Skip to Main content Skip to Navigation
Journal articles

Asymptotic behavior of the length of the longest increasing subsequences of random walks

Abstract : We numerically estimate the leading asymptotic behavior of the length $L_{n}$ of the longest increasing subsequence of random walks with step increments following Student's $t$-distribution with parameter in the range $1/2 \leq \nu \leq 5$. We find that the expected value $\mathbb{E}(L_{n}) \sim n^{\theta}\ln{n}$ with $\theta$ decreasing from $\theta(\nu=1/2) \approx 0.70$ to $\theta(\nu \geq 5/2) \approx 0.50$. For random walks with distribution of step increments of finite variance ($\nu > 2$), this confirms previous observation of $\mathbb{E}(L_{n}) \sim \sqrt{n}\ln{n}$ to leading order. We note that this asymptotic behavior (including the subleading term) resembles that of the largest part of random integer partitions under the uniform measure and that, curiously, both random variables seem to follow Gumbel statistics. We also provide more refined estimates for the asymptotic behavior of $\mathbb{E}(L_{n})$ for random walks with step increments of finite variance.
Document type :
Journal articles
Complete list of metadata

https://hal.archives-ouvertes.fr/hal-02512208
Contributor : Claudine Le Vaou <>
Submitted on : Thursday, March 19, 2020 - 2:35:55 PM
Last modification on : Saturday, October 3, 2020 - 4:16:05 AM

Links full text

Identifiers

Collections

Citation

J. Ricardo G. Mendonça, Hendrik Schawe, Alexander K. Hartmann, Alexander Hartmann. Asymptotic behavior of the length of the longest increasing subsequences of random walks. Physical Review E , American Physical Society (APS), 2020, 101 (3), ⟨10.1103/PhysRevE.101.032102⟩. ⟨hal-02512208⟩

Share

Metrics

Record views

393