = (1, z1l, z2l)
>. For these five estimators, we compute the
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coefficient of variation

CV (Ŷ ) = 100×

√
MSE(Ŷ )

Y
, (4.3)

with MSE(Ŷ ) a simulation-based approximation of the mean square error of Ŷ , obtained from an

independent run of 10, 000 simulations.

For these five estimators, we also compute the bootstrap variance estimators obtained by applying

Algorithm 3 with B = 1, 000. So as to measure the bias of a variance estimator v(Ŷ ), we use the

Monte Carlo Percent Relative Bias

RB{v(Ŷ )} = 100×
C−1

∑C
c=1 vc(Ŷc)−MSE(Ŷ )

MSE(Ŷ )
, (4.4)

where vc(Ŷc) stands for the variance estimator in the c-th sample. As a measure of stability of

v(Ŷ ), we use the Relative Stability

RS{v(Ŷ )} = 100×

[
C−1

∑C
c=1

{
vc(Ŷc)−MSE(Ŷ )

}2
]1/2

MSE(Ŷ )
. (4.5)

Also, we compute the coverage rates of the confidence interval associated to the percentile Boot-

strap, to the basic bootstrap and to the normality-based confidence interval, with nominal one-tailed

error rate of 2.5% in each tail.

The results are presented in Table 1 for the estimation on the population of households. The coef-

ficient of variation of the calibrated estimator Ŷcal,hou is smaller when the calibration variables are

explanatory for the variable of interest, as expected. We observe a slight positive bias of the boot-

strap variance estimator for the full-response estimator Ŷhou, but almost no bias for the reweighted

estimators Ŷr,hou and Ŷcal,hou. The bootstrap variance estimator is slightly less stable with the

reweighted estimators, which is likely due to the additional variability associated to the correction

of unit non-response. Concerning the confidence intervals, we note that the coverage rates are well

respected in all cases and for the three studied methods.

We now turn to the result on the population of individuals, which are presented in Table 2. We

observe that the relative bias of the bootstrap variance estimator is very small in all cases. The

choice of the weights ωk used in the estimation of the response probabilities seem to have no effect

on the coefficient of variation of the estimators, but the use of the weights ωl = drl adjusted for

household non-response yields slightly more stable variance estimators for Ŷrr,ind. The coverage

rates are approximately respected in all cases.
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Table 1: Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of

the Bootstrap variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap

and of the basic bootstrap for 3 variables on the population of households

Percentile bootstrap Basic bootstrap Normality-based

CV RB RS L U L+U L U L+U L U L+U

y1 1.47 2.48 7.2 2.2 3.1 5.3 2.1 3.3 5.4 2.2 3.2 5.4

Ŷhou y2 1.48 0.73 6.6 2.6 3.3 5.9 2.7 3.4 6.1 2.6 3.2 5.8

y3 1.48 1.11 6.6 2.6 2.7 5.3 2.7 3.0 5.7 2.4 2.7 5.1

y1 1.82 0.42 8.7 2.4 2.4 4.8 2.3 2.7 5.0 2.3 2.6 4.9

Ŷr,hou y2 1.83 -0.76 8.2 2.7 2.8 5.5 2.5 3.0 5.5 2.2 2.7 4.9

y3 1.82 0.72 8.4 2.8 2.1 4.9 2.8 2.2 5.0 2.8 1.9 4.7

y1 1.29 1.27 8.3 2.4 2.7 5.1 2.8 2.8 5.6 2.8 2.7 5.5

Ŷcal,hou y2 1.58 -0.55 8.2 2.5 3.5 6.0 2.8 3.9 6.7 2.8 3.6 6.4

y3 1.82 0.49 8.4 2.9 1.8 4.7 3.0 2.2 5.2 2.9 2.0 4.9

5 SAS Program for one-stage sampling

In this Section, we present the SAS macro developed to implement the proposed methodology for

a sampling of households only (one-stage sampling). The parametrization of the SAS program for

computing bootstrap weights is presented in Section 5.1. For clarity, a small example is presented

in Section 5.2. An illustration for the Panel for Urban Policy is given in Section 5.3.

5.1 Program for computing bootstrap weights

The parameters related to the database are:

• BASE: library containing the SAS table with the list of sampled units. The default value is

BASE=WORK.

• ECHMEN : SAS table containing the list of sampled units in the population. The non-respondents

need also to be included in this table.

The parameters related to the bootstrap are:

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.

The parameters related to the variables needed in the SAS table are:

• IDMEN: list of variables identifying the statistical unit. They need to be character variables.
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Table 2: Coefficient of variation of the estimator of the total, Relative Bias and Relative Stability of

the Bootstrap variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap

and of the basic bootstrap for 3 variables on the population of individuals

Percentile bootstrap Basic bootstrap Normality-based

CV RB RS L U L+U L U L+U L U L+U

Equal weights ωl = 1

y4 2.01 0.31 9.6 2.0 3.2 5.2 1.9 3.3 5.2 1.9 3.0 4.9

Ŷrr,ind y5 2.02 -0.17 9.6 2.4 3.4 5.8 2.2 3.7 5.9 2.3 3.5 5.8

y6 2.02 -0.24 9.6 2.2 3.3 5.5 2.0 3.7 5.7 2.0 3.2 5.2

y4 0.29 1.72 10.8 2.1 2.4 4.5 2.1 2.3 4.4 2.1 2.2 4.3

Ŷcal,ind y5 0.39 1.04 11.3 2.3 2.5 4.8 2.3 2.5 4.8 2.2 2.4 4.6

y6 0.47 1.90 11.2 2.8 2.1 4.9 2.2 2.5 4.7 2.3 2.0 4.3

Sampling weights ωl = dl

y4 2.00 -0.08 9.5 1.8 3.8 5.6 1.7 3.8 5.5 1.7 3.4 5.1

Ŷrr,ind y5 2.00 0.14 9.4 1.9 3.3 5.2 2.2 3.5 5.7 1.8 3.5 5.3

y6 1.99 0.61 9.3 1.7 3.2 4.9 1.7 3.4 5.1 1.7 3.2 4.9

y4 0.29 -0.57 10.3 2.9 2.4 5.3 3.3 2.2 5.5 3.0 2.3 5.3

Ŷcal,ind y5 0.39 0.40 11.6 2.4 3.2 5.6 2.7 3.3 6.0 2.3 3.2 5.5

y6 0.47 -0.05 11.2 2.3 2.2 4.5 1.8 2.3 4.1 1.8 2.3 4.1

Weights adjusted for household non-response ωl = drl

y4 1.99 -0.71 8.9 2.5 2.3 4.8 2.6 2.7 5.3 2.5 2.4 4.9

Ŷrr,ind y5 1.99 -0.82 8.9 3.1 2.2 5.3 2.9 2.5 5.4 2.5 2.2 4.7

y6 1.99 -0.26 9.1 3.1 2.3 5.4 3.0 3.0 6.0 2.9 2.5 5.4

y4 0.29 1.70 10.6 2.7 3.4 6.1 2.6 3.3 5.9 2.5 3.3 5.8

Ŷcal,ind y5 0.39 1.38 11.3 2.1 2.7 4.8 2.2 3.0 5.2 1.7 3.0 4.7

y6 0.47 0.61 10.9 2.5 2.8 5.3 2.3 3.0 5.3 2.3 2.8 5.1

• STMEN: list of variables of stratification used for the sample selection.

• DMEN: sampling weight.

• RMEN: response indicator (1 for a respondent, 0 for a non-respondent).

• DRMEN: sampling weight, corrected for non-response. The values are only needed for the

respondents.

• DCMEN: calibrated weight. The values are only needed for the respondents.
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• GHRMEN: list of variables identifying the response homogeneity groups.

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs.

With WGHRMEN=0, the response rates are not weighted. This is the default value.

With WGHRMEN=1, the response rates are weighted by the design weights.

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed

for the respondents.

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed

for the respondents.

The parameters related to the output are:

• SORT_MEN: SAS table containing the bootstrap sampling weights WB_D1,...,WB_D&ITBOOT for

the whole sample.

• SORT_RMEN: SAS table containing the bootstrap weights WB_N1,...,WB_N&ITBOOT corrected for

non-response, and the bootstrap weights WB_C1,...,WB_C&ITBOOT corrected for non-response

and calibration, for the sub-sample of respondents.

5.2 A small example

We consider the example treated in Section 2.1.4. The sample is as follows:

data ech;

input idm$ stmen$ dmen rmen ghrmen$ drmen dcmen x0 x1;

cards;

A 1 4 1 aa 4.44 4.01 1 1

B 1 4 0 aa . . . .

C 1 4 0 bb . . . .

D 1 4 1 bb 5.54 4.87 1 0

E 1 16 1 bb 22.15 19.98 1 1

F 1 16 1 aa 17.78 15.63 1 0

G 1 16 0 bb . . . .

H 1 16 1 bb 22.15 19.98 1 1

I 1 16 1 bb 22.15 19.49 1 0

J 1 16 1 aa 17.78 16.03 1 1

;run;

We can obtain B = 1, 000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when

unit non-response has been originally corrected by the method of RHGs, the response rates inside

RHGs were weighted by the sampling weights.
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%BOOTUP_1DEG(BASE=work,ECHMEN=ech,

ITBOOT=1000,

IDMEN=idm,STMEN=stmen,DMEN=dmen,

RMEN=rmen,DRMEN=drmen,DCMEN=dcmen,GHRMEN=ghrmen,WGHRMEN=1,

XMENQUANT=x0 x1,XMENQUALI=,

SORT_MEN=ech_boot,SORT_RMEN=echr_boot);

5.3 Application to the French panel for urban policy

The Panel for Urban Policy (PUP) is a survey in four waves, conducted between 2011 and 2014 by

the French General Secretariat of the Inter-ministerial Committee for Cities (SGCIV). The survey

aims at collecting information about security, employment, precariousness, schooling and health,

for people living in the Sensitive Urban Zones (ZUS). We are only interested in the 2011 wave of the

survey. A sample of households is selected, and all the individuals living in the selected households

are theoretically surveyed.

The sample of households is obtained by two-stage sampling, see for example Chauvet (2015);

Chauvet and Vallée (2018). Firstly, the population of districts is partitioned into 4 strata, and a

global sample of nI = 40 districts is selected by means of probability proportional to size sampling

inside strata. A sample of households is then selected at the second-stage inside each selected

district by means of simple random sampling, in such a way that the final inclusion probabilities of

households are approximately equal inside strata (self-weighted sampling design). For the purpose

of illustration, the two-stage selection of the households is not considered here, and the sample of

households is viewed as directly selected by means of stratified simple random sampling.

The sample contains 2, 971 households, but due to unit non-response only 1, 256 households are

observed. Non-response is accounted for by using Response Homogeneity Groups, defined with re-

spect to five auxiliary variables: housing construction period, type of dwelling (apartment/house),

number of rooms, low-income housing (yes/no), region. By using a logistic regression and the score

method (e.g. Haziza and Beaumont, 2007), we obtain 8 response homogeneity groups. The five

auxiliary variables used in the definition of the RHGs are also used for calibration.

We are interested in four categorical variables related to security, town planning and residential

mobility. The variable y1 gives the perceived reputation of the district (good, fair, poor, no opinion).

The variable y2 indicates if a member of the household has witnessed trafficking (never, rarely,

sometimes, no opinion). The variable y3 indicates if some significant roadworks have been done in

the neighborhood in the twelve last months (yes, no, no opinion). The variable y4 indicates if the

household intends to leave the district during the next twelve months (certainly/probably, certainly
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not, probably not, no opinion). For each category g of each variable y, we are interested in the

proportion

θg,hou =

∑
k∈Uhou

1(yk = g)

Nhou
, (5.1)

with Nhou the total number of households. The estimator of θg adjusted for non-response is

θ̂gr,hou =

∑
k∈Sr,hou

drk1(yk = g)∑
k∈Sr,hou

drk
, (5.2)

see equation (2.7). The calibrated estimator of θg is

θ̂gcal,hou =

∑
k∈Sr,hou

wk1(yk = g)∑
k∈Sr,hou

wk
, (5.3)

see equation (2.10).

For each proportion, we give the normality-based confidence interval making use of the bootstrap

variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals, see Section

3.5. We use the with-replacement Bootstrap presented in Algorithm 1 with B = 1, 000 resamples.

The results with a nominal one-tailed error rate of 2.5 % are presented in Table 3. The three

confidence intervals are very similar in all cases.

6 SAS Program for two-stage sampling

In this Section, we present the SAS macro developed to implement the proposed methodology for a

sampling of households and a sub-sampling of individuals (two-stage sampling). The parametriza-

tion of the SAS program for computing bootstrap weights is presented in Section 6.1. For clarity,

a small example is presented in Section 6.2. An illustration for the Panel for Urban Policy is given

in Section 6.3.

6.1 Program for computing bootstrap weights

The SAS macro %BOOTUP_2DEG enables to compute bootstrap weights for a household survey with

sub-sampling of individuals, and to account for correction of unit non-response via Response Ho-

mogeneity groups, and for the calibration of weights, both for households and individuals.

The parameters with equality sign are mandatory. All identifying variables must be of character

type.

The parameters related to the database are:
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• BASE: library containing the SAS tables ECHMEN and ”ECHIND”. The default value is

BASE=WORK.

• BASESOR: library containing the output. The default value is BASESOR=WORK.

• ECHMEN= : SAS table containing the list of sampled households in the population. The

household non-respondents need also to be included in this table.

• ECHIND= : SAS table containing the list of sampled individuals inside all the responding

households. The individual non-respondents need also to be included in this table.

The parameters related to the bootstrap are:

• ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.

The parameters related to the variables needed in the household SAS table ECHMEN are:

• IDMEN=: list of variables identifying the household. This variable is required in both ECHMEN

and ECHIND.

• STMEN: list of variables of stratification used for the sample selection.

• DMEN: sampling weight of the household.

• RMEN: response indicator of the household (1 for a respondent, 0 for a non-respondent).

• DRMEN: sampling weight of the household, corrected for non-response. The values are only

needed for the respondents.

• GHRMEN: list of variables identifying the response homogeneity groups for households.

• WGHRMEN: weighting used in the computation of the response probabilities inside RHGs:

– With WGHRMEN=0, the response rates are not weighted. This is the default value.

– With WGHRMEN=1, the response rates are weighted by the design weights DMEN.

• XMENQUANT: list of quantitative variables used in the calibration. The values are only needed

for the respondents.

• XMENQUALI: list of qualitative variables used in the calibration. The values are only needed

for the respondents.

The parameters related to the variables needed in the household SAS table ECHIND are:

• ID_IND=: list of variables identifying the individual (character variable).
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• R_IND: response indicator of the individual (1 for a respondent, 0 for a non-respondent).

• DR_IND: weight of the individual, corrected for both household and individual unit non-

response. The values are only needed for the respondents.

• PIKSACI=: conditional inclusion probability of the individual inside its household.

• GHR_IND: list of variables identifying the response homogeneity groups.

• WGHR_IND: weighting used in the computation of the response probabilities inside RHGs:

– With WGHR_IND=0, the response rates are not weighted. This is the default value.

– With WGHR_IND=1, the response rates are weighted by the design weights of individuals.

– With WGHR_IND=2, the response rates are weighted by the weights of individuals, adjusted

for household unit non-response.

• XINDQUANT: list of quantitative variables used in the calibration. The values are only needed

for the respondents.

• XINDQUALI: list of qualitative variables used in the calibration. The values are only needed

for the respondents.

The parameters related to the output are:

• SORT_MEN: SAS table containing all the sampled households, and the bootstrap sampling

weights WB_D1,...,WB_D&ITBOOT for the whole sample.

• SORT_RMEN: SAS table containing all the responding households, and the bootstrap weights

– WB_N1,...,WB_N&ITBOOT corrected for non-response,

– WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.

• SORT_RIND: SAS table containing all the responding individuals inside the responding house-

holds, and the bootstrap weights

– WB_N1,...,WB_N&ITBOOT corrected for household non-response,

– WB_NN1,...,WB_NN&ITBOOT corrected for both household non-response and individual non-

response,

– WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.
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6.2 A small example

We consider the example treated in Section 2.2.4. The sample of households and the sample of

individuals are as follows:

data echmen;

input idm$ stmen$ dmen rmen ghrmen$ drmen x0 x1;

cards;

A 1 4 1 aa 4.44 1 1

B 1 4 0 aa . . .

C 1 4 0 bb . . .

D 1 4 1 bb 5.54 1 0

E 1 16 1 bb 22.15 1 1

F 1 16 1 aa 17.78 1 0

G 1 16 0 bb . . .

H 1 16 1 bb 22.15 1 1

I 1 16 1 bb 22.15 1 0

J 1 16 1 aa 17.78 1 1

;run;

data echind;

input idm$ idi$ piksaci drmen dr1_ind rind ghrind$ phat_ind dr2_ind xi1 xi2;

cards;

A i01 0.34 04.44 13.06 1 g1 0.67 19.59 1 3

A i02 0.33 04.44 13.45 0 g2 . . . .

A i03 0.33 04.44 13.45 1 g1 0.67 20.18 1 3

D i04 1.00 05.54 05.54 0 g2 . . . .

E i05 0.33 22.15 67.12 1 g2 0.50 134.24 1 3

E i06 0.34 22.15 65.15 0 g2 . . . .

E i07 0.33 22.15 67.12 1 g1 0.67 100.68 1 3

F i08 0.33 17.78 53.88 1 g2 0.50 107.76 1 3

F i09 0.33 17.78 53.88 0 g2 . . . .

F i10 0.34 17.78 52.29 0 g1 . . . .

H i11 0.50 22.15 44.30 1 g2 0.50 88.60 1 2

H i12 0.50 22.15 44.30 1 g1 0.67 66.45 1 2

I i13 1.00 22.17 22.17 0 g1 . . . .

J i14 1.00 17.78 17.78 1 g2 0.50 35.56 1 1

;run;

We can obtain B = 1, 000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when
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unit non-response of households has been originally corrected by the method of RHGs, the response

rates inside RHGs were weighted by the sampling weights. Since WGHR_IND=0, it is supposed that

when unit non-response of individuals has been originally corrected by the method of RHGs, the

response rates inside RHGs were unweighted.

%bootup_2deg(base=work,echmen=echmen,echind=echind,

itboot=1000,

idmen=idm,stmen=stmen,dmen=dmen,drmen=drmen,rmen=rmen,ghrmen=ghrmen,wghrmen=1,

xmenquant=x0,xmenquali=x1,

id_ind=idi,r_ind=rind,dr_ind=dr2_ind,piksaci=piksaci,ghr_ind=ghrind,wghr_ind=0,

xindquant=xi1 xi2,xindquali=,

sort_men=sort_men_test,sort_rmen=sort_rmen_test,

sort_rind=sort_rind_test);

6.3 Application to the French panel for urban policy

We continue the illustration initiated in Section 6.3. The sample of responding households con-

tains 3, 098 individuals who are theoretically surveyed, but due to unit non-response we observe

a subset of 2, 804 individual respondents only. Non-response is accounted for by using Response

Homogeneity Groups, defined with respect to eight auxiliary variables: three at the individual level

(sex, age, nationality), and five at the dwelling level (housing construction period, type of dwelling,

number of rooms, low-income housing or not, region). By using a logistic regression and the score

method, we obtain 8 response homogeneity groups. The three individual auxiliary variables used

in the definition of the RHGs are also used for calibration.

We are interested in three variables of interest. The variable y5 is quantitative, and gives the number

of children. The variable y6 indicates whether the individual has one or several jobs (one, several,

none, no answer). The variable y7 indicates whether the individual benefits from a complementary

full medical cover (yes, no, no answer). For the variable y5, we compute the estimator of the

total adjusted for non-reponse and the calibrated estimator given in equations (2.27) and (2.29),

respectively. For the two other variables of interest and for each category g, we are interested in

the proportion

θg,ind =

∑
l∈Uind

1(yk = g)

Nind
, (6.1)

with Nind the total number of individuals. The estimator of θg,ind adjusted for non-response is

θ̂grr,ind =

∑
l∈Srr,ind

drrl1(yl = g)∑
l∈Srr,ind

drrl
, (6.2)
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see equation (2.27). The calibrated estimator of θg,ind is

θ̂gcal,ind =

∑
l∈Srr,ind

wl1(yl = g)∑
l∈Srr,ind

wl
, (6.3)

see equation (2.29).

For each parameter, we give the normality-based confidence interval making use of the bootstrap

variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals. We use

the with-replacement Bootstrap presented in Algorithm 2 with B = 1, 000 resamples. The results

with a nominal one-tailed error rate of 2.5 % are presented in Table 4. The three confidence intervals

are very similar in all cases.

7 Conclusion and Future work

In this paper, we have explained how the with-replacement bootstrap may be applied to household

surveys, in order to account for the whole variability of the sampling process including sampling

and non-response, and to a posteriori adjustments like calibration. The methods have been illus-

trated on a toy example for clarity of exposition, evaluated via a simulation study and applied to

a French panel for urban policy. To make the implementation of the method easier for users, we

have developed two SAS macros which are available as Supplementary Material.

The results in the simulation study show that both the bootstrap variance estimators and three

bootstrap confidence intervals work well in case of a small sampling fraction. While the bootstrap

variance estimator is known to be conservative in this case, the coverage properties of confidence

intervals in such context remain unclear. This is an interesting matter for further research.

We have considered the situation when the survey is performed at one time only. If we wish to

perform longitudinal estimations, units are typically followed over time. If we are also interested

in cross-sectional estimations at several times, additional samples are selected at posterior waves

and mixed with the original sample. Bootstrap variance estimation in the context of longitudinal

surveys is a very important matter for further investigation.
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A Benchmark variance estimators for the sample of individuals

We first consider the estimator Ŷind in equation (2.21), that we use in case of full response. The

benchmark variance estimator is

vmult(Ŷind) =
H∑
h=1

nh
nh − 1

∑
k∈Sh

hou

dkŷk − 1

nh

∑
k′∈Sh

hou

dk′ ŷk′

2

, (A.1)

with ŷk =
∑

l∈Sind,k

dl|kyl.

We now consider the estimator Ŷrr,ind given in equation (2.27), which is adjusted for the non-

response of both households and individuals. The benchmark variance estimator is

vmult(Ŷind) =

H∑
h=1

nh
nh − 1

∑
k∈Sh

hou

dkv1k − 1

nh

∑
k′∈Sh

hou

dk′v1k′

2

, (A.2)

where v1k = û1k + u3k,

where the first linearized variable û1k is similar to that given in equation (2.8), while the second

linearized variable u3k accounts for the estimation of the individual response probabilities. We have

for the first linearized variable

û1k = ωkπk ¯̂yrc(k) +
rk
p̂c(k)

{
ŷr,k − ωkπk ¯̂yrc(k)

}
,

and ¯̂yrc =

∑
k∈Sc,hou

dkrkŷr,k∑
k∈Sc,hou

ωkrk
,

and ŷr,k =
∑

l∈Sind,k

dl|krl

p̂l
yl, (A.3)

and for the second linearized variable

u3k =
rk
dk

∑
l∈Sind,k

ωl

(
1− rl

p̂l

)
ȳrrd(l), (A.4)

with ȳrrd =

∑
l∈Srd,ind

drlrlyl∑
l∈Srd,ind

ωlrl
. (A.5)

We now consider the calibrated estimator Ŷcal,ind given in equation (2.29). The benchmark variance

estimator is the same than given in equation (A.2) for Ŷrr,ind, by replacing the variable yl with the

estimated regression residuals of the variable of interest on the calibration variables, namely

el = yl − B̂>rr,indzl with B̂rr,ind =

 ∑
l∈Srr,ind

drrlzlz
>
l

−1 ∑
l∈Srr,ind

drrlzlyl. (A.6)
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B Justification for the bootstrap variance estimator

We provide some heuristic justification for the estimation of the total Yhou. The case of a complex

parameter can be handled similarly, by means of the linearization technique (Deville, 1999). For

the estimation of Yhou, we consider the case of the calibration estimator Ŷcal,hou only, since the case

of Ŷhou and Ŷr,hou can be handled similarly.

We follow the same approach as in Kim and Kim (2007). We first write

Ŷcal,hou = Ŷr,hou + B̂>r,hou

(
Xhou − X̂r,hou

)
= Ŷr,hou +B>hou

(
Xhou − X̂r,hou

)
+Op(Nn

−1)

= B>houXhou + Êr,hou +Op(Nn
−1), (B.1)

with

Ek = yk −B>houxk and Bhou =

 ∑
k∈Uhou

xkx
>
k

 ∑
k∈Uhou

xkyk.

From the writing

1

p̂c
− 1

pc
=

∑
k∈Sc,hou

ωk(1− rk/pc)∑
k∈Sc,hou

ωkrk
=

1

pc

∑
k∈Sc,hou

ωk(1− rk/pc)∑
k∈Sc,hou

ωk
+Op(n

−1), (B.2)

we obtain

Êr,hou =
∑

k∈Sr,hou

dkrkEk
p̂c(k)

=
∑

k∈Sr,hou

dkrkEk
pc(k)

+
C∑
c=1

∑
k∈Sc,hou

ωk

(
1− rk

pc(k)

)
Ēc,hou +Op(Nn

−1)

=
∑

k∈Shou

dk

[
ωkπkĒc(k),hou +

rk
pc(k)

(
Ek − ωkπkĒc(k),hou

)]
+Op(Nn

−1), (B.3)

with Ēc,hou = (
∑

k∈Uc,hou
Ek)/(

∑
k∈Uc,hou

ωkπk). From (B.1) and (B.3), we have

Ŷcal,hou = B>houXhou +
∑

k∈Shou

dkAk +Op(Nn
−1), (B.4)

with Ak = ωkπkĒc(k),hou +
rk
pc(k)

(
Ek − ωkπkĒc(k),hou

)
.

From (B.4), the asymptotic variance of Ŷcal,hou is that of
∑

k∈Shou
dkAk. If the sampling design used
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inside the strata is more efficient than multinomial sampling, a conservative variance estimator is

vHH(Ŷcal,hou) =
H∑
h=1

nh
nh − 1

∑
k∈Sh

hou

dkak − 1

nh

∑
k′∈Sh

hou

dk′ak′

2

, (B.5)

with ak = ωkπkērc(k),hou +
rk
p̂c(k)

(
ek − ωkπkērc(k),hou

)
, (B.6)

with ērc,hou =

∑
k∈Sc,hou

dkrkek∑
k∈Sc,hou

ωkrk
, (B.7)

and where ek is given in (2.12).

We can obtain a similar expansion for the bootstrap calibrated estimator Ŷcal,hou∗, conditionally

on the sample Shou and on the sample of respondents Sr,hou. We first obtain

Ŷcal,hou∗ = B̂>r,houXhou + êr,hou∗ +Op∗(Nn
−1) (B.8)

and

1

p̂c∗
− 1

p̂c
=

1

p̂c

∑
k∈Sc,hou

ωkWk(1− rk/p̂c)∑
k∈Sc,hou

ωk
+Op∗(n

−1), (B.9)

where Op∗ stands for the order of magnitude in probability, conditionally on Shou and Sr,hou. This

leads to

êr,hou∗ =
∑

k∈Shou

dkWk

[
ωkπkērc(k),hou +

rk
p̂c(k)

(
ek − ωkπkērc(k),hou

)]
+Op∗(Nn

−1). (B.10)

From (B.8) and (B.10), we obtain

Ŷcal,hou∗ = B̂>r,houXhou +
∑

k∈Shou

dkWkak +Op∗(Nn
−1). (B.11)

Therefore, the variance of Ŷcal,hou∗ conditionally on Shou and Sr,hou (say, V∗) is approximately

V∗(Ŷcal,hou∗)
.
= V∗

 ∑
k∈Shou

Wkdkak

 (B.12)

= vmult(Ŷcal,hou), (B.13)

where vmult(Ŷcal,hou) is given in equation (2.11).
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