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Abstract

Variance estimation is a challenging problem in surveys, for which bootstrap is an important
tool. In this work, we are interested in the use of the with-replacement bootstrap for household
surveys, with or without sub-sampling of individuals. We make explicit the benchmark variance
estimators that the with-replacement bootstrap aims at reproducing. We also explain how
the with-replacement bootstrap can be used for sampling, treatment of unit non-response and
calibration. For clarity, the proposed methods are illustrated on a running example. They are
evaluated through a simulation study, and applied to a French Panel for Urban Policy. Two

SAS macros to perform the bootstrap methods are also developed.

1 Introduction

Variance estimation is a challenging problem in surveys. In particular, the final weights used for
estimation involve several statistical treatments (e.g., correction of unit non-response and calibra-
tion) which need to be accounted for. Bootstrap is an interesting tool, leading to the creation of
so-called bootstrap weights released with the survey data set. These random weights can be used
to compute repeatedly the bootstrap version of the parameter of interest, leading to a simulation-
based variance estimator or confidence interval. The interest for practitioners is that no information
other than the bootstrap weights is needed for variance estimation. In particular, a comprehensive
description of the original sampling design and estimation process is not required, which would be

the case under an analytic approach where the variance estimator needs to be explicitly written.



There is an extensive literature on bootstrap in survey sampling, see for example Shao and Tu (1995,
Chapter 6)/Davison and Hinkley (1997, Section 3.7)/Davison and Sardy| (2007)) /Chauvet| (2007)) and
Mashreghi et al.| (2016) for detailed reviews. One of these techniques is the so-called rescaled boot-
strap proposed by |Rao and Wu/ (1988, which may be summarized as follows. First, initial bootstrap
weights are obtained by using the classical i.i.d. bootstrap on the first-stage sample. Then, these
weights may be rescaled so as to reproduce an unbiased variance estimator for the estimation of a
total (linear case). As explained by |Rao and Wul (1988), the rescaled bootstrap may be applied to a
variety of sampling designs including two-stage sampling and with/without-replacement sampling
at the first stage. However, it is not straightforward to account for some practical features of a

survey such as the treatment of unit non-response.

Alternatively, the classical i.i.d. bootstrap may be applied on the first-stage sample, without fur-
ther rescaling. This is sometimes referred to as the bootstrap of Primary Sampling Units (PSUs)
or with-replacement bootstrap. It leads to conservative variance estimation, in the sense that
the sampling variance is overestimated if the first-stage sampling design is more efficient than
with-replacement sampling. This is the approach that we pursue here, our paper aiming at being
user-oriented. In particular, we do not propose particular modifications of the with-replacement
bootstrap. Rather, we explain how this bootstrap method may be applied to account for sampling,
treatment of non-response and calibration, and in so doing, what is the variance estimator that
we aim at reproducing when estimating a total. We give some running examples to illustrate how
bootstrap weights are computed in simple cases. Two SAS macros implementing the proposed
bootstrap methods are presented, evaluated through a simulation study, and illustrated on a real

survey dataset from the Panel for Urban Policy.

For simplicity of presentation, our terminology is that of household surveys, which is our original
motivation for this paper. We consider two cases: first, when a sample of households only is se-
lected; secondly, when a subsample of individuals is selected inside the selected households. Despite
this specific terminology, our approach is general and may be applied to any other situation when

a survey is performed by one-stage sampling (first case) or by two-stage sampling (second case).

We are in particular interested in household phone surveys, which have been extensively used at
the French National Institute for Demographic Studies (INED) over the last decades. Originally, a
sample of phone numbers was selected from a register of fixed-line numbers, and more recently the
phone numbers used in the survey are randomly generated to account for households not covered
in the registers (unlisted or cell numbers). In a second step, individuals are selected within the
households, using classic selection methods (e.g., Kish individual). Phone surveys have proved to

be efficient, specifically for sensitive subjects like sexuality, violence, or addictions. Some examples



of surveys performed by INED include the national survey on violence against women in France in
2000 (ENVEFF), the national survey on violence and gender exchange in 2015 and 2018 (VIRAGE
and VIRAGE overseas, respectively), or the national survey on the context of sexuality in France
in 2006. The same protocol is likely to be used in a near future for surveys on similar subjects, like

the one on young adults’ sexuality or the one on birth control, to begin between 2021 and 2023.

The paper is organized as follows. In Section [2] our main notations are defined, and we consider
the estimation of a total by accounting for sampling, unit non-response and calibration. We treat
in Section the situation when a sample of households only is selected (one-stage case), and
in Section [2.2| the case when individuals are sub-sampled inside households (two-stage case). The
basic bootstrap method is described in Section [3} the one-stage case is considered in Sections
and and the two-stage case is considered in Sections [3.3]and We explain in Section [3.5] how
the basic bootstrap procedure may be applied to obtain an estimator of variance or a confidence
interval. The proposed bootstrap methods are evaluated in Section [4] through a simulation study.
We present in Section [5] the SAS program to perform bootstrap for the one-stage case, and apply
it for illustration on a sample of households from the French Panel for Urban Policy. We present in
Section [ the SAS program to perform bootstrap for the two-stage case, and apply it for illustration
on a sample of individuals from the French Panel for Urban Policy. The SAS programs are available

as Supplementary material.

2 Notation and estimation

In this Section, we define our main notations and we describe the sampling and estimation process.
We first consider in Section the case when a sample of households only is selected, and we
describe the estimation process which includes treatment of unit non-response and calibration.
We indicate in each case what is the benchmark variance estimator considered, i.e. the variance
estimator that we aim at reproducing for the estimation of a total with the bootstrap method
proposed in Section [3l The case when individuals are sub-sampled inside households is covered in

Section The benchmark variance estimators for this second case are given in Appendix [A]

2.1 Case of a sample of households only

We consider estimation for a population Uy, of households. We let y; denote the value taken by

some variable of interest for the household k. We are interested in the estimation of the total

Yiou = D Uk (2.1)

keUhou



2.1.1 Sampling design

We suppose that a sample Sy, is selected in Uy, by means of a stratified one-stage sampling
.., SH
)

design. The population Uy, is partitioned into H strata U& our U}gu, the samples Sé ou

ou’

are selected inside independently, and the sample Sj,, is the union of these samples. We let 7

denote the inclusion probability of some household k. The design weight is

1
dy, = —. (2.2)
Tk
In case of full response, the estimator of Yy, is
Yiou = Y dryr (2.3)
keshou

We consider as a benchmark variance estimator
2

H
Umult(?hou) = Z mh Z dkyk_nlh Z dk’yk” s (24)

ny — 1
h=1 kesh k'esh

hou hou

with nj, the size of the sample S,’fou. This variance estimator is unbiased if the samples are selected
inside strata by multinomial sampling (Tillé, 2011, Section 5.4), a.k.a. sampling with replacement.
It is conservative if the sampling designs used inside strata are more efficient than multinomial
sampling (Sarndal et al. 1992, Section 4.6), which we assume to hold true in the rest of the paper.
The positive bias of this variance estimator is expected to be negligible if the sampling rates inside
strata are so, which is often the case in phone surveys. This is illustrated by the results of our

simulation study, see Section

2.1.2 Treatment of non-response

In practice, the sample Sj,, is prone to unit non-response, which leads to the observation of a
sub-sample of respondents S, o, only. We let 7, denote the response indicator of a household
k, and p, denote the response probability of the household k. We suppose that the households
respond independently of one another. Also, we suppose that unit non-response is handled through
the method of Response Homogeneity Groups (RHGs), which is popular in practice (e.g. Brick,
2013; |Juillard and Chauvet), 2018]). Under this framework, it is assumed that the sample S, may
be partitioned into C' RHGs denoted as S1 pou, - - -, Sc,hou sSuch that the response probability py, is
constant inside a RHG.

We let p. denote the common response probability inside the RHG S¢ 0. It is estimated by

Ekesc,hou CL)ka-

Y
Ekesc,hou wk

Pe (2.5)

4



with wy some weight attached to the household k. The choice wi = 1 leads to estimating p. by
the unweighted response rate inside the RHG. The choice wy = dj leads to estimating p. by the
response rate inside the RHG, weighted by the sampling weights (e.g. [Kott}, 2012]).

Accounting for the estimated response probabilities leads to the weights corrected for non-response

d
dp = — (2.6)
Pe(k)
with ¢(k) the RHG of the household k. The estimator of Y}, adjusted for non-response is
Y;",hou = Z drk Y- (27)
kes’r,hou

Building on the multinomial variance estimator in (2.4)) and on linearization for estimators reweighted

for unit-non-response (Kim and Kim) 2007, Section 2), our benchmark variance estimator is
2

H
. n 1
Ut Vohou) = 3 —— > digtine — > dpu | (2.8)

np — 1
h=1 keSp kesp .

hou
. _ Tk _
with uyy = WETkYrc(k) + b ) {yk - wkﬂ-kyrc(k)} >
c

ZkeSc,hou drriyr

Zkesc,hou wka

and ¥p. =

This is a conservative estimator for the asymptotic variance of ffr,hou. A key assumption for this is

that the response indicators r; are mutually independent.

2.1.3 Calibration

Lastly, the weights adjusted for non-response are calibrated on some auxiliary totals known on
the population. For simplicity, we describe only the Generalized REGression estimator (GREG
Sarndal et al.; 1992, Chapter 6). Let x; denote the vector of calibration variables at the household
level, and X}, the total on the population Up,. For the sample S, j,0,, this leads to the calibrated
weights

W = drk (1 + x;—)\hou) )
—1

with Ao = Z d,«kxkxg (Xhou - Xr,hou) » (29)
kesr,hou

and where thou is the estimator of Xp,,, obtained by plugging xj into 1) The calibrated

estimator is

)A/cal,hou = Z WrYk- (210)
kesr,hau



The sampling and estimation steps are summarized in Figure

- Non-response ’ Sampling
i ¢,
d, == Step 2 Step 1
pc(k)

ol Calibration

b

‘j i_ Step 3

\\,’

Wi

Figure 1: Sampling and estimation steps for a household sample

Using linearization for estimators reweighted for unit-non-response and calibrated (Kim and Kim
2007, Section 5), our benchmark variance estimator is

2

H
~ np 1
VUit (Yeal,hou) = Z Z dyuoy, — P Z dpruggr | (2.11)

ny — 1

h:1 keS}’:Ou kles}}:ou
. _ Tk _

with ugy = WETEkCre(k) + = {ek - OJk:'ﬂ-kerc(k)} )
Pe(k)
— Zk;esc,hou dkrkek
and éy. ,

Zkesc,hou (/Jk-'r‘k;
where we let
—1
AT . N T
e = Yp — Br,hou‘rk‘ with By hou = Z drrTrT) Z drkTRYk (2.12)

keSr’hou keSr,hou

denote the estimated regression residuals of the variable of interest on the calibration variables.
This is a conservative estimator for the asymptotic variance of Ycal’hou.
2.1.4 Computation of household weights on an example

To fix ideas, we describe a small example. We consider a population Uy, of Np,, = 100 households.

We suppose without loss of generality that a single stratum is used, and that a sample of np,, = 10



households is selected.

The sample is S = {4, B, ..., J}. The inclusion probabilities of the selected units are (say)

1
TA=Tp =70 =Tp = and WE:WF:WG:WH:W[:WJ:E, (2.13)
resulting in the design weights
dA:dB:dC:dD:4 and dE:dF:dG:dH:d[:dJ:16. (2.14)

Among the 10 selected households, 7 only are surveyed due to non-response. It is accounted for
by using the method of Response Homogeneity Groups (RHGs), and we suppose that there are
two RHGs: the units A, B, F and J in the first one, and the units C, D, E, G, H, and [ in the
second one. The units B, C' and G are non-respondents. Inside each RHG, we compute estimated

response probabilities, weighted by the design weights (wy = di). This leads to

o XkeSu TR datdrtd; 9

P s de datdgtdptd; 10

A dp +dg + dg +d 13

by = DT oETOH T = (2.15)

do+dp+dg+dag+dg+d; _ﬁ'

The weights accounting for non-response are obtained for the respondents by dividing the sampling

weights by the estimated response probabilities. This leads to the weights

40 72 288 160
dea=— dip=— dp=dy=dy="r dp=dpj=—. 2.16
A 9 D 13 E H 1 13 F J 9 ( )

Finally, the weights are calibrated to match exactly the population size Np,, = 100 and an auxiliary
total Xi o, = 60. Note that, using the sample of respondents, we obtain ]\Afnhou = 112 and
X 1r,hou = 66.53. The calibrated weights are
wa =4.01, wp =4.87, wg =wyg = 19.98,
wr = 15.63, wr =19.49, wy = 16.03. (2.17)

The sampling and estimation steps are summarized in Figure

2.2 Case of a sample of households and individuals

We are interested in the population U, of individuals associated to the population Uy, of house-
holds considered in Section If we let y; denote the value taken by some variable of interest for

the individual [/, the parameter of interest is

Yina = Z Y- (2.18)

1€U;na



dE= dF=dG=dH=d1=d]=16

Plzﬁ PZZE

40 72 288 160
drag =— dip =75 dip=dyy =dy = ﬁ dip= dr] =

9 13

| 2= (L) xp=(10) xp= (L1) xp= (10) xy=(11) x=(1L0) x—=(1,1) |

‘ Xnow = (100, 60) X, p0u=(112, 66.53)

Wy = 4.01 Wp = 4.87 Wg = Wy = 19.98
wp=15.63 w;=1949  w; = 16.03

Figure 2: Estimation steps for the weighting of households

2.2.1 Sampling design

Inside any sampled household k € Sj,y, a subsample Sipq 1 of individuals is selected, and the sample
Sina 1s the union of these samples. We let m;, denote the conditional inclusion probability of the

individual [ inside the household k. The conditional design weight of [ is

1
dyp = —— foranyl €k, (2.19)
Tk

and the non-conditional design weight is

dp = dy xdy for any [ € k. (2.20)

In case of full response, the estimator of Y,  is

Yid = Y, de >, dpy= Y, duw (2.21)

keshou lesind,k: kesind



The benchmark variance estimator for Ymd is obtained from 1 , by replacing y;, with

g o= Y dy (2.22)

l€Sind,k

2.2.2 Treatment of non-response

The weights of individuals accounting for the non-response of households are
dry = dyydyrqy  with  k(l) the household containing /, (2.23)

with d,; the weight of household k corrected for unit non-response (see equation , and dj the
conditional sampling weight of individual [ inside the household k (see equation [2.19). We let

Sr,ind = U Sind,k (224)
kesr,hou

denote the set of all sampled individuals inside the responding households.

The individuals in S, ;,q are themselves prone to non-response, though it is usually expected to
be to a smaller extent. This leads to the observation of a sub-sample of respondents S, ;nq only.
We let r; denote the response indicator and p; denote the response probability of the individual I.
We suppose that the individuals respond independently of one another. Also, we suppose that this
non-response is handled through the method of RHGs: the sample S, ;,4 may be partitioned into D
RHGs denoted as Sy1 ind, - - - , SrD,ina Such that the response probability p; is constant inside a RHG.

We let pg denote the common response probability inside the RHG 5,4 inq. It is estimated by

Elesrd,ind (./Jl Tl
Pd ~

) 2.25
zlesrd,ind wl ( )

with w; some weight attached to the individual [. The choice w; = 1 leads to estimating pg by the
unweighted response rate inside the RHG. The choice w; = d; leads to estimating py by the response
rate inside the RHG, weighted by the individual sampling weights. The choice w; = d,; leads to
estimating pg by the response rate inside the RHG, weighted by the individual sampling weights
corrected of household unit non-response. We compare these different choices in the simulation

study performed in Section [4

Accounting for the estimated response probabilities leads to the individual weights corrected for

household/individual non-response

d
dpy = —%  with d(l) the RHG containing . (2.26)



The estimator of Y;,4 adjusted for household/individual non-response is

Y/;"r,ind = Z drrlyl- (2'27)
lES’I"I‘,ind

2.2.3 Calibration

We let z; denote the vector of calibration variables at the individual level, and Z;,,4 denote the total
on the population U;yg4. For the sample S, ;nq, this leads to the calibrated weights

wy = drrl (1 + Zl—l—)\ind> 5
—1
with A\ = Z drrlZlZlT (Zz’nd - er,ind) ) (2'28)

leSM‘,ind

and where med is the estimator of Z;,4, obtained by plugging z; into 1) The calibrated

estimator is

Yeainda = Y w- (2.29)
lES’I"I‘,ind

The sampling and estimation steps are summarized in Figure [3]

Sampling of
individuals +
Indnj!dual Household Sampling of
’ non-response - non-response ’ households
ek ' d. = di l §
d,=— Step 3b k=2 Step 2 Step 1
an pc(k)
™ i
[ Calibration of I Calibration of
i 1 individual weights i I household weights
e S
ot Step 4b R4 Step 3

=
S
b

Figure 3: Sampling and estimation steps for a household sample with sub-sampling of individuals
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2.2.4 Computation of individual weights on an example

We continue the example initiated in Section Recall that the sample of responding households
is Syphou = {A,D,E,F,H,I,J}. The set of all individuals inside the responding households is as
follows (say):

(i1,42,93)  (i4)  (i5,%6) (i7,48,%9) (i10,%11) (i12) (i13)- (2.30)
———— o o e e N
A D E P et T J

We suppose that the sampling design consists in selecting one individual exactly inside each house-

hold. The set S, jnq of all sampled individuals inside the responding households is

Srind = {i1,14,76,18,711, 112, 113} (2.31)

From equations (2.23)) and (2.16)), the individual weights corrected for household non-response are

therefore

40 72 576 160 576 288 160
dii = —, dpy=— =— dig=—, dr11=—, =— dyz3=—.2.32
rl 3 3 r4 13, r6 13 r8 3 rll 13 rl2 13 rl3 9 ( )
Among these 7 selected individuals, 4 only are surveyed due to non-response, accounted for by using
the method of Response Homogeneity Groups (RHGs). We suppose that there are two RHGs: the
units i1, ig, 7g and 417 in the first one, and the units i4, 412 and 413 in the second one. The units
i4, 111 and 413 are non-respondents. Inside each RHG, we compute unweighted estimated response

probabilities (w; = 1). This leads to

P Zlesrl,ind Tl 3
1 = = 5 = 7
Zlesrl,ind 1 4
ZZGS 2 ind Tl 1
Py = " =, (2.33)
Zlesr2,ind 1 3

The weights accounting for household /individual non-response are obtained for the respondents by
dividing the weights in (2.32)) by the estimated response probabilities. This leads to the weights

160 2304 640 864

drrl = T rr6 — = rrl2 — TS

Ton drr—77 24
9 39 ' 87 79 (2.34)

Finally, the weights are calibrated to match exactly the population size N;,q = 200 and an auxiliary
total Zi inq = 450. Note that, using the sample of respondents, we obtain ]\Afr’md = 214.4 and
er,md = 451.3. The calibrated weights are

wy; = 19.61, we =1953.93, ws =78.43, w3 =48.04. (2.35)

The sampling and estimation steps are summarized in Figure [4

11



9 7 9

| 2=(13) z=(12) z=013) z,=(@1 |

‘zimz(zoo, 450)  Z,pina=(214.4,451.3) ‘

| wi=19.61 w;=5393 wy=7843 wyy =48.04 |

Figure 4: Estimation steps for the weighting of individuals

3 Bootstrap variance estimation

We begin in Section [3.I]with the description of the basic step of the bootstrap method when a sample
of households only is selected. An illustration is given in Section on the example initiated
in Section The bootstrap method when individuals are sampled inside the households is
described in Section [3.3] and an illustration is given in Section In Section [3.5] we explain how
the basic step of the proposed bootstrap method is used to perform variance estimation and to

produce confidence intervals.

3.1 Basic step of the bootstrap for households

Using the with-replacement bootstrap, we first draw inside the original sample S? selected in the

hou
stratum U, ,i‘ou a with-replacement resample S}’fou* of np, — 1 units, with equal probabilities. For any

ke Sﬁou, we take
Np

W, = T X Number of times the household k is selected in the resample SP', .. (3.1)
ny —

12



The computation of the bootstrap weights accounting for the sampling design, for unit non-response
and for the calibration is described in Algorithm [I] The steps refer to Figure

The treatment of unit non-response in the bootstrap process deserves some explanations. Firstly,
our approach is conditional on the response indicators r. Contrarily to the sample membership
indicators which are bootstrapped at Step 1 of Algorithm [I} the response indicators remain fixed
in the bootstrap process. This is due to the fact that we aim at reproducing a variance estimator
which considers the sample S}, as selected with replacement, and that in such case bootstrapping
the ri’s is not needed. Secondly, accounting for unit non-response at Step 2 of Algorithm [1] is
performed conditionally on the RHGs: we do not bootstrap the process leading to the building of
the RHGs (e.g., Haziza and Beaumont, [2017). Finally, bootstrapping the response probabilities as
described in equation accounts for the estimation of the response probabilities p.. If we do
not bootstrap these response probabilities and if we plug in equation the original estimated
probabilities p., the response probabilities are treated as if they were known, which usually results

in an overestimation of the variance (Beaumont, 2005; Kim and Kim) [2007)).

In the bootstrap process presented in Algorithm [1} the calibration step is performed on the true
population total Xp,,. Following the bootstrap principle which states that the sample S}, is to
the bootstrap sample Spou« What the population Uy, is to the sample Sy, it could seem more
intuitive to rather calibrate on the estimated totals X}, obtained by plugging x; into equation
. Both approaches seem valid for variance estimation, but the calibration variables xj may be
prone to non-response on the sample She,, making the estimator Xhou nOt possible to compute,

while the total X}, is known from an external source.

3.2 An example of computation of bootstrap household weights

We continue with the example initiated in Section The bootstrap is performed by first

selecting a resample of n = 9 households, with replacement and with equal probabilities, among

the original sampled households. In this example, we suppose that the household A is selected

three times, that the household G is selected twice, and that the households D, E, H and [ are

selected once. Making use of equation , this leads to the bootstrap sampling weights
dA*Z%O dD*Z%O dE*:dH*:dI*:? dG*Z%-

The bootstrap sampling weights are corrected for non-response in the same way than in the original

(3.9)

correction of non-response: using the same RHGs, and weighted estimated probabilities. In this
case, the first RHG contains only the unit A which is a respondent, so that pi, = 1. The second
RHG contains D, E, G (non-respondent), H and I. This leads to

dD*+dE*+dG*+dH*+d[* 21’

D2x = (3.10)

13



Algorithm 1 Computation of bootstrap household weights accounting for non-response and cali-

bration
e Step 1: we account for the sampling of households by computing, for any k € Shoy, the

bootstrap sampling weight
dps = Wydy. (3.2)
The bootstrap version of the full-response estimator given in (2.3) is

Yhou* = Z dk*yk (33)
keshou

e Step 2: we account for household unit non-response by computing the bootstrap estimated
probabilities inside the RHGs
Yokes., Wiwrr

~ c,hou
P = : s 3.4
- Y kS Wit 34

and we compute the bootstrap weights corrected for non-response

A
dope = —2 (3.5)
Pe(k)«

with ¢(k) the RHG containing the household k. The bootstrap version of the estimator
corrected for unit non-response given in (2.7) is

Yr,hou* = Z drk*yk- (3'6)
kes’r,hou

e Step 3: we account for the calibration by calibrating the weights d,rs« on the totals Xpey.
This leads to the bootstrap calibrated weights

T
Whs =  dpps (1 + )\hou*) s (37)
—1
. T A N
with Apous = Z drk*xkivk (Xhou - Xr,hou*) and Xr,hou* = Z drpsT.
kes’r,hou kesr,hou

The bootstrap version of the calibrated estimator given in (2.10) is

}A/cal,hou* = Z WYk - (38)
kes’r,hou

14



and to the bootstrap weights corrected for non-response

40 280 1120
drA* = ? er* = % drE* = drH* = drl* = W (3-11)

Finally, the weights are calibrated to match the population size Np,, = 100 and the auxiliary total
X1,hou = 60. This leads to the bootstrap calibrated weights

Wax = 11.30 wp« = 8.00 wg« = wH« = 24.35 wr, = 32.00 (3.12)

The computation of the bootstrap weights is summarized in Figure

_ 40

9

pr. =1

PZ*:ﬁ

40 280 1120
d?Aw = ? D= — _9 drE* = d?H*= = dﬂ* =—Za

| =@ xp=(10) =11 x,=(@11) x=(10) |

Xpow = (100, 60) X, pou.=(106.67 ,70.77)

wy, = 11.30 wp. = 8.00
wg, = wy, = 2435 w,, =32.00

Figure 5: Computation of bootstrap household weights

3.3 Computation of bootstrap weights for individuals

The computation of the bootstrap weights accounting for the sampling design, for household/indi-
vidual non-response and for calibration is described in Algorithm [2] The steps refer to Figure[3] In
addition to the bootstrap steps in Algorithm [} note that Algorithm 2] involves bootstrapping the

15



computation of response individual probabilities only. Note that the sub-sampling of individuals

inside households does not need to be bootstrapped, as discussed in Section (3.1

3.4 An example of computation of bootstrap individual weights

We continue with the example in Section The bootstrap sample of households is constituted
of A (three times), G (two times), and D, E, H and I (one time). Due to household non-response,
we observe A, D, E, H and I only. From equations ([2.29)) and ([2.30)), this results in the bootstrap

sample of individuals

Sr,ind* = {i17i47i67i11ai12}' (319)

The bootstrap weights of households corrected for unit non-response are given in equation (3.11]).
From equation (3.13)), the bootstrap weights of individuals adjusted for household non-response are

280 2240 2240 1120

dr*:40 d’r*zi dr*zi rlls — 55 r12% —
1 4 6 11 39 12 39

39 39 (3.20)

These bootstrap weights are corrected for individual non-response in the same way than in the
original correction of individual non-response: using the same RHGs, and unweighted estimated
probabilities. However, we need to account in these probabilities for the original bootstrap weights
Wi. In our case, the first RHG contains the individuals 41, ¢¢ and 411, and 411 is a non-respondent.
The individual ¢; belongs to the household A, which has been selected three times (W4 = 3) in the
bootstrap sample. The individual g belongs to the household E and the individual 717 belongs to
the household H, which have both been selected one time in the bootstrap sample (Wg = Wy = 1).

The computation is similar for the second RHG, and leads to

L Wy + Wg _4
P W s We+ Wy 5
Wr 1

oy = —————— = —, 3.21

p2 Wp + Wi 2 ( )

and to the bootstrap individuals weights corrected for household/individual non-response
5600 2240
drrl* =50 dr6* = W rl12x — W (322)

Finally, the weights are calibrated to match the population size N;,q = 200 and the auxiliary total
Z1,ind = 450. This leads to the bootstrap calibrated weights

Wix = 66.69 wex = 116.62 w2, = 16.69. (3.23)

The computation of bootstrap individual weights is summarized in Figure [6]
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Algorithm 2 Computation of bootstrap individual weights accounting for non-response of house-

holds, for non-response of individuals and for calibration
e Perform Steps 1 and 2 of Algorithm The bootstrap weights of households corrected for

non-response are d,, as given in equation ([3.5)).

e Step 3b: we first account for the sampling of individuals by computing the bootstrap indi-

vidual weights corrected for household unit non-response
drix = drp@y«dyrqy  With  k(l) the household containing [. (3.13)

We then account for individual unit non-response. We compute the bootstrap estimated
probabilities inside the RHGs

. 1S a.ima WEQWITL (3.14)
DPd« = . .
ZlESrd,md Wk’(l)wl

We compute the bootstrap weights of individuals corrected for household/individual non-

response, namely

drl*

Grl 3.15
Pd()« ( )

drrl*

with d(l) the RHG containing the individual [. The bootstrap version of the estimator cor-
rected for unit non-response given in ([2.27) is

}A/rr,ind* = Z drrl*yl' (316)

leSr'r,ind

e Step 4b: we account for the calibration by calibrating the weights d,.;. on the totals Z;,4.
This leads to the bootstrap calibrated weights

T
Wi = dppis (1 + 2 Aznd*) > (317)
-1
. T ~ ~
with )\ind* = Z drrl*zlzl <Zznd - er,’ind*) and er,ind* = Z drrl*zl-
kesr'r,ind lesrr,ind

The bootstrap version of the calibrated estimator given in (2.29) is

ffcal,ind* = Z Wi+ Y- (318)

lesrr,ind
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1120
dnl»c —_ d?Ds« ZE d?EszdrH* _dﬂ* __
5600 2240

drppe =50 dype. =

39 d?‘?’lz* = 39
Zl = (1,3) 26 = (1,2) le = (1,1)

Zinq=(200,450)  Z,yina.=(251.0,494.6)

Wy = 66.69 wg. =116.62 wy,. = 16.69

Figure 6: Computation of bootstrap household weights

3.5 Bootstrap variance estimation and confidence intervals

In this Section, we are interested in parameters which may be written as smooth functions of to-
tals. We explain how the basic step of the proposed bootstrap method is used to perform variance
estimation and to produce confidence intervals. For brevity, we focus on parameters defined over
the population of households Uj,,. The treatment for parameters of interest in the population of

individuals Uj,q is similar.

Suppose that y; is a g-vector of interest variables, and that we are interested in some parameter
Ohou = [(Ynou) with f : R? — R a known, smooth function. In case of full response, the substitution

estimator of 0y, is

éhou = f(f/hou)a (3-24)

see for example (1999)). In case of unit non-response at the household level, the estimator
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of 0},,,, corrected for unit non-response is

ér,hou = f(}/r,hou)a (325)

and the calibrated estimator of 0}, is

~ ~

gcal,hou = f(Ycal,hou)- (326)

In each case, a bootstrap variance estimator is obtained by applying a large number of times (say
B) the basic step of the bootstrap method in Algorithm |1} and then by computing the dispersion of
the bootstrap estimators. This is summarized in Algorithm [3] A rigorous proof for the consistency
of this bootstrap variance estimator is beyond the scope of this paper, but a heuristic justification

is given in Appendix [B]

Algorithm 3 Bootstrap variance estimation for an estimation over the population of households

1. Repeat B times the bootstrap procedure described in Algorithm Let us denote Y,fou*,
Y}fhou* and YCZL,LOU* for the bootstrap estimators of totals computed on the b-th sample.
and 6°

b Nb
Also, let us denote 6 6 cal hous

houss Or hows for the associated bootstrap estimators of 8y,,.

2. The Bootstrap variance estimator for é;wu is
1 & 1 & ’
A A /\b "b/
%oot (ehou) = ﬁ ; {ehou* - E = ehou*} ) (327)

and similarly for 0, po, and 0cas pou-

The bootstrap variance estimator may be used to compute a normality-based confidence interval
with targeted level 1 — 2a. For example, the confidence interval when using the full-response

estimator 0}, is

IChor(Ohou) = [Ohou £ ui—a {%oot (éhou> }0‘5], (3.28)

with uq_, the quantile of order 1 — « of the standard normal distribution. This confidence interval

is expected to be conservative, since the proposed bootstrap method is conservative too.

We also consider the percentile and the reverse percentile (a.k.a. basic) bootstrap confidence
intervals. They can be directly computed from the bootstrap weights and are therefore attractive
from a data user’s perspective, unlike more computationally intensive methods like the ¢-bootstrap

(e.g. Davison and Hinkley, |1997; Shao and Tu, (1995). For éhou, the percentile confidence interval
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is obtained by using the distribution of Onous as an approximation of the distribution of Onou. 1t
(1) 4B

hows: -+ O ous 10 form the confidence interval

makes use of the ordered bootstrap estimates 6

AL) AU

ICPBT(ehOU) = [6207)”7 0§LO”L)L*i| ’ (329)
with targeted level 1 —2cq, where L = aB and U = (1—a)B. The reverse percentile confidence inter-
val is obtained by viewing the distribution of (éhou* — éhou) as an approximation of the distribution
of (éhou — Ohow)- It leads to the confidence interval

ICrev(ehou) - |:2éhou - é(U) 2éhou - é(L) :| . (330)

houx’ houx

The properties of the bootstrap variance estimator and of the three confidence intervals are evalu-

ated in the simulation study performed in Section [4] for the estimation of a total.

4 Simulation Study

In order to evaluate the proposed bootstrap method, we conducted a simulation study on an arti-
ficial population. We first generate a population Up,, containing Ny, = 100,000 households, with
four auxiliary variables x1,..., x4 generated from a gamma distribution with shape and scale pa-
rameters 2 and 5. Inside the population, we generate three variables of interest ¥, ..., y3 according

to the following models

yik = 10+ x1p + wop + oc€p,
Yo = 10+ 21k + T3k + Tecy, (4.1)
ysk = 10+ x3p + w4y + Ocep,

where ¢, is generated according to a standard normal distribution. We set o, = 10, which results
in a coeflficient of determination of approximately 0.50 for each model. The auxiliary variables
1,21, xor are used as calibration variables at the household level in this simulation study. The
three variables of interest therefore correspond to cases when the calibration model is well specified
(y1), partly well specified (y2), or poorly specified (y3). The population Uy, is randomly split into
five response homogeneity groups (RHG) of equal sizes. The response probability p. inside the
RHG c is equal to 0.5 for the first group, 0.6 for the second group, ..., and 0.9 for the fifth group,

resulting in an average response rate of 70% for the households.

Inside each household k, we generate Nj individuals, where N — 1 is generated according to
a Poisson distribution with parameter 1, which results in an average number of 2 individuals per
household. Inside the corresponding population U;,4, we generate four auxiliary variables 21, ..., 24

with shape and scale parameters 2 and 0.5. Also, we generate three variables of interest y4, 5, ¥s
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according to the following models

Yar = 5+ 0.52’1[ + 0.52’2[ + onMi,
ysi = 5+ 0.521 + 0.523 + oy, (4.2)
yer = 9+ 0.5z3 + 0.524 + oy,

where 7; is generated according to a standard normal distribution. We set o, = 0.4, which results in
a coefficient of determination of approximately 0.6 for each model. The auxiliary variables 1, z1;, z9;
are used as calibration variables at the individual level in this simulation study. The three variables
of interest therefore correspond to a case when the calibration model is well specified (y4), partly

well specified (ys), or poorly specified (yg).

The population Us,q is split into five RHGs as follows. The individuals which are alone in their
household form a separate RHG, with a response probability of 1. The rationale behind this
choice is that in such case, the individual is somewhat equivalent to his/her household, and that
the non-response is modeled at the household level. Among the rest of the individuals living in a
household &k with N = 2 individuals or more, the variables z; and z9 are used to form four RHGs
of approximately equal size. The response probability pg ranges from 0.80 to 0.95 in these four

remaining RHGs. This results in an overall response rate of approximately 90% for the individuals.

Inside the population Up,,, we select a sample Sy, of 1y, = 1,000 households by simple random
sampling without replacement. Note that the sampling rate is small (1 % ), so that simple random
sampling with/without replacement are not much different, and the bias of the bootstrap variance
estimators is expected to be small under this set-up. The non-response is generated according to
the RHG household model, which results in a sample S, 1, of responding households. The esti-
mated response probabilities p. are obtained from equation , with equal weight w, = 1. Inside
each k € Sy o, one Kish individual is randomly selected with equal probabilities, which results in
the sample of individuals S; ;4. Inside S, ;,q4, the non-response is generated according to the RHG
individual model, resulting in a sample S, nq of responding individuals. The estimated response
probabilities pg are obtained from equation , in three possible ways: equal weights w; = 1,

sampling weights w; = d;, or individuals weights corrected for the household non-response w; = d,;.

The sampling and non-response steps are repeated C' = 1,000 times. On each sample S}, we
compute the full-response estimator given in (2.3), and on each sample S, oy, We compute the
estimator adjusted for non-response }A/,,,hou given in 1) and the estimator }Afcal,hou given in 1'

with the set of calibration variables x; = (1,x1k,x2k)T. On each sample S, ;nq, Wwe compute the

estimator adjusted for non-response Yr,ﬂ’md given in 1) and the estimator Ycal’md given in 1)
with the set of calibration variables z; = (1, zy;, zzl)T. For these five estimators, we compute the
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coefficient of variation

. MSE(Y)
CV(Y) = 100x +———, (4.3)

with MSE (}7) a simulation-based approximation of the mean square error of Y, obtained from an

independent run of 10,000 simulations.

For these five estimators, we also compute the bootstrap variance estimators obtained by applying
Algorithm |3| with B = 1,000. So as to measure the bias of a variance estimator v(f/), we use the

Monte Carlo Percent Relative Bias

C 138 ve(Ye) - MSE(Y)
MSE(Y)

RB{v(Y)} = 100 x , (4.4)

A~

where v.(Y.) stands for the variance estimator in the c-th sample. As a measure of stability of

A~

v(Y), we use the Relative Stability

1/2

o5, {outt - wspn |
MSE(Y)

RS{v(Y)} = 100 x (4.5)
Also, we compute the coverage rates of the confidence interval associated to the percentile Boot-
strap, to the basic bootstrap and to the normality-based confidence interval, with nominal one-tailed

error rate of 2.5% in each tail.

The results are presented in Table [1| for the estimation on the population of households. The coef-
ficient of variation of the calibrated estimator }Afcal,hou is smaller when the calibration variables are
explanatory for the variable of interest, as expected. We observe a slight positive bias of the boot-
strap variance estimator for the full-response estimator Yhou, but almost no bias for the reweighted
estimators }Af,ﬂ,hou and f’cal,hou. The bootstrap variance estimator is slightly less stable with the
reweighted estimators, which is likely due to the additional variability associated to the correction
of unit non-response. Concerning the confidence intervals, we note that the coverage rates are well

respected in all cases and for the three studied methods.

We now turn to the result on the population of individuals, which are presented in Table We
observe that the relative bias of the bootstrap variance estimator is very small in all cases. The
choice of the weights wy used in the estimation of the response probabilities seem to have no effect
on the coefficient of variation of the estimators, but the use of the weights w; = d,; adjusted for
household non-response yields slightly more stable variance estimators for ?mind- The coverage

rates are approximately respected in all cases.
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Table 1: Coeflicient of variation of the estimator of the total, Relative Bias and Relative Stability of

the Bootstrap variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap

and of the basic bootstrap for 3 variables on the population of households

Percentile bootstrap

Basic bootstrap

Normality-based

CvV.  RB RS L U L+U L U L+4U L U L+U
y1 | 1.47 248 7.2 22 31 5.3 21 33 54 22 32 54
Yiou y2 | 1.48 0.73 6.6 26 3.3 5.9 27 34 6.1 26 3.2 58
ys | 1.48 1.11 6.6 26 2.7 5.3 2.7 30 5.7 24 27 51
y1 | 1.82 042 8.7 24 24 4.8 23 27 5.0 23 26 4.9
f/},hou y2 | 1.83 -0.76 8.2 2.7 238 9.5 25 30 5.5 22 27 49
ys | 1.82 0.72 84 2.8 2.1 4.9 28 22 50 28 19 4.7
y1 | 1.29 1.27 8.3 24 27 5.1 28 28 5.6 2.8 2.7 5.5
Ycal,hou y2 | 1.58 -0.55 8.2 25 35 6.0 28 39 6.7 28 36 64
ys | 1.82 049 84 29 1.8 4.7 3.0 22 5.2 29 20 49

5 SAS Program for one-stage sampling

In this Section, we present the SAS macro developed to implement the proposed methodology for

a sampling of households only (one-stage sampling). The parametrization of the SAS program for

computing bootstrap weights is presented in Section For clarity, a small example is presented
in Section An illustration for the Panel for Urban Policy is given in Section

5.1 Program for computing bootstrap weights

The parameters related to the database are:

e BASE: library containing the SAS table with the list of sampled units. The default value is
BASE=WORK.

e ECHMEN : SAS table containing the list of sampled units in the population. The non-respondents

need also to be included in this table.

The parameters related to the bootstrap are:

e ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.

The parameters related to the variables needed in the SAS table are:

e IDMEN: list of variables identifying the statistical unit. They need to be character variables.
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Table 2: Coeflicient of variation of the estimator of the total, Relative Bias and Relative Stability of

the Bootstrap variance estimator, and Nominal One-Tailed Error Rates of the percentile bootstrap

and of the basic bootstrap for 3 variables on the population of individuals

Percentile bootstrap

Basic bootstrap

Normality-based

CvV.  RB RS L U L+U L U L+U L U L+U
Equal weights w; =1

ya | 2.01 031 9.6 2.0 3.2 5.2 1.9 33 52 1.9 3.0 49

}Aﬁmnd ys | 2.02 -0.17 9.6 2.4 34 5.8 22 37 59 23 35 5.8
ye | 2.02 -0.24 9.6 2.2 3.3 5.5 2.0 3.7 b7 2.0 32 52

ya | 0.29 1.72 10.8 2.1 24 4.5 2.1 23 44 2.1 22 43

Acal,ind ys | 0.39 1.04 11.3 2.3 25 4.8 2.3 2.5 4.8 22 24 46
ye | 0.47 1.90 11.2 2.8 21 4.9 22 25 47 23 2.0 4.3

Sampling weights w; = d

ya | 2.00 -0.08 9.5 1.8 3.8 5.6 1.7 3.8 5.5 1.7 34 51

Ammd ys | 2.00 0.14 94 1.9 3.3 5.2 2.2 35 5.7 1.8 35 5.3
ye | 1.99 0.61 9.3 1.7 3.2 4.9 1.7 34 5.1 1.7 32 4.9

ya | 0.29 -0.57 10.3 2.9 24 5.3 33 22 55 3.0 23 53

}Afcal’md ys | 0.39 040 11.6 2.4 3.2 5.6 2.7 33 6.0 23 32 55
ye | 0.47 -0.05 11.2 2.3 22 4.5 1.8 23 4.1 1.8 23 4.1

Weights adjusted for household non-response w; = d,;

ya | 1.99 -0.71 8.9 2.5 23 4.8 26 27 53 25 24 49

Ymmd ys | 1.99 -0.82 8.9 3.1 22 5.3 29 25 54 2.5 2.2 4.7
ye | 1.99 -0.26 9.1 3.1 23 5.4 3.0 3.0 6.0 29 25 54

ysa | 0.29 1.70 10.6 2.7 34 6.1 26 33 59 25 33 5.8

Acal,ind ys | 0.39 1.38 11.3 2.1 2.7 4.8 22 30 5.2 1.7 3.0 4.7
ye | 0.47 0.61 10.9 2.5 2.8 5.3 23 30 5.3 2.3 28 5.1

e STMEN: list of variables of stratification used for the sample selection.

e DMEN: sampling weight.

e RMEN: response indicator (1 for a respondent, 0 for a non-respondent).

e DRMEN: sampling weight, corrected for non-response.

respondents.

e DCMEN: calibrated weight. The values are only needed for the respondents.
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e GHRMEN: list of variables identifying the response homogeneity groups.

e WGHRMEN: weighting used in the computation of the response probabilities inside RHGs.
With WGHRMEN=0, the response rates are not weighted. This is the default value.
With WGHRMEN=1, the response rates are weighted by the design weights.

e XMENQUANT: list of quantitative variables used in the calibration. The values are only needed

for the respondents.

e XMENQUALI: list of qualitative variables used in the calibration. The values are only needed

for the respondents.
The parameters related to the output are:

e SORT_MEN: SAS table containing the bootstrap sampling weights WB_D1,...,WB_D&ITBOQT for

the whole sample.

e SORT_RMEN: SAS table containing the bootstrap weights WB_N1,...,WB_N&ITBOOT corrected for
non-response, and the bootstrap weights WB_C1,...,WB_C&ITBOOT corrected for non-response

and calibration, for the sub-sample of respondents.

5.2 A small example

We consider the example treated in Section The sample is as follows:

data ech;

input idm$ stmen$ dmen rmen ghrmen$ drmen dcmen x0 x1;

cards;

A1l 41 aa 4.44 4.01 11
B1 40 aa .

C1 40hbb.

D1 41bb5b.54 4.87 10
E 116 1 bb 22.15 19.98 1 1
F 116 1 aa 17.78 156.63 1 0
G116 0 bb .

H116 1 bb 22.15 19.98 1 1
I116 1 Dbb 22.1519.49 10
J 116 1 aa 17.78 16.03 1 1
;run;

We can obtain B = 1,000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when
unit non-response has been originally corrected by the method of RHGs, the response rates inside

RHGs were weighted by the sampling weights.
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%BO0TUP_1DEG (BASE=work ,ECHMEN=ech,
ITBOOT=1000,
IDMEN=idm,STMEN=stmen ,DMEN=dmen,
RMEN=rmen , DRMEN=drmen ,DCMEN=dcmen , GHRMEN=ghrmen , WGHRMEN=1,
XMENQUANT=x0 x1,XMENQUALI=,
SORT_MEN=ech_boot,SORT_RMEN=echr_boot) ;

5.3 Application to the French panel for urban policy

The Panel for Urban Policy (PUP) is a survey in four waves, conducted between 2011 and 2014 by
the French General Secretariat of the Inter-ministerial Committee for Cities (SGCIV). The survey
aims at collecting information about security, employment, precariousness, schooling and health,
for people living in the Sensitive Urban Zones (ZUS). We are only interested in the 2011 wave of the
survey. A sample of households is selected, and all the individuals living in the selected households

are theoretically surveyed.

The sample of households is obtained by two-stage sampling, see for example |Chauvet| (2015);
Chauvet and Vallée (2018). Firstly, the population of districts is partitioned into 4 strata, and a
global sample of n; = 40 districts is selected by means of probability proportional to size sampling
inside strata. A sample of households is then selected at the second-stage inside each selected
district by means of simple random sampling, in such a way that the final inclusion probabilities of
households are approximately equal inside strata (self-weighted sampling design). For the purpose
of illustration, the two-stage selection of the households is not considered here, and the sample of

households is viewed as directly selected by means of stratified simple random sampling.

The sample contains 2,971 households, but due to unit non-response only 1,256 households are
observed. Non-response is accounted for by using Response Homogeneity Groups, defined with re-
spect to five auxiliary variables: housing construction period, type of dwelling (apartment/house),
number of rooms, low-income housing (yes/no), region. By using a logistic regression and the score
method (e.g. Haziza and Beaumont, [2007)), we obtain 8 response homogeneity groups. The five

auxiliary variables used in the definition of the RHGs are also used for calibration.

We are interested in four categorical variables related to security, town planning and residential
mobility. The variable y; gives the perceived reputation of the district (good, fair, poor, no opinion).
The variable ys indicates if a member of the household has witnessed trafficking (never, rarely,
sometimes, no opinion). The variable y3 indicates if some significant roadworks have been done in
the neighborhood in the twelve last months (yes, no, no opinion). The variable y4 indicates if the

household intends to leave the district during the next twelve months (certainly/probably, certainly
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not, probably not, no opinion). For each category g of each variable y, we are interested in the

proportion

> Ly = 9)
eg,hou = kEUh?\}h ) (5.1)
ou

with Npe, the total number of households. The estimator of 8, adjusted for non-response is

A Ekesr,hou drkl(yk = 9)

A : 5.2
gr,hou Zkesr,hou drk ( )
see equation (2.7). The calibrated estimator of 6 is
R D okeS, now WEL(YK = 9)
gcal,hou — " ) (53)

Zkes’r,hou wk

see equation (2.10)).

For each proportion, we give the normality-based confidence interval making use of the bootstrap
variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals, see Section
We use the with-replacement Bootstrap presented in Algorithm [I] with B = 1,000 resamples.
The results with a nominal one-tailed error rate of 2.5 % are presented in Table The three

confidence intervals are very similar in all cases.

6 SAS Program for two-stage sampling

In this Section, we present the SAS macro developed to implement the proposed methodology for a
sampling of households and a sub-sampling of individuals (two-stage sampling). The parametriza-
tion of the SAS program for computing bootstrap weights is presented in Section [6.1} For clarity,
a small example is presented in Section An illustration for the Panel for Urban Policy is given
in Section [6.3

6.1 Program for computing bootstrap weights

The SAS macro %BOOTUP_2DEG enables to compute bootstrap weights for a household survey with
sub-sampling of individuals, and to account for correction of unit non-response via Response Ho-

mogeneity groups, and for the calibration of weights, both for households and individuals.

The parameters with equality sign are mandatory. All identifying variables must be of character

type.
The parameters related to the database are:
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e BASE: library containing the SAS tables ECHMEN and "ECHIND”. The default value is
BASE=WORK.

e BASESOR: library containing the output. The default value is BASESOR=WORK.

e ECHMEN= : SAS table containing the list of sampled households in the population. The

household non-respondents need also to be included in this table.

e ECHIND= : SAS table containing the list of sampled individuals inside all the responding

households. The individual non-respondents need also to be included in this table.
The parameters related to the bootstrap are:
e ITBOOT: number of bootstrap iterations. The default value is ITBOOT=1000.
The parameters related to the variables needed in the household SAS table ECHMEN are:

e IDMEN=: list of variables identifying the household. This variable is required in both ECHMEN
and ECHIND.

e STMEN: list of variables of stratification used for the sample selection.
e DMEN: sampling weight of the household.
e RMEN: response indicator of the household (1 for a respondent, 0 for a non-respondent).

e DRMEN: sampling weight of the household, corrected for non-response. The values are only

needed for the respondents.
e GHRMEN: list of variables identifying the response homogeneity groups for households.
e WGHRMEN: weighting used in the computation of the response probabilities inside RHGs:

— With WGHRMEN=0, the response rates are not weighted. This is the default value.

— With WGHRMEN=1, the response rates are weighted by the design weights DMEN.

e XMENQUANT: list of quantitative variables used in the calibration. The values are only needed

for the respondents.

e XMENQUALT: list of qualitative variables used in the calibration. The values are only needed

for the respondents.
The parameters related to the variables needed in the household SAS table ECHIND are:

e ID_IND=: list of variables identifying the individual (character variable).
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e R_IND: response indicator of the individual (1 for a respondent, 0 for a non-respondent).

e DR_IND: weight of the individual, corrected for both household and individual unit non-

response. The values are only needed for the respondents.
e PIKSACI=: conditional inclusion probability of the individual inside its household.
e GHR_IND: list of variables identifying the response homogeneity groups.
e WGHR_IND: weighting used in the computation of the response probabilities inside RHGs:

— With WGHR_IND=0, the response rates are not weighted. This is the default value.

— With WGHR_IND=1, the response rates are weighted by the design weights of individuals.
— With WGHR_IND=2, the response rates are weighted by the weights of individuals, adjusted

for household unit non-response.

e XINDQUANT: list of quantitative variables used in the calibration. The values are only needed

for the respondents.

e XINDQUALI: list of qualitative variables used in the calibration. The values are only needed

for the respondents.
The parameters related to the output are:

e SORT_MEN: SAS table containing all the sampled households, and the bootstrap sampling
weights WB_D1,...,WB_D&ITBOOT for the whole sample.

e SORT_RMEN: SAS table containing all the responding households, and the bootstrap weights

— WB_N1,....WB_N&ITBOOT corrected for non-response,
— WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.
e SORT_RIND: SAS table containing all the responding individuals inside the responding house-
holds, and the bootstrap weights

— WB_N1,...,WB_N&ITBOOT corrected for household non-response,

— WB_NN1,...,WB_NN&ITBOOT corrected for both household non-response and individual non-

response,

— WB_C1,...,WB_C&ITBOOT corrected for non-response and calibration.

30



6.2 A small example

We consider the example treated in Section [2.2.4] The sample of households and the sample of

individuals are as follows:

data echmen;

input idm$ stmen$ dmen rmen ghrmen$ drmen x0 x1;

cards;

A14 1aa4.44 11
B14 0 aa .

C14 0bb.

D14 1bbb.54 10
E 116 1 bb 22.15 1 1
F116 1 aa 17.78 1 0
G116 0 bb .

H116 1 bb 22.15 1 1
I116 1Dbb22.1510
J116 1 aa 17.78 1 1

;run;

data echind;

input idm$ idi$ piksaci drmen drl_ind rind ghrind$ phat_ind dr2_ind xil xi2;

cards;

A i01 0.34 04.44 13.06 1 g1 0.67 19.59 1 3
A i02 0.33 04.44 13.45 0 g2 .

A i03 0.33 04.44 13.45 1 g1 0.67 20.18 1 3
D i04 1.00 05.54 05.54 0 g2 .

E i05 0.33 22.15 67.12 1 g2 0.50 134.24 1 3
E i06 0.34 22.15 65.15 0 g2 .

E i07 0.33 22.15 67.12 1 g1 0.67 100.68 1 3
F i08 0.33 17.78 53.88 1 g2 0.50 107.76 1 3
F i09 0.33 17.78 53.88 0 g2 .

F 110 0.34 17.78 52.29 0 g1 .

H i1l1 0.50 22.15 44.30 1 g2 0.50 88.60 1

H i12 0.50 22.15 44.30 1 g1 0.67 66.45 1

I i13 1.00 22.17 22.17 0 g1 .

J 114 1.00 17.78 17.78 1 g2 0.50 35.56 1 1
;run;

We can obtain B = 1,000 bootstrap weights as follows. Since WGHRMEN=1, it is supposed that when
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unit non-response of households has been originally corrected by the method of RHGs, the response
rates inside RHGs were weighted by the sampling weights. Since WGHR_IND=0, it is supposed that
when unit non-response of individuals has been originally corrected by the method of RHGs, the

response rates inside RHGs were unweighted.

%bootup_Qdeg(base=work,echmen=echmen,echind=echind,
itboot=1000,
idmen=idm, stmen=stmen,dmen=dmen,drmen=drmen,rmen=rmen, ghrmen=ghrmen,wghrmen=1,
xmenquant=x0,xmenquali=x1,
id_ind=idi,r_ind=rind,dr_ind=dr2_ind,piksaci=piksaci,ghr_ind=ghrind,wghr_ind=0,
xindquant=xil xi2,xindquali=,
sort_men=sort_men_test,sort_rmen=sort_rmen_test,

sort_rind=sort_rind_test);

6.3 Application to the French panel for urban policy

We continue the illustration initiated in Section The sample of responding households con-
tains 3,098 individuals who are theoretically surveyed, but due to unit non-response we observe
a subset of 2,804 individual respondents only. Non-response is accounted for by using Response
Homogeneity Groups, defined with respect to eight auxiliary variables: three at the individual level
(sex, age, nationality), and five at the dwelling level (housing construction period, type of dwelling,
number of rooms, low-income housing or not, region). By using a logistic regression and the score
method, we obtain 8 response homogeneity groups. The three individual auxiliary variables used

in the definition of the RHGs are also used for calibration.

We are interested in three variables of interest. The variable y5 is quantitative, and gives the number
of children. The variable yg indicates whether the individual has one or several jobs (one, several,
none, no answer). The variable y7 indicates whether the individual benefits from a complementary
full medical cover (yes, no, no answer). For the variable y5, we compute the estimator of the
total adjusted for non-reponse and the calibrated estimator given in equations and ,
respectively. For the two other variables of interest and for each category g, we are interested in

the proportion

Zz U; L(yr = g)
Ogina = == N : (6.1)

with Nj,q the total number of individuals. The estimator of 8, ;,4 adjusted for non-response is

f Zzesmmd drril(yi = 9) (6.2)
and T ) .
grran Zlesrm.nd drrl
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see equation ([2.27). The calibrated estimator of 0 ;q is

R e e WU = 9)

chal,ind Z w
lesrr,ind !

, (6.3)

see equation ([2.29)).

For each parameter, we give the normality-based confidence interval making use of the bootstrap
variance estimator, the percentile bootstrap and the basic bootstrap confidence intervals. We use
the with-replacement Bootstrap presented in Algorithm [2] with B = 1,000 resamples. The results
with a nominal one-tailed error rate of 2.5 % are presented in Table[d The three confidence intervals

are very similar in all cases.

7 Conclusion and Future work

In this paper, we have explained how the with-replacement bootstrap may be applied to household
surveys, in order to account for the whole variability of the sampling process including sampling
and non-response, and to a posteriori adjustments like calibration. The methods have been illus-
trated on a toy example for clarity of exposition, evaluated via a simulation study and applied to
a French panel for urban policy. To make the implementation of the method easier for users, we

have developed two SAS macros which are available as Supplementary Material.

The results in the simulation study show that both the bootstrap variance estimators and three
bootstrap confidence intervals work well in case of a small sampling fraction. While the bootstrap
variance estimator is known to be conservative in this case, the coverage properties of confidence

intervals in such context remain unclear. This is an interesting matter for further research.

We have considered the situation when the survey is performed at one time only. If we wish to
perform longitudinal estimations, units are typically followed over time. If we are also interested
in cross-sectional estimations at several times, additional samples are selected at posterior waves
and mixed with the original sample. Bootstrap variance estimation in the context of longitudinal

surveys is a very important matter for further investigation.
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A Benchmark variance estimators for the sample of individuals

We first consider the estimator Ymd in equation 1} that we use in case of full response. The
benchmark variance estimator is
2

H
A~ nh N 1 ~
Umait(Yind) = Zn — > gk — > dwiw | (A.1)
=t ey, KES]
with g, = Z dyjyi-
l€Sina,k

We now consider the estimator }A/mmd given in equation 1j which is adjusted for the non-

response of both households and individuals. The benchmark variance estimator is

H n 1 i
> h
Vit (Yind) = Y — > | drvw - P > dpow | (A2)
h=1 kesh k'esh
where v, = U1 + usg,

where the first linearized variable 1y is similar to that given in equation (2.8)), while the second
linearized variable ug;. accounts for the estimation of the individual response probabilities. We have

for the first linearized variable

Tk

Qg = WkTkGre(k) T —— Lk — OkTkGre(k) | »
Pc(k)
- D okeS. pow ATErk
and ¢p. = :
Zkeso,hou CL)k-Tkn
R dyjkT
and Jrp = Y s (A.3)

l
l€Sind,k p

and for the second linearized variable

Tk L\ _
ugp = - Z wy <1 - A> Yrrd(1)» (A4)
i l€Sind,k P
> —dyryy;
With g = oSrding T (A.5)
Zlesrd,ind (.Ul'r‘l

We now consider the calibrated estimator Ycal’m given in equation 1' The benchmark variance
estimator is the same than given in equation li for Ymmd, by replacing the variable y; with the

estimated regression residuals of the variable of interest on the calibration variables, namely

1
e =y — Bjr,mdzl with  Byyina = Z drriz12] Z drri21Y1- (A.6)

lesrr,ind lesrr,ind
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B Justification for the bootstrap variance estimator

We provide some heuristic justification for the estimation of the total Y},,. The case of a complex

parameter can be handled similarly, by means of the linearization technique (Devillel [1999). For

the estimation of Y}, we consider the case of the calibration estimator Ycal,hou only, since the case

of Yo, and ﬁn7h0u can be handled similarly.

We follow the same approach as in Kim and Kim/ (2007). We first write

A~

}/;al,hou = }A/;Whou + B;l,—hou (Xhou - Xr,hou)
— }A/;",hou + B;lrou (Xhou — X?",hou) + Op(anl)
= Bi—zrouXhOu + Er,hou + Op(Nn_l),

with
Ey =y, — B) d Bhouw = ’
E= Yk houlk all hou = Ty TrYk-
keUhou keUhou

From the writing

1 1 ZkeSc how wi (1 — 7k /pe) 1 Zk;esc how wi(1 = 75/pe)

- — = . = — : + Op(n™1),
Pe  De D ke S, pow WkTE Pe D k€S, pou Wk b )
we obtain
- diri By
Er,hou = Z —
kesr,h,ou pc(k)
drpri B <
diriEy - _
= P ALY S (1) B O
kesr,hau pc k) c=1 kESc hou (k)
= Z dg {Wkﬂ'kE_‘c(k),hou + 2o (By — Wkﬂ'kEc(k),hou):| + Op(Nn™h),
C

keshou

with Ee poy = (ZkeUc,hou Ek)/(ZkeUQhou wgTE). From 1D and 1) we have
Ycal,hou = B];rouXhou + Z dkAk + Op(anl),

keshou
Tk

with Ay, = weme B hou + (Bx — wrmkBeiy hou) -

Pc(k)

(B.1)

(B.2)

(B.4)

From (B.4]), the asymptotic variance of Yeal hou is that of di Ay If the sampling design used
b kEShou

37



inside the strata is more efficient than multinomial sampling, a conservative variance estimator is

2
H
~ np 1
'UHH<Ycal,hou) = Z g, — 1 Z dkak — ni Z dk/ak/ R (B.5)
h:1 keS;LLOU klesgou
. _ Tk _
with ap = WETkCre(k),hou + m (ek - wkﬂ—kerc(k),hou) ’ (BG)
c
> driex
with érc,hou - b€8ehou (B?)

9y
Zkesa,hou wkrk

and where ey, is given in (2.12)).

We can obtain a similar expansion for the bootstrap calibrated estimator chal,hou*a conditionally

on the sample S, and on the sample of respondents S, j,o,,. We first obtain

}A/cal,hou* = B;I,—houXhou + ér,hou* + Op* (Nn_l) (BS)
and
11 1 2 keS, pou Wil = 71/De) .
- = = Op* (n ), (B,Q)
Pex Pe Pc Zkesa,hou Wk

where Oy, stands for the order of magnitude in probability, conditionally on She, and Sy poy. This

leads to
~ _ r _ _
Erhous = Z di, Wy, |:wk:7rkerc(k),hou (e - WkTkEre(k) hou) | + Opx(Nn™1). (B.10)
kE€Shon pc(k)
From (B.g]) and (B.10]), we obtain
ﬁal,hou* = B;,rhouXhou + Z dpWrar + Op* (Nnil). (B.ll)
keshou

Therefore, the variance of ?caz,hou* conditionally on Spe,, and Sy pe, (say, Vi) is approximately

V:k(f/cal,hou*) = VY* Z Wkdkak (B12)
kEShou
= Umult(ﬁal,hou)y (Bl?))

where Vit (Year houw) 1s given in equation (2.11]).
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