R. Fahraeus and T. Lindqvist, The viscosity of the blood in narrow capillary tubes, Am. J. Physiol, vol.96, pp.526-568, 1931.

D. A. Fedosov, B. Caswell, and G. E. Karniadakis, A multiscale red blood cell model with accurate mechanics, rheology, and dynamics, Biophys. J, vol.98, pp.2215-2225, 2010.

M. Abkarian, M. Faivre, and A. Viallat, Swinging of red blood cells under shear flow, Phys. Rev. Lett, vol.98, p.188302, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01870703

A. Kumar, R. G. Henriquez-rivera, and M. D. Graham, Flow-induced segregation in confined multicomponent suspensions: effects of particle size and rigidity, J. Fluid Mech, vol.738, pp.423-462, 2014.

E. Kaliviotis, J. M. Sherwood, and S. Balabani, Partitioning of red blood cell aggregates in bifurcating microscale flows, Scientific Reports, vol.7, p.44563, 2017.

G. Tomaiuolo, M. Barra, V. Preziosi, A. Cassinese, B. Rotoli et al., Microfluidics analysis of red blood cell membrane viscoelasticity, Lab on a Chip, vol.11, pp.449-454, 2011.

L. Lanotte, J. Mauer, S. Mendez, D. A. Fedosov, J. M. Fromental et al., Red cells' dynamic morphologies govern blood shear thinning under microcirculatory flow conditions, Proc. Natl. Acad. Sci. USA, vol.113, p.8207, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01435953

G. Mchledishvili and N. Maeda, Blood flow structure related to red cell flow: a determinant of blood fluidity in narrow microvessels, Japan J. Physiol, vol.51, pp.19-30, 2001.

J. J. Bishop, P. R. Nance, A. S. Popel, M. Intaglietta, and P. C. Johnson, Relationship between erythrocyte aggregate size and flow rate in skeletal muscle venules, Am. J. Physiol. Heart Circ. Physiol, vol.286, pp.113-120, 2004.

H. H. Lipowsky and S. Kovalchek, The distribution of blood rheological parameters in the microvasculature of cat mesentery, Circ. Res, vol.43, pp.738-749, 1978.

J. Zhang, P. C. Johnsom, and A. S. Popel, Effects of erythrocyte deformability and aggregation on the cell free layer and apparent viscosity of microscopic blood flows, Microvasc. Res, vol.77, pp.265-272, 2009.

S. Kim, R. L. Kong, A. S. Popel, M. Intaglietta, and P. C. Johnson, Temporal and spatial variations of cell-free layer widths in arterioles, Am. J. Physiol, vol.293, pp.1526-1535, 2007.

M. Abkarian and A. Viallat, Deformability of red blood cells, Fluid-Structure Interaction in Low-Reynolds-Number Flows, vol.4, pp.347-462, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01957857

F. M. Box, R. J. Van-der-geest, M. C. Rutten, J. H. , and C. Reiber, The influence of flow, vessel diameter, and non-Newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow, Investigative Radiology, vol.40, pp.277-294, 2005.

A. M. Malek, S. L. Alper, and S. Izumo, Hemodynamic shear stress and its role in atherosclerosis, J. Am. Med. Assoc, vol.282, pp.2035-2042, 1999.

S. Weinbaum, X. Zhang, Y. Han, H. Vink, and S. C. Cowin, Mechanotransduction and flow across the endothelial glycocalyx, Proc. Natl. Acad. Sci. USA, vol.100, pp.7988-7995, 2003.

P. F. Davies, Flow-mediated endothelial mechanotransduction, Physiol. Rev, vol.75, pp.519-560, 1995.

H. Chu, M. M. Mckenna, N. A. Krump, S. Zheng, L. Mendelsohn et al., Reversible binding of hemoglobin to band 3 constitutes the molecular switch that mediates O2 regulation of erythrocyte properties, Blood, vol.128, pp.2708-2716, 2016.

S. Nagarajan, R. R. Kadarkarai, V. Saravanakumar, U. M. Balaguru, J. Behera et al., Mechanical perturbations trigger endothelial nitric oxide synthase activity in human red blood cells, Scientific Reports, vol.6, p.26935, 2016.

J. C. Arciero, B. E. Carlson, and T. W. Secomb, Theoretical model of metabolic blood flow regulation: roles of ATP release by red blood cells and conducted responses, Am. J. Physiol. Heart Circ. Physiol, vol.295, p.156271, 2008.

M. I. Ellsworth, The red blood cell as an oxygen sensor: what is the evidence?, Acta Physiol. Scand, vol.168, pp.551-559, 2000.

F. N. Van-de-vosse and N. Stergiopulos, Pulse wave propagation in the arterial tree, Annual Rev. Fluid Mechan, vol.43, pp.467-499, 2010.

B. E. Carlson, J. C. Arciero, and T. W. Secomb, Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses, Am. J. Physiol, vol.295, pp.1572-1579, 2008.

C. H. Hesh, Y. Qiu, and W. A. Lam, Vascularized microfluidics and the blood-endothelium interface, Micromachines 11, pp.18-45, 2020.

A. L. Copley, Hemorheological aspects of the endothelium-plasma interface, Microvasc. Res, vol.8, pp.192-212, 1974.

H. Vink and B. R. Duling, Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries, Circ. Res, vol.79, pp.581-589, 1996.

S. Weinbaum, J. M. Tarbell, and E. R. Damiano, The structure and function of the endothelial glycocalyx layer, Annual Rev. Biomed. Eng, vol.9, pp.121-167, 2007.

J. M. Tarbell and Z. D. Shi, Effect of the glycocalyx layer on transmission of interstitial flow shear stress to embedded cells, Biomech. Model Mechanobiol, vol.12, pp.111-121, 2013.

M. Gouverneur, B. Van-den, M. Berg, E. Nieuwdorp, H. Stroes et al., Vasculoprotective properties of the endothelial glycocalix: effects of fluid shear stress, J. Internal Medicine, vol.259, pp.393-400, 2006.

O. Yalcin, V. P. Jani, P. C. Johnson, and P. Cabrales, Implications enzymatic degradation of the endothelial glycocalix on the micovascular hemodynamics and the arteriolar red cell free layer of the rat cremaster muscle, Frontiers Physiology, vol.9, p.168, 2018.

P. M. Mcclatchey, M. Schafer, K. S. Hunter, and J. E. Reusch, The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature, Am. J. Phys. Heart Circ. Physiol, vol.311, pp.168-176, 2016.

P. Goeroeg and G. V. Born, Increased uptake of circulating low-density lipoproteins and fibrinogen by arterial walls after removal of sialic acids from their endothelial surface, Br. J. Exp. Pathol, vol.63, pp.447-451, 1982.

A. R. Pries, T. W. Secomb, and P. Gaehtgens, The endothelial surface layer, Europ. J. Physiol, vol.440, pp.653-666, 2000.

T. D. Blake, Tolstoi's (1952) theory reconsidered, Colloids Surf, Slip between a liquid and a solid: D.M, vol.47, pp.135-145, 1990.

B. V. Derjaguin, U. V. Bazaron, .. D. Kh, B. D. Lamazhapova, and . Tsidypov, Shear elasticity of low-viscosity liquids at low frequencies, Phys. Rev. A, vol.42, p.2255, 1990.

A. Bund and G. Schwitzgebel, Viscoelastic properties of low-viscosity liquids studied with thickness-shear mode resonators, Anal. Chem, vol.70, pp.2584-2588, 1998.

P. Lv, Z. Yang, Z. Hua, M. Li, M. Lin et al., Measurement of viscosity of liquid in micro-crevice, Flow Measurement and Instrumentation, vol.46, pp.72-79, 2015.

L. Noirez, H. Mendil-jakani, and P. Baroni, The missing parameter in rheology: hidden solid-like correlations in viscous liquids, polymer melts and glass formers, Polym. Int, vol.58, pp.962-968, 2009.

H. Mendil, P. Baroni, and L. Noirez, Solid-like rheological response of non-entangled polymers in the molten state, Eur. Phys. J, vol.19, pp.77-85, 2006.
URL : https://hal.archives-ouvertes.fr/hal-01362471

L. Noirez and P. Baroni, Revealing the solid-like nature of glycerol at ambient temperature, J. Mol. Struct, vol.972, pp.16-21, 2010.

L. Noirez and P. Baroni, Identification of a lowfrequency elastic behaviour in liquid water, J. Phys. Condens. Matter, vol.24, p.372101, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01295302

L. Noirez, Importance of interfacial interactions to access shear elasticity of liquids and understand flow, Oil Gas Sci. Technol. Rev. I. F. P. Energ. Nouv, vol.72, pp.10-17, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01695235

G. R. Lazaro, A. Hernandez-machado, and I. Pagonabarraga, Rheology of red blood cells under flow in highly confined microchannels, Softa Matter, vol.10, p.7195, 2014.

F. Scarponi, L. Gomez, D. Fioretto, D. , and L. Palmeri, Brillouin light scattering from transverse and longitudinal acoustic waves in glycerol, Phys. Rev. B, vol.70, p.54203, 2004.

B. R. Duling, I. H. Sarelius, and W. F. Jackson, A comparison of microvascular estimates of capillary blood flow with direct measurements of total striated muscle flow, Int. J. Microcirc. Clin. Exp, vol.1, pp.409-424, 1982.

C. Desjardins and B. R. Duling, Heparinase treatment suggests a role for the endothelial cell glycocalyx in regulation of capillary hematocrit, Am. J. Physiol, vol.258, pp.647-654, 1990.

P. M. Van-haaren, E. Van-bavel, H. Vink, and J. A. Spaan, Localization of the permeability barrier to solutes in isolated arteries by confocal microscopy, Am. J. Physiol, vol.285, pp.2848-56, 2003.

B. M. Van-den, J. A. Berg, T. M. Spaan, H. Rolf, and . Vink, Atherogenic region and diet diminish glycocalyx dimension and increase intima media ratios at the murine