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Abstract

Two scalar fields characterizing respectively pseudo-Holder exponents and local energy transfers

are used to capture the topology and the dynamics of the velocity fields in areas of lesser regularity.

The present analysis is conducted using velocity fields from two Direct Numerical Simulations

(DNS) of the Navier-Stokes equations in a triply periodic domain. A ”typical irregular structure”

is obtained by averaging over 213 most irregular events. Such structure is similar to a Burgers

vortex, with non-axisymmetric corrections. A possible explanation of such asymmetry is provided

by a detailed time-resolved analysis of birth and death of the irregular structures, which shows

that they are connected to vortex interactions, possibly vortex reconnection.
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I. INTRODUCTION.

Batchelor & Townsend [1] speculated about the nature of small scale turbulent motions

on the basis of hot wire velocity measurements in the Cavendish wind tunnel. Their main

conclusion was that the energy associated with small scales is intermittent in space and

time and organized into strong discrete vortices. Since then, progresses in computer power

and image velocimetry has made it possible to investigate in more detail the nature and the

properties of small scale turbulent motions, at scales of the order of or below the Kolmogorov

scale. For example, it is now well established that regions where the vorticity supersedes the

strain (the so-called Q criterion) are indeed organized into small scale elongated coherent

structures that display a complex dynamics [2]. In some circumstances, they may inter-

act and reconnect iteratively, following a self-similar vortex reconnection cascade. During

reconnection, a distinct −5/3 inertial range is observed for the kinetic energy spectrum,

associated with numerous resulting fine-scale bridgelets and thread filaments [3].

In the mean time, theoretical models of vortex reconnection using Biot-Savart model

have evidenced a self-similar process, resulting in a near finite time singularity at the apex

of the tent formed by the vortices [4]. Another evidence for quasi blow-up is provided by the

”zeroth law of turbulence” [5], according to which the non-dimensional energy dissipation per

unit mass becomes constant at large Reynolds number, implying a blow up of the enstrophy

in the limit of zero viscosity. This suggests that the small scale structures of turbulent

motions are very irregular, and connects to the question of the existence of singularities

in the solutions to Navier–Stokes equations. Detecting and cataloging irregular structures

found in numerical and experimental turbulence is therefore a first step in order to find a

candidate for a mathematical non stationary singular solution to Navier–Stokes. This calls

for specific tools to analyze the irregular structures. A suitable tool to deal with them was

invented by Leray [6] and named ”weak formulation”. The main idea is to make a detour

via the scale space, and work with a coarse version of the initial field (a ”mollified” field),

over a characteristic scale (resolution) `. At any given resolution `, the mollified field is

sufficiently regular, so that all classical tools and manipulation of analysis of vector fields

are valid. Limiting behaviors as resolution ` → 0 can then be used to infer results and

properties for the rough field.

The problem of detection of turbulent irregular structures in numerical simulations has
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a long story. Most of these studies are conducted in the inviscid limit, using the Euler

equations, where irregular structures are characterized by diverging vorticity [7–10]. A clear

evidence for blow-up structure was claimed recently by [11] in an axisymmetric configuration,

near a stagnation point. The relationship between diverging vorticity and vortex dynamics

was investigated by Kerr (e.g. [12, 13]), while [14] uses an instanton method to capture

the most probable ”irregular structure”. Fewer studies have been devoted to the possible

topology of singularities or quasi-singularities in Navier–Stokes equations, characterized by

diverging velocity. In particular, a study by [15] uses a criterion based on the geometry of the

streamlines of velocity to search for singularities in Navier–Stokes turbulence. Another line of

study is the analysis of the formation of extreme values of energy dissipation or vorticity with

increasing Reynolds number [16]. More recently, Buaria et al. [17, 18] studied the formation

of extreme events of velocity gradients in simulations of Navier–Stokes with a very good

resolution. In the present paper, we build upon our previous work, where we showed how

the mollified vector fields, over the scale `, can be used to follow extreme events of two scalar

fields that encode the regularity properties of the small scale motions: i) a pseudo-Holder

exponent h̃(x) built using the Wavelet Transform Modulus Maxima (WTMM) method and

providing the best local estimate of Hölder regularity compatible with the global multi-

fractal analysis [see 19]; ii) a local energy transfer DI
` (x) built using the energy balance at

scale ` of the weak solutions to Navier–Stokes equations [20, 21].

Here, we apply the tools based on local Hölder exponents to velocity fields issued from

Direct Numerical Simulations (DNS) of the Navier-Stokes equations in a triply periodic

domain, to capture the topology and the dynamics of the velocity fields in areas of lesser

regularity. We further compute a ”typical irregular structure” by averaging over 200 most

irregular events. Such typical structure is similar to a Burgers vortex, with small non-

axisymmetric corrections. A possible explanation of such asymmetry is provided by a de-

tailed time-resolved analysis of birth and death of the events, which shows that they are

connected to vortex interactions, possibly vortex reconnections.

II. TOOLS FOR STUDYING IRREGULAR MOTIONS

In order to probe areas of lesser regularity in the flow, we use two different tools, based

upon weak formulation and connected with the concept of Hölder continuity. A velocity

3



field is said to be h-Hölder continuous with some exponent h < 1 if there exists C such that

for ` small enough:

‖u (x + `)− u (x) ‖ < C`h. (1)

where u(x) is the velocity field and ` is a vector of length `.

This regularity condition is intermediate between simple continuity and differentiability

and is based on the velocity increment δu(x, `) = u(x + `) − u(x). Velocity fields with

exponent h < 1 are locally non-differentiable, but we can build derivatives in a weak sense

by considering the quantity

∇`u = −
∫

∇Ψ`(y)u(x,y)dy, (2)

where Ψ`(x) = Ψ(x/`)/`3 and Ψ is a regular, even, non negative function with norm 1.

In the sequel, we take Ψ equal to a Gaussian for simplicity, so that we can make simple

connection with classical wavelet transform. The weak derivative is well behaved for any

` > 0 and diverges locally as `h−1.

This has various consequences in turbulent flows, that can be used to build useful local

regularity indicators that we now discuss.

A. The Duchon–Robert energy transfer.

A first indicator of regularity properties of the velocity field is the local transfer of energy

across scales. Indeed, a real singularity is expected to carry energy at a scale ` → 0. As a

consequence, we expect that very irregular fields carry energy at scale below the Kolmogorov

scale ` < η before it eventually gets dissipated through viscous effects.

This view was formalized by Duchon & Robert [22]. They define local energy transfers

from large to small scales at scale ` using a wavelet transform:

D`
I(x) =

1

4

∫
∇Ψ`(y) · δu(x,y)‖δu(x,y)‖2dy. (3)

It is worth stressing that this term should not be interpreted as the local transfer to a given

scale `, analogous to the energy transfer function in [23]. Instead, it should be interpreted

as the energy transfer from the field u`(x) =
∫

Ψ`(y)u(x − y)dy filtered at scale ` to the

residual field u− u`.
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Similarly, one can compute the energy locally dissipated by viscosity by the following [see

21]:

D`
ν =

ν

2

∫
∇2Ψ`(y)‖δu(x,y)‖2dy. (4)

If the velocity is locally Hölder continuous with exponent h, δu ∼ `h, so then D`
I ∼ `3h−1

and D`
ν ∼ ν`2h−2. The two terms are balanced at a scale ηh ∝ ν1/(h+1). The scale ηh

corresponds to the classical Kolmogorov scale η for h = 1/3, which is the value of h predicted

by Kolmogorov [24]. This also means that the scale ηh gets lower than Kolmogorov scale

if h < 1/3. The physical meaning of ηh is that of a ”regularizing scale”, below which the

velocity increment transitions to a regular scaling dictated by a Taylor-expansion δu ∼ `∇u.

Note that a real singularity of the velocity field occurs with a Hölder coefficient of h = −1

since η−1 = 0, so that the velocity field is never regularized.

In practice, a turbulent field follows Hölder continuity condition only for scales larger

than ηh. Regions where the local energy transfer D`
I stays larger than the dissipation D`

ν for

a scale ` close to Kolmogorov scale are very irregular in the sense that their Hölder exponent

is less than h = 1/3. With such local indicator, we are therefore able to bound locally the

regularity of the flow. However, we cannot derive a ”hierarchy” of quasi-singular behavior,

since we only have an upper bound on the Hölder exponent. To refine results, we need a

more precise indicator.

B. The local Hölder exponents.

In a previous paper, we have developed a method to provide an estimate of the local

Hölder exponent h̃(x) using a local statistical method [19]. The scalar field computed using

this method is continuous in space and shares the properties of the true Hölder exponent.

In particular, the value of h̃ gets lower for areas of lesser local regularity, which makes it a

good criterion to detect irregular events. We provide here only the general ideas that are

necessary to understand how we estimate the local Hölder exponent and refer to [19] for

technical details.

The physical idea is the following: if a velocity field is locally Hölder continuous with

exponent h, its derivatives (in a weak sense) ∇`u will locally blow-up and produce large

deviations with respect to the most probable value (an ”extreme event”). The smaller h

the faster the blow-up, so at a given small enough scale, we can expect that the intensity
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of the local weak derivative can be used to measure h. This argument is only qualitative,

as it ignores constants that cannot be neglected when working at finite scale. To make it

quantitative and calibrate the constants, we use multifractal theory.

For that, we introduce the scalar wavelet based velocity increment noted δW`(u) that is

defined from the weak derivative as δW`(u) = `2‖∇2
`u‖, corresponding to taking the norm

of the Mexican hat wavelet transform of u. The probability of observing a large deviation

for δW`(u) is then given by the rate function C(h), obtained in the `→ 0 limit as

Prob [ln(δW`(u)) = h ln(`/L)] ∼ eln(`/L)C(h) =

(
`

L

)C(h)

. (5)

In a turbulent flow, C(h) is observed to have a parabolic shape, with a minimum C(h) = 0

reached at the most probable Hölder exponent h0 ≡ h(p = 0), that is slightly shifted from the

Kolmogorov value 1/3 due to intermittency [see e.g. 25]. In the multifractal interpretation

of Parisi & Frisch [26], the quantity D(h) = 3− C(h) corresponds to the fractal dimension

of the sub-space of Hölder exponent h. The multifractal spectrum is connected with the

scaling exponents of the velocity structure function through a Legendre transform property:

ζ(p) = minh(ph+ C(h)), where 〈
(
δW`(u)(x)

)p〉 ∼ `ζ(p).

The Legendre property can then be used to define the scale variation of a ”typical am-

plitude” of the wavelet increments, connected with the most probable exponent h0 as:

T0(`) = exp
(
〈ln
(
δW`(u)

)
〉
)
∼ `h0 . (6)

More generally, one can define the scale variation of a ”typical amplitude” of the wavelet

increments, connected with the exponent h(p) = dζ(p)/dp as:

Tp(`) = exp

(
〈ln
(
δW`(u)

)(
δW`(u)

)p〉
〈
(
δW`(u)

)p〉

)
∼ `h(p). (7)

The higher the p, the deeper in the tail of the probability distribution function of δW` we

dig to build Tp(`), so that we indeed probe the extreme deviations that we are looking for.

Naively, we could therefore decide that if there exist a p such that locally δW` = Tp(`), then

we can assign the local value h = h(p) at such point. However, this is not so simple, because

first the scaling is only defined up to a constant (you may multiply Tp(`) by any cp and get

the same scaling, but a very different amplitude), and then the multifractal scaling is only

valid in a statistical sense, so that there is no chance to match δW` and any Tp(`) over a

range of scale.
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A coherent statistical construction then goes through the definition of active volumes Ap,

characterizing regions where δW` exceeds a fraction of Tp(`):

x ∈ Ap iff δW`(u)(x) ≥ cpTp(`), (8)

where cp is a scale independent constant, to be chosen later. Due to the scaling properties

of Tp(`) (equation (7)), a point in a active volume Ap has a local Hölder exponent less than

h(p). This leads us to interpret the boundaries of active volumes as sets of points with a

given local Hölder exponent. The fractal dimension of those boundaries can further be

measured using a box counting method. We then choose the coefficients cp such that the

box counting dimensions from the active volumes Ap matches the dimension extracted from

multifractal spectrum 3− C(h(p)).

The algorithm in the inertial range then proceeds in 4 s.pdf represented graphically in

figure 1 for a given set of velocity fields:

• S1) Compute the associated multifractal spectrum D(h) and the thresholds Tp(`) from

the data.

• S2) Choose a value `0 of ` in the inertial range and a set of values T spanning the

interval [0,max(δW`0)]; for each value of T , draw the iso-countours δW`0 = T and

compute their associated box-counting dimension Dbc(T ).

• S3) For each T , find h̃`0 , so that Dbc(T ) = D(h̃`0) to build a function h̃`0 = f`0(T ).

• S4) Associate a local exponent h̃ to any δW`0 via the formula h̃`0 = f`0(δW`0).

Note that while the local Hölder exponent h cannot be continuous in the multifractal for-

malism, the exponent h̃ is continuous by definition. As a result, it is not a real measure of

the Hölder exponent. However, it will still be relevant as a measure of the local regularity

of the field, as discussed in [19].

C. Generalization to low Reynolds number flow using extended self-similarity

The method described in [19] is well adapted to high Reynolds number flows with a well-

developed inertial range. However, it can be extended to lower Reynolds number flows, by

using an empirical interesting universality property of the turbulent flows, called extended
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Calibration
(using the full dataset)

-
u(x)

S1:WTMM δW`0(u)

D(h) à `0

S2:Box
counting

Dbc(T ) à `0

S3:h̃`0 = f`0(T )

Application
(on any snapshot)

-
u(x)

δW (u)(`0)

S4:f`0

h̃`0(x) = f`0
(
δW (u)(`0)

)

FIG. 1. Graphical representation of the algorithm for determining local Hölder exponent in the

inertial range.

self-similarity [27], that is not fully understood yet. In the present case, it consists to realize

that while the scaling Tp(`) ∼ `h(p) is valid only in the inertial range, it can be extended

towards the dissipative range by considering the relative function Tp(`)/T0(`), that scales like

`h(p)−h0 . Due to the linearity properties of the active volume definitions, we can repeat all the

s.pdf described in the previous section by considering the renormalized wavelet coefficient

δW`(u)(x)/T0(`) and thresholds Tp(`)/T0(`) and check that they belong to the same active

volume than δW`(u)(x), while C(h) is just translated by h0. Through the procedure, we

therefore get the relative exponent δh = h̃ − h0 for the quantity δW`(u)(x)/T0(`), which

enables to compute an effective scaling exponent h̃ = δh+ d log(T0)/d log(`) at any scale `.

D. Diving into the dissipative scales

While the notion of Hölder exponent only makes sense in the inertial range of scales, it

is useful to generalize it at dissipative scales, so as to probe regularity properties of the flow

at such scales. To do so, we use the fact that cp is scale independent and the extended-self-
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similarity (ESS) to ”follow down the scales” an irregular event down to the dissipative scale

`d. The algorithm in the dissipative range is then described by adding the following s.pdf:

• S5) Determine the regularity indicators h`0(p) and h`d(p) using the fit of power laws

corresponding to h(p) = d log(Tp)/d log(`) or equivalently, using ESS, as h(p) =

d log(Tp/T0)/d log(`) + d log(T0)/d log(`).

• S6) In the inertial range, for each p, find cp by imposing that cpTp(`0) = f−1
`0

(h`0(p)).

• S7) Build the calibration function f`d by plotting, for each p, h`d(p) as a function

of cpTp(`d). The calibration function is then the smooth curve going through all the

points such that h`d(p) = f`d(cpTp(`d)). It can then be used to associate to each value

of δW`d a local Hölder exponent h̃(δW`d) via the link h̃(δW`d) = f`d(δW`d).

The complete algorithm is represented graphically in figure 2. The determination of

the local Hölder exponent at the scale `d proceeds similarly to step S4 using this new

function f`d . Because the flow regularizes as the scale decreases, the ”local exponent”

d log(Tp)/d log(`) will gradually change from h`0(p) to 2 (such value can be measured thanks

to the use of the Mexican wavelet transform and corresponds to a twice differentiable velocity

field). Therefore, the flow will be considered very irregular at dissipative scale whenever the

effective regularity indicator will be smaller than 2.

III. COMPUTATION OF THE LOCAL HÖLDER EXPONENTS

In the sequel, we apply our method to the two simulations described by Nguyen et al.

[19]. For the sake of convenience, the parameters for the simulation are reported in the table

I. The corresponding energy spectra are shown in figure 3. Run I has a larger Reynolds

number, but a small dissipative range. Run II has a smaller Reynolds number, but an

extended dissipative range. In the sequel, we use Run I to illustrate the outcome of our

method in the inertial range, while we use Run II to dive into the dissipative range. Run II

in particular is split in two parts. In the first part, we extracted 40 velocity fields at least

3 eddy turn over times tη = (ν/.pdfilon)1/2 apart for the computation of all statistics. As

another objective is to study the time evolution of potentially singular events, the simulation

is extended in order to collect 100 snapshots of time resolved data (saved every 0.15tη).
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-

u(x)

S1-S3:
Calibration

at `0

h̃`0 = f`0(T )

Tp(`)S5:ESS

h`0(p) h`d(p)

S6:h`0(p) =
f`0
(
cpTp(`0)

)

cp
S7:h`d(p) =
f`d
(
cpTp(`d)

)

h̃`d = f`d(T )

FIG. 2. Graphical representation of the algorithm for determining local Hölder exponent in the

dissipative range.

Run L λ η 〈u2〉1/2 .pdfilon ηkmax ReL Reλ

I 0.79 0.19 0.0083 0.54 0.089 2.1 570 140

II 0.94 0.48 0.034 0.55 0.097 8.5 104 53

TABLE I. Parameters used in the simulations with resolution 7683. With dealiasing, the cutoff

wavenumber is kmax = 256. L is the integral scale, λ is the Taylor scale, η is the Kolmogorov

scale, 〈u2〉1/2 is the rms velocity, .pdfilon is the energy dissipation rate, ηkmax characterizes the

resolution (ηkmax > π is resolved at Kolmogorov scale), ReL is the Reynolds number based on the

integral scale, and Reλ is the Taylor based Reynolds number.
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FIG. 3. Energy spectra for the two simulations. The blue continuous (resp. red dashed) curve

stands for the simulation in the inertial (resp. dissipative) range. The black line materializes the

k−5/3 slope for the inertial range. The vertical lines materialize the Taylor scale wave number kλ

for each simulation.

A. Calibration of the local Hölder.

In the sequel, all wavelets transforms are performed using a Mexican wavelet. The first

three moments of the Mexican wavelet are null, which allows to measure Hölder exponents

up to 3 [28]. The final outcome of step S1 to S3 for the two runs are summarized in figure 4,

so as to have a clear synthetic view of the differences and similarities between the two runs.

The computation of the multifractal spectrum (S1) is done using the WTMM method

[25]. Because the inertial range is much shorter in Run II than in Run I, computations are

performed at a scale closer to the injection scale. As such, the convergence of the WTMM

method is hard to reach, as there are much fewer lines of maxima compared to the previous

case. In order to reach the convergence, 40 velocity fields uncorrelated in time were used.

We further verify that adding 60 more velocity fields from the time resolved dataset do not

modify the results significantly. This does not prevent the effect of the proximity to the

injection scale, which is emphasized by the fact that the most probable Hölder coefficient

for Run II in figure 4a drops to h = 0.3. This value is significantly lower than for Run I and

may affect the other s.pdf. As such, we need to keep in mind that the estimation of the local

11



Hölder exponents may be inaccurate. The steps S2 and S3 are then implemented, leading to

the calibration function for the inertial scale shown in figure 4c. The implementation of the

step S5 is then performed using the extended self-similarity property, shown in figure 5a for

Run I and figure 7a for Run II. In both cases, a power law, compatible with the prediction

of section II C is obtained yielding the quantity δh(p) = h(p) − h0. The reference value h0

is then evaluated by fitting a power law over the thresholds T0(`) at a chosen scale. Finally,

the coefficient cp are computed using step S6, and illustrated on figure 4d. We see that their

variation with p seem to depend on the Reynolds number. More simulations at different

Reynolds are needed to clarify this point, but this is out the scope of the present paper.

Using these results, we may then get a cartography of the local scaling exponent, by

applying step S4. In figure 6, we provide here an illustration of an event detected in Run I

corresponding to a low value of h in the inertial range. This representation includes both the

local Hölder exponents and local energy transfers introduced in section II. We see that it

corresponds to a swirling regions organized around a filamentary region of low regularity, and

characterized by a strong negative (inverse) local energy transfer at the center, surrounded

by regions of high positive (direct) local energy transfer.

We now focus on the Run II, and use the procedure described in section II D to obtain an

estimate of h̃ near the dissipative scale. Here, we adopt `d = 1.8η, which is as close to the

Kolmogorov scale as we can afford without losing accuracy on the Mexican wavelet used for

computations. Applying S5 at this new scale, we then computed h0 at this scale from a local

power law fit of T0(`) around such scale, and obtained h̃ by the appropriate subtraction.

Finally, applying step S7, we get the calibration function f`d shown in figure 8. From the

results and even if we take into account the uncertainty on the exact value of local Hölder

exponent, it is clear that events with h̃ < 2 exist at this scale. Such events are interpreted

as locations where the velocity field is not twice differentiable at this scale.

As the objective of this paper is to probe for very singular events at the dissipative scale,

we want to give an estimation of the local Hölder exponent even if the rescaled velocity

increment T /(.pdfilon`)1/3 is greater than 1.2. For this purpose, we choose to extrapolate

the matching function up to h̃ = 1.2 (corresponding to a value h̃ ∼ 0.1 in the inertial range)

as shown in figure 8. As such large increments are expected to be rare and very localized in

space (see figure 6), we deem a simple linear extrapolation to be sufficient for our purpose.

Note that we are unable to associate values of local Hölder exponents to very small velocity
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FIG. 4. Results related to Run I (resp. Run II) are shown in blue with continuous lines and circular

markers (resp. red with dashed lines and triangular markers). (a) Multifractal spectrum fitted

from ` ≈ 1.2λ to ` ≈ 1.4λ. The vertical line materializes h = 1/3. The error bars correspond to a

shift of the fitting range by 5% for the power laws. (b) Box counting dimensions evaluated at the

same scale. The velocity increments are normalized by the characteristic velocity at this scale. (c)

Matching function resulting from the combination of (a) and (b). (d) Coefficients cp obtained by

combining the results of (c) with the thresholds Tp(`).
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FIG. 5. (a) Values of the threshold Tp(`) as a function of scale for several p computed over 10

snapshots of run I. The thresholds are renormalized by T0(`). Fits are given in dotted lines. (b)

Reference thresholds T0(`). The fit used in the calibration of the method is materialized by a

dotted line.

increments. This is because such velocity increments are also rare, corresponding to the

p < 0 branch of the multifractal spectrum. This lack of information about large values of

local Hölder exponents will not affect our study of very irregular events.

In the sequel, we use the matching function shown in figure 8 to cartography and charac-

terize areas of low regularity at the dissipative scale. For this, we use step S5 to get maps of

h̃ at the dissipative scale. Detailed cartography of very irregular regions at the dissipative

scale are provided in the supplementary material. They all appear to be associated with

filament like vortices. Before discussing their individual properties and their possible origin,

we first perform statistical analysis of the corresponding velocity fields.

IV. CLASSIFICATION USING THE VELOCITY GRADIENT TENSOR INVARI-

ANTS

As a first step, we may try to make a classification of the most irregular velocity fields

by using the Velocity Gradient Tensor (VGT) invariants, as first suggested by Debue [29] in

the case of experimental datasets, and using local energy transfer as regularity indicators.

The VGT invariants, first described by Chong et al. [30], allow to classify the local topology

of the streamlines of velocity in four categories: ”vortex stretching”, ”vortex compressing”,
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FIG. 6. Region with strong irregularity at ` = 1.4λ in the inertial range extracted from one snapshot

of Run I. (a) Velocity along a slice passing through the point of maximal velocity increment

(corresponding to an undetermined minimal value of local Hölder exponent). The arrows stand

for the in-plane velocity and the colormap for the third component of velocity. (b) Local energy

transfers on the same slice. (c) Local Hölder exponents on the same slice. White area corresponds

to strong velocity increments which cannot be associated to a value of h̃ using the mapping function

of figure 4c. (d) 3D representation of the irregular region. The magenta isosurface corresponds to

h̃ = 0.25. The red isosurface corresponds to D`
I = 4.pdfilon.
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FIG. 7. (a) Values of the threshold Tp(`) for the global increments as a function of scale for several

p computed over Run II. The thresholds are renormalized by T0(`). (b) Reference thresholds T0(`).

Fits corresponding to the inertial range, associated to `0 ≈ 1.4λ are given in dotted lines while fit

in the dissipative range associated to `d = 1.8η are given in dashed lines.
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FIG. 8. Matching function linking the velocity increment to a value of local Hölder exponent at

the scale `d = 1.8η. The red curve and dots correspond to the result of the procedure described in

Section II D. The dotted blue line is the extrapolation used when the velocity increment is outside

the range of the red curve.
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”filament” and ”sheet”, depending on two invariants Q and R. As the tools introduced in

section II are based on wavelet transforms, we use a mollified version of these VGT invariants

with a Mexican wavelet transform at the same (inertial or dissipative) scale for the sake of

coherence. For an incompressible flow, this leads to:

Q = −1

2
Tr(A2

`), (9)

R = − det(A`) (10)

where:

A`,ij = −
∫
∇jG

`(y)ui(x + y)dy. (11)

with G` the Mexican wavelet at scale `.

We then follow Debue [29] and compute joint Probability Density Functions (PDF) of

the invariants Q and R, as well as conditional averages of the energy transfer D`
I and the

local Hölder exponent h̃ at given Q and R. The results for the Run I, computed over 10

snapshots of velocity at an inertial scale `0 ≈ 1.4λ, are shown in figure 9. Because of the use

of wavelet transforms, our results are smoother than Debue [29]. However, the qualitative

observations stay the same. We obtain the well-known droplet shape for the distribution of

the invariants Q and R in figure 9a. For joint PDF with the local energy transfer, displayed

figure 9b, we recover strong positive energy transfer along the Vieillefosse line in the lower

right quadrant, corresponding to the limit between vortex compression and sheets, and in

the vortex stretching region. Meanwhile, we observe negative energy transfers both in the

vortex stretching and the vortex compressing regions for high values of Q.

However, the local Hölder exponents follow a different distribution. Overall, we observe

lower regularity whenever the invariants Q and R are large in absolute value. This is true

in particular but not only in the vortex region. This result is expected, as high values of

the VGT invariants come with strong velocity gradients, which means a low regularity. This

confirms the observation made by Nguyen et al. [19] that the structure of low local Hölder

exponents are not exactly localized in the same regions as the structure of high energy

transfers and are not limited to the same topologies.

The previous analysis can be reproduced in the dissipative range of Run II thanks to the

computations done in the previous section. As we analyze extreme irregular events at the

dissipative scale, we will use the VGT invariants in order to infer the typical topologies. For

this purpose, the unconditioned PDF of the invariants Q and R is required as a reference.
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(a) (b) (c)

(d) (e) (f)

FIG. 9. (a-c): Results from Run I (inertial scale). (d-f): Results from Run II (dissipative scale).

(a),(d) Joint PDF of Q and R. (b),(e) Conditional average of the local energy transfer D`
I at given

Q and R. (c),(f) Conditional average of the local Hölder exponents at given Q and R. For each

figures, Vieillefosse lines (see [31]) are drawn in dashed lines. In the inertial case, the Vieillesfosse

lines correspond to the equations 27R2 + 4Q3 = −500, 0, 500, and 4000. In the dissipative case,

they correspond to 27R2 + 4Q3 = −62500, 0 and 62500.

The results, computed over 40 snapshots at the scale `d ≈ 1.8η, are shown in figure 9d-f. We

can repeat the observations made in the inertial case: the common droplet shape is recovered

for the joint PDF of Q and R in figure 9d. With the exception of a single excursion in the

”vortex stretching” region, strong positive Duchon Robert energy transfers appear strongly

concentrated in the lower right quadrant of figure 9e, corresponding to the ”sheet” region.

This is even more salient for Run I than for Run II. Here again this is in agreement with the

observations made by Debue [29]. Finally, we observe very low values of the local Hölder

exponent wherever the VGT invariants are large, similarly to the inertial case.
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V. STATISTICAL STUDY USING UNCORRELATED DATA AT THE DISSIPA-

TIVE SCALE

A. Detection of irregular events and first approach using the VGT invariants

The first step to characterize extreme events at the dissipative scale is to get statistics

using uncorrelated velocity fields. For that purpose, we use 40 velocity fields of Run II

saved over 120 eddy turnover times. On those fields, we compute the local Hölder exponents

using the mapping function from figure 8. We then extract all events where the local Hölder

exponents get below the threshold value of h̃ = 1.3. This value is low enough that it can

only be estimated using extrapolation due to the shift of h̃ values in the dissipative range

(see section II D). It would be equivalent to finding a value of h̃ ≤ 0.2 in the inertial range.

On the other hand, the threshold is high enough to detect 213 distinct events in our dataset,

for a statistical analysis. We have verified that changing the value of the threshold (e.g.

increasing it to h̃ = 1.5, selecting less extreme events) gives qualitatively similar results.

Before any further analysis, we can get a first grasp of the topology of the singular

events using the VGT invariants. The location of the minimum of local Hölder exponent is

defined as the center of the event. The VGT invariants Q and R computed at the center

of each using the smoothed velocity gradient (see equation (10)) are shown as a scatter

plot in figure 10. We first observe that, with only two exceptions, all events are either in

the ”vortex stretching” or the ”vortex compressing” regions of the QR-plane. Moreover,

there is a bias toward the former as more than 75% of the events detected verify R < 0.

This bias is stronger than what is observed in the whole domain in figure 9, which implies

that the vortex stretching favors quasi singular structures. This observation is in agreement

with other studies relating singularities to vortex stretching (e.g [8] in the case of Euler

equations).

B. Visualization of singular events

The next step is to observe the events individually. The mean velocity over a cubic sub-

domain of side 1.7λ centered on the point of minimal local Hölder exponent is subtracted

in order to reduce the influence of the large scale motion in the visualizations.

For each events, we compute the local Hölder exponent, the inter scale energy transfer
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FIG. 10. Scatterplot of the mollified velocity gradient tensor invariants Q and R at the location of

minimal local Hölder exponent for the 213 extreme events extracted at the dissipative scale. Three

Vieillefossse lines at 27R2 + 4Q3 = −62500, 0 and 62500 are drawn in dashed lines.

D`
I (from equation (3)), the viscous dissipation at this scale D`

ν (from equation (4)), the

smoothed velocity gradient tensor invariants Q and R (from equation (10)), as well as the

vorticity.

A first overview of the events detected leads to two observations. First, we verify visually

the conclusion obtained through the use of the VGT invariants: the streamlines of velocity

for most events are typical of vortices. In addition, the isosurfaces of local Hölder exponents h̃

are seemingly oriented in the same direction as the lines of vorticity. The second observation

is that the structures of low local Hölder exponent appear to be surrounded by a pair of

structures of strong energy transfer D`
I , in a way similar to what was observed in figure 6.

For the following analysis, we reoriented all events in the same way in order to compare

and classify them. The method chosen is as follow:

• The local Hölder exponent h̃ is the most relevant scalar for our study. In consequence,

the X-axis was aligned with the the first eigenvector e1 of the covariance matrix of h̃.

• As irregular events appear to be vortices, we want all vortices to face the same direc-

tion. The direction of the first axis is thus chosen such that ωx > 0 at the center.
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• From the structures of D`
I and D`

ν , it appears that irregular events are not axisymmet-

rical. This justifies the definition of a second axis, orthogonal to the first one. Using

the first eigenvector e2 of the covariance matrix of D`
ν , the events were reoriented such

that e1 × e2 is along the Z-axis.

We have not found any feature which would privilege a direction for the second axis. This

means that rotating the event by an angle π around e1 still fulfills the conditions. See

Supplemental Materials [38] for visualizations of all events found.

Using the data collected, we can repeat the classification for the extreme events produced

by Debue [29] in experimental datasets, using extreme events of D`
I . In that work, the author

distinguishes two types of vortices based on the behavior of the helicity: the roll vortices

and the screw vortices. The roll vortices corresponds to events where the helicity changes

sign over the structures as opposed to screw vortices which have an helicity of constant sign.

Debue also mentions that the difference between the two types of events might just be a

simple Galilean transformation.

The predominant structure in our dataset is the one corresponding to roll vortices. Such

a structure is illustrated in figure 11a. In some cases, the change of helicity occurs slightly

away from the point of minimum local Hölder exponent. We can attribute this observation

to a remnant contribution of the large scale velocity. Meanwhile, screw vortices rarely

appear. One could interpret the aforementioned off centered roll vortices, like for example

in figure 11b, as screw vortices. However, no qualitative difference between those two types

of vortices is observed in any of the observable used here. This leads to the conclusion that,

as it was hypothetized by Debue [29], those two structures are the same up to a Galilean

transformation.

The work of Debue [29] identifies a third type of structure called ”U-turn”. It is charac-

terized by a sharp change of direction of the velocity streamlines. No ”U-turns” is observed

in our dataset. The closest match are tight vortices, such that they could be identified as

”U-turn” if observed at a lower resolution with the addition of experimental noise. How-

ever, we cannot reject the possibility that ”U-turns” fit the criterion based on local energy

transfer but not the one based on local Hölder exponents, which would mean they are not

detected in our case. Another possibility is that ”U-turns” correspond to an earlier phase in

the development of an irregular event, such that the local Hölder exponent is still too high

to be detected by our method. Finally, it could also be a structure appearing only at higher
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FIG. 11. (a): Streamlines of velocity for a ”roll-vortex” event (event 2 from the Supplemental

Materials [38]). Two different colors of streamlines are used to visualize the change of direction:

the axial velocity is oriented away from the x = 0 plane. (b): Streamlines of velocity identifiable

to a ”screw-vortex” event (event 107 from the Supplemental Materials [38]). The axial velocity is

oriented toward x > 0.

Reynolds number. If the last hypothesis is true, we would not be able to observe this type

of event through the simulations performed in this study. This hypothesis is supported by

the high Reynolds number simulation performed by Yeung [16], which exhibit a different

type of event, which might correspond to ”U-turns”.

C. Typical event

As we have extracted and reoriented the extreme events along a common direction, we

can average them in order to extract a ”typical” event. This is justified by the fact most

events share the common structure of ”roll vortices”. The few exceptions consist mainly in

complex patterns which could be related to several events happening close to each others.

Those events are kept in the average in order to avoid introducing any bias. We expect that

these events, with no clear common feature, will have little contribution to the average.
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(a)

D`
I

D`
ν

h̃

(b)

FIG. 12. (a): Streamlines of velocity. The axial velocity is oriented away from the x = 0 plane.

The red (resp. blue) isosurface corresponds to an helicity of H = 2.5 (resp. H = −2.5). (b):

The magenta isosurface corresponds to the local Hölder exponent h̃ = 1.35. The red isosurface

corresponds to D`
I = 2.pdfilon. The blue isosurface corresponds to D`

ν = 4ε.

The average is taken over the 213 most singular events extracted, corresponding to all

events with a local Hölder exponent h̃ < 1.3 at the scale ` = 1.8η. As before, we verified

that changing the value of the threshold gives qualitatively similar ersults. In this case,

choosing a lower threshold leads to more extreme values of averaged local Hölder exponent,

energy transfers and vorticity, but preserves the topology of the averaged event. We provide

a visualization for this averaged event in figure 12 as well as in the Supplemental Materials

[38] for more details. Note that the scalars displayed are the averaged values of the exponent

h̃, the energy transfer D`
I and the energy dissipation D`

ν . Because those quantities are not

linear functions of the velocity field, they do not correspond to the values that would be

computed from the averaged velocity field, materialized by the streamlines.

The streamlines of the ”typical” event match the pattern of roll vortices, with a change

of helicity at the x = 0 plane, corresponding to the location of the minimum of local Hölder

exponent. This seems to be the typical behavior for extremely singular events. In particular,

one might recognize in the streamlines the profile of a Burgers vortex [32]. An axisymmetrical

Burgers vortex can be characterized by its vorticity profile:
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FIG. 13. (a) Fit of the component of the vorticity ωx in the x = 0 plane for the averaged event.

The vorticity along the z (resp. y) direction is represented with blue circles (resp. red crosses)

while the Burgers fit is shown as a black continuous curve. (b) Colormap of the component of the

vorticity ωx in the x = 0 plane for the averaged event.

ωx(r) =
Γ

2πν
exp

(
− σr2

2νη2

)
. (12)

We can fit the profile of vorticity in the plane x = 0, which gives the values Γτν/2πν = 5

and σ/ν = 0.08. The fit works very well in the z direction but fails in the y direction, as

illustrated in figure 13a. Note that the non axisymmetric Burger vortex would not provide a

better result as the vorticity changes sign in the y direction. This asymmetry in the vorticity

can be visualized in figure 13b.

We likewise observe a very strong non axisymmetry of the averaged D`
I and D`

ν . While

the invariance by a rotation of π around the x-axis is a consequence of the orientation of

the events before averaging, we do confirm the presence of structures of D`
I and D`

ν on both

sides of the axis in individual events. A possible explanation to these non axisymmetric

structures would be that extreme events correspond to an interaction between vortices of

different strength, so that the weakest, least singular vortex is canceled out in the process

of averaging. Furthermore, the reversal of helicity appears similar to what happens around

a vortex reconnection [3]. This is also reminiscent of the classical works from Couder [e.g

33, 34] analyzing the formation and death of vortex filaments in turbulence, even if the

structures observed here are at a smaller scale than those of the cited papers. In the sequel,
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we refine such hypothesis using time resolved data. Indeed, because of the way those events

were extracted, it is not clear whether the snapshots are captured prior, during or subsequent

to the time for which the event is the most singular.

D. Link with the energy transfers

While there are extreme events with negative energy transfer D`
I , i.e. energy going to the

larger scales, the averaged event only transfers energy to smaller scales so that the average

of the term D`
I stays positive around the region of low regularity.

We further observe that the energy transfer D`
I , and the dissipation energy transfer D`

ν ,

do not reach their maxima at the same location. Most of the energy transfer happens

slightly upstream on the streamlines from the peak of dissipation. We currently do not have

a physical explanation for this phenomenon.

E. Temporal evolution of an event.

We use the time resolved part of our dataset to try and uncover the generation mechanism

for extreme events. During the time period covered, 9 events for which the minimum of local

Hölder exponent is kept under the threshold of h̃ = 1.3 for at least 10 snapshots (or at least

1.5 eddy turnover times tη) are found. The choice of this thresholds k.pdf the number

of events to analyze low, as the analysis of time series is more time consuming than the

one of isolated snapshots. Movies of the corresponding time evolution can be found in the

Supplemental Materials [38]. Each events is characterized by isosurfaces of vorticity (with

red and blue coloring corresponding to positive and negative helicity respectively), local

Hölder increments, energy transfers D`
I and dissipation D`

ν . We also plot the time evolution

of the extrema for these quantities.

Those results appear to confirm the relation between extreme events of local Hölder

exponent and vortex interaction. Indeed, the events observed are localized around two or

more vortices, with possible vortex reconnections. One of these events is represented in

figures 14 and 15. This event has been selected for its strength and simplicity, making

it easier to visualize. For this event, the structures of high energy transfer and energy

dissipation and low local Hölder exponents start to appears in figure 14d, before the onset
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of the interaction between two vortices. We can identify the structure of the typical event

previously discussed in figure 14e, when interaction with another vortex coming from z > 0

starts to deform the vortex in the figure 14c. When the vortices come close in figure 14f, the

event deviates from the typical structure. In this particular case, the structures of strong

energy dissipation D`
ν move away from the structures of low local Hölder exponents h̃ and

high energy transfer D`
I during the second part of the interaction visualized in figure 15.

The structures shown in figure 15 differ from the typical event from figure 12. This could

explain the complex structures observed in the uncorrelated dataset. It should be noticed

that the local Hölder exponents becomes greater than the threshold of 1.3 before the end of

the interaction.

A timeline of this particular event is provided in figure 16. It shows the evolution of

the maxima for the different scalars used during the event. Note that the event chosen is

particularly singular, as the local Hölder exponent drops to almost h = 1.2. Such value is

very low, as can be interpreted from the extrapolation needed in figure 8 to reach it.

From the time evolution, the most singular instant happens during the interaction, at

the time corresponding to figure 14c. At this time, the local Hölder exponents reach their

minimum and the vorticity and the energy dissipation reach their maximum. We observe

that the maximum of energy transfer D`
I is reached slightly earlier. Such observation can be

repeated for other events in the dataset. This matches with the previous observation that

regions of high energy transfer are located upstream on the streamlines of velocity. This

observation could hint toward the formation mechanism of quasi singularities.

VI. DISCUSSION

In this paper, we have used the tool developed by Nguyen et al. [19] to extract extremely

singular events from numerical turbulent velocity fields. These events have been analyzed

using local energy transfers at the Kolmogorov scale as well as the velocity gradient ten-

sor invariants. From these analysis, we derive several characteristics common to the most

singular events.

The first observation is that most events are ”roll vortices”, i.e. vortices with a change of

helicity at the most singular point. The average structure computed from the most singular

events is similar to a Burgers vortex, with a strong non axisymmetry. In this work, we do
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(a) (b) (c)

(d) (e) (f)

FIG. 14. Snapshots of time resolved event: (a-d): Before the interaction. (b-e): Beginning of

interaction. (c-f) Time of the minimum of h̃. (a-b-c): Isosurfaces of vorticity ωtη = 23 colored

in red and blue respectively for positive and negative helicity. (d-e-f) Isosurface h̃ = 1.3 in blue,

D`
I/.pdfilon = 4 in red, D`

ν/ε = 6 in green.

not recover the ”U-turns” observed by Debue [29] and possibly present in the simulation by

Yeung [16], both of these studies having been realized at a higher Reynolds number. Note

however that trajectories around a Burgers vortex typically produce both ”roll vortices” and

”U-turns”, as recently discussed by Moffat [35].

The second observation is that the local energy transfers around singular events are both

away from the vortex axis and strongly non axisymmetric. The averaged event, as well as the

individual events, exhibit two regions of energy transfer to lower scales D`
I located on both

side of the main axis. The same observation can be done about the viscous energy dissipation

D`
ν . To explain these facts, we emit the hypothesis that the extreme events are caused by
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(a) (b)

(c) (d)

FIG. 15. Snapshots of time resolved event: (a-c): Toward the end of interaction. (b-d): Slightly

before the local Hölder exponent h̃ grows back above 1.3. (a-b): Isosurfaces of vorticity ωtη = 23

colored in red and blue respectively for positive and negative helicity. (c-d) Isosurface h̃ = 1.3 in

blue, D`
I/.pdfilon = 4 in red, D`

ν/ε = 6 in green.

interactions between at least two vortices, which would explain the non axisymmetry. This

hypothesis is supported by the analysis of the time resolved data which shows that the

singular events are associated with several vortices close to one another. Some cases involve

a vortex reconnection, but we are unable to confirm the impact on the singularity of the

event.

As those results are obtained from simulation data, all events detected are regularized at

lower scale by the numerical scheme. In this case, the pseudo spectral method is filtering out

wave numbers higher than kmax. As the small scales are expected to have a non negligible

contribution for very singular events, using simulation data might have prevented us from
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FIG. 16. Time evolution of the local Hölder exponents (in magenta, continuous line, left axis), the

vorticity ωtν (in green, dot-dashed line, middle axis), the local energy transfer D`
I/.pdfilon (in red,

dashed line, rightmost axis) and the energy dissipation D`
ν/ε (in blue, dotted line, rightmost axis).

The vertical lines indicates the times of the five snapshots represented in figures 14 and 15.

observing more singular events. It would be interesting to reproduce this study using very

well resolved experimental data, in order to validate the conclusions of the present work.

Another limit to this work is the relatively modest microscale Reynolds number of the

simulations used. This limitation is imposed by the high resolution required for the study of

potentially singular events and the relatively high computational cost of the post-processing

limiting the size of the fields. It would nevertheless be interesting to apply the current

method to much larger simulation data (e.g. the previously cited work by Yeung [16]).

Possible extensions to this work could involve the study of different types of flows, includ-

ing turbulence induced by Richtmyer–Meshov or Rayleigh–Taylor instabilities [36, 37]. Such

extension would require to apply the method presented in this paper to inhomogeneous

and/or anisotropic flows. While the present method makes no particular hypothesis on

the isotropy of the flow, we can expect difficulties when processing strong inhomogeneities.

Indeed, this method requires the evaluation of multiple statistical averages, with a high

requirement on the size of the statistical set related to the rarity of the events we want

to detect. Strong statistical inhomogeneities would prevent us from taking statistics over

space, and thus reduce the size of the usable statistics in each snapshot of velocity fields.
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This would in turn greatly increase the number of snapshots required to estimate local values

of Hölder exponent.
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National de Calcul Intensif). This work was funded by the ANR EXPLOIT, grant agreement

no. ANR-16-CE06-0006-01.

[1] G. K. Batchelor and A. A. Townsend. The nature of turbulent motion at large wave-numbers.

Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences,

199(1057):238–255, 1949.

[2] A. Vincent and M. Meneguzzi. The dynamics of vorticity tubes in homogeneous turbulence.

Journal of Fluid Mechanics, 258:245–254, 1994.

[3] J. Yao and F. Hussain. A physical model of turbulence cascade via vortex reconnection

sequence and avalanche. Journal of Fluid Mechanics, 883:A51, 2020.

[4] Y. Kimura and H.K. Moffatt. Reconnection of skewed vortices. Journal of Fluid Mechanics,

751:329–345, 2014.

[5] U. Frisch. Turbulence: the legacy of AN Kolmogorov. Cambridge University Press, 1995.

[6] J. Leray. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Mathematica,

63(1):193–248, 1934.

[7] A. Pumir and E.D. Siggia. Development of singular solutions to the axisymmetric Euler

equations. Physics of Fluids A: Fluid Dynamics, 4(7):1472–1491, 1992.

[8] R.M. Kerr. Evidence for a singularity of the three-dimensional, incompressible Euler equations.

Physics of Fluids A: Fluid Dynamics, 5(7):1725–1746, 1993.

[9] R. Grauer and T. C. Sideris. Finite time singularities in ideal fluids with swirl.

Physica D: Nonlinear Phenomena, 88(2):116–132, 1995.

[10] C. Uhlig and J. Eggers. Singularities in cascade models of the Euler equation. Zeitschrift für

Physik B Condensed Matter, 103(1):69–78, 1997.

[11] G. Luo and T. Y. Hou. Potentially singular solutions of the 3D axisymmetric Euler equations.

Proceedings of the National Academy of Sciences, 111(36):12968–12973, 2014.

[12] R.M. Kerr. The role of singularities in Euler. In Small-Scale Structures in Three-Dimensional

30



Hydrodynamic and Magnetohydrodynamic Turbulence, pages 17–23. Springer, 1995.

[13] R.M. Kerr. Vortex collapse and turbulence. Fluid Dynamics Research, 36(4-6):249, 2005.

[14] T. Grafke, H. Homann, J. Dreher, and R. Grauer. Numerical simulations of possible finite

time singularities in the incompressible Euler equations: comparison of numerical methods.

Physica D: Nonlinear Phenomena, 237(14-17):1932–1936, 2008.

[15] J.C. Vassilicos and J.G. Brasseur. Self-similar spiral flow structure in low Reynolds number

isotropic and decaying turbulence. Physical Review E, 54(1):467, 1996.

[16] P.K. Yeung, X.M. Zhai, and R. Sreenivasan. Extreme events in computational turbulence.

Proceedings of the National Academy of Sciences, 112(41):12633–12638, 2015.

[17] D. Buaria, A. Pumir, E. Bodenschatz, and P.K. Yeung. Extreme velocity gradients in turbulent

flows. New Journal of Physics, 21(4):043004, 2019.

[18] D. Buaria, A. Pumir, and E. Bodenschatz. Self-attenuation of extreme events in Navier-Stokes

turbulence. arXiv preprint arXiv:2009.08370, 2020.

[19] F. Nguyen, J.-P. Laval, P. Kestener, A. Cheskidov, R. Shvydkoy, and B. Dubrulle. Local
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