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Abstract: A study of methodological nature demonstrates the efficiency of a probation test 

allowing for the intrinsic character of a rheological constitutive law to be assessed. Such a 

law is considered here for Semi-Crystalline Polymers exhibiting necking and for large 

deformation. In the framework of a (𝜎̇, 𝜎, 𝜀̇, 𝜀) behavior's law, tensile experiments conducted 

at an imposed constant strain rate 𝜀0̇ bring true stress responses from which constitutive 

(material) parameters can be identified from Model-Based Metrology concepts. The same 

experiment repeated at various strain rates gives then access to the dependence of the non-

elastic parameters on the strain rate. Then the intrinsic law is tested severely by considering 

a new set of experiments carried out for constant displacement rates of the grips. In that case, 

the specimens show local strain rates which evolve strongly during the test (by a factor of 5-

10 here). The parameter identification process requires then the introduction of the exact 

realized input strain and strain-rate command into the model. Accounting for strain rate 

dependency requires additionally the knowledge of the preliminary identified strain rate 

dependence of the non-elastic constitutive parameters for good predictions of the 

experimental response directly. This is what is proven here. The conclusion speaks in favor 

of a possible upgrade of international standards for the mechanical characterization of 

polymers based on constant strain-rate tensile tests and properly applied model-based 

metrology. 
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1. Introduction 

Model-Based Metrology (MBM) means essentially a whole of procedures, at the heart 

of which are the principles of parameter estimation theory (identifiability proofs) to treat 

data with the objective of obtaining measurable quantities of physical interest. Such an 

approach should be a rule of thumb each time a model is used in conjunction with observed 

quantities because (i) it allows stating in full transparency the performance of the model and 

the quality of the estimates, but, most important, (ii) it gives a feedback of possible missing 

foundations of a model or theory. These are revealed by the shape of after-identification 

residuals (the gap curve between observed and model-reconstructed signals). Such practices 

are very common in other fields of science (especially in the heat transfer community which 

was at the origin of the International Conference on Inverse Problems in Engineering ICIPE, 

but also of course in the automatic and system identification communities) and many 

textbooks on this subject are now available (Beck and Arnold 1977; Walter and Pronzato 

1997; Aster et al. 2013 to cite a few references). But it is pretty much absent from 

mechanical/rheological studies. In this field, an example of the strength offered by these 

practices can be studied in Maillet et al. (2013) where it is shown how two models equally 

optimal for experimental data description can be discriminated through mathematical 

arguments of parameter identifiability. In the paper of Blaise et al. (2016), these latter were 

used to characterize the behavior's law of a semi-crystalline polymer (SCP). It was shown in 

particular that the instantaneous elastic modulus can be retrieved from the common tensile 

test with a very good agreement with the values determined more directly by other 

techniques operating at microscopic level. The present paper aims at giving now the second 

step of the methodology. It consists in proving the validity of a given constitutive law model 

with a probation test based on its underlying physical concepts: if a rheological relationship 

(𝜎̇, 𝜎, 𝜀̇, 𝜀, 𝛽) is really intrinsic to some material then, any loading path producing strain and 

strain rate fields heterogeneities in the specimen structure should lead to the same set of 

model parameters 𝛽. In section 2, information regarding the constitutive model we used and 

the numerical computation associated within the identification process is given. Section 3 

describes the three test cases used for this study. Section 4 discusses aspects of the 

identifiability of material parameters in the most convenient case where tensile experiments 

are conducted with the specimen center constrained to follow a constant strain rate path. It 

additionally produces a so-called ‘companion’ relation of the constitutive law, in charge of 

describing strain rate effects on the relaxation spectrum. Section 5 presents the direct 

computations and identification results that were obtained from a probation test: tensile 
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experiments performed now at imposed displacement rate, where strains and strain rates 

evolve now in a totally different manner with respect to time. 

 

2. Constitutive model and numerical treatment 

 

2.1.Operational set of equations 

 

The thermodynamical foundations of the model have been given elsewhere (Cunat 1991 

2001a) and we focus directly on the mathematical operational form which consists in a set 

of modal Ordinary Differential Equations (ODE). Each mode is denoted by the 𝑗 subscript 

in equation (1) and the overall stress response 𝜎(𝑡) is obtained by summation over all modes, 

meaning that each mode contributes to the global response. Each modal ODE contains the 

simple description of a relaxation process through a first order kinetic model of 

characteristic/modal time 𝜏𝑗. This can be seen in a first approach as a set of analogical Voigt-

Maxwell units which would be connected in parallel. These units are uncoupled one with 

each other (in the simplest view), but the weight 𝑝𝑗
0 of a single unit on the global response 

is connected to the modal time 𝜏𝑗 through a single "universal" law. As a result and for a given 

spectrum distribution, a hierarchically recursive scheme applies to the modal weights. More 

details on this are available in Andre et al. (2003), where the connection of this approach to 

non-integer differential constitutive laws is explained (see for example Lion 1997). 

  r
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j j
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where 𝜀̇(𝑡) is the strain rate, 𝜎(𝑡) is the overall stress, 𝜎𝑗(𝑡) its jth modal contribution. 

Regarding the instantaneous or unrelaxed contribution to 𝜎̇(𝑡), 𝐸𝑗
𝑢 is defined as 

u

j

u

j EpE  0=  where uE  stands for the common elastic modulus (Young modulus 

denomination will be avoided to favor the thermodynamic foundation of this parameter as 

the twice differentiated thermodynamic potential with respect to the strain variable) and 
0
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denotes the modal weighting coefficients fulfilling the normalized condition: 
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Regarding the relaxed (dissipative) contribution to 𝜎̇(𝑡), we define the modal relaxed stress 

r

j  as 
r

j

r

j p   0=  where r   refers to the stress in the relaxed state, a thermodynamic state 

which has been properly defined by Prigogine and Defay (1958). It corresponds to the 

stationary state for non-equilibrium internal forces and is defined by 𝐴̇ 𝑟 = 0 where 𝐴 

denotes the affinity in the T.I.P. theory (De Donder 1936). It implies formally a direct 

coupling between internal variables reflecting the microstructure evolution and the 

macroscopic command (strain rate here). Logically, this state can be identified when all 

viscoelastic modes get through, which we associate to the set-up and further evolution of the 

fibrillar state in SCP. It can then be simply and very efficiently modeled here with the 

hardening law  

r

HT(t) G (t) =   (3) 

suggested by theoretical considerations on the elastomeric state (Treolar 1975; Haward 1993 

2007; Arruda and Boyce; 1993; Tervoort and Govaert 2000) and experimental evidences 

(Supplementary Information Fig. S1). The parameter G  (called the hardening modulus) 

introduces the proportionality of the relaxed stress with the ‘Haward-Thackray’ strain 

variable exp( ) exp( )2 1

HT 2    −= − = − −  where :  extension ratio, and :  

logarithmic true strain. 

Finally, a spectrum of N  relaxation times j  is chosen as logarithmically distributed over 

a determined number of decades d  below a maximum relaxation time 
maxτ . 

 

Generally, 𝑁 = 50  dissipative modes are considered to figure out a continuous spectrum. 

A number of decades 𝑑 = 6 is generally required for the tested polymers so that the spectrum 

extends to sufficiently low relaxation times beyond which the model becomes unsensitive. 

The spectrum is then determined once the single parameter 
max , the longest relaxation time, 

is fixed.  

 The key conceptual tool is to connect the dissipative modal weight 
0

jp  to its 

corresponding relaxation time j  and this is made with a thermodynamically based 

argument stating an equipartition of the entropy created by each dissipative (relaxation) 

mode (Cunat 1991 2001; Faccio-Toussaint et al. 2001). This leads to 

N j
 d

N 1

j max  10

− 
− 

−  =   (4) 
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(5) 

This particular relationship gives a recursive character to the relaxation spectrum variables 

0

jp  and j , i.e. it imparts the property that 
𝜏𝑗+1

0

𝜏𝑗
0 =

1

𝑞
 and 

𝑝𝑗+1
0

𝑝𝑗
0 =

1

𝑞1/2 where 𝑞 is a constant 

univocally determined by the parameters of the spectrum of relaxation times. This 

mathematical recursivity (corresponding physically to a self-similar property of mechanisms 

involved) makes it possible to relate the mathematical structure given in Eq.(1) in terms of 

a recursive series to an alternative formulation in terms of derivatives of fractional order 

(exact in the limit of an infinite number of relaxation times). All details about this interesting 

link between both formulations are extensively described in Andre et al. (2003). 

The constitutive relationship expressed through equation (1) can be rewritten now as 

0N N
j j HT0 u

j j

j 1 j 1 j

p G  
p E  

= =

  − 
 =  =  − 

  
   (6) 

 

The functional form associated to the behavior's model of Eq.(6) can be written as

( ), , , ,      and requires the knowledge of the following parameter vector 

max, ,uE G =    . The relevance of this 3-parameter model has been proven in Blaise et al. 

(2016). The sensitivity analysis and parameter identification procedures have shown how 

well conditioned is this model with respect to the Parameter Estimation Problem (PEP). The 

analysis of the after-identification residuals proved that the viscoelastic behavior is correctly 

caught by the modal recursive approach, as well as the hardening stage within the approach 

of Eq.(3). Evidence of this will appear again when presenting identification results in Section 

4. 

 

2.2.Numerical solution 

 

When we consider a tensile test with a constant imposed strain rate 𝜀0̇, namely 𝜀(𝑡) = 𝜀0̇, 

eq. (6) can be solved analytically for each modal contribution as: 
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for each modal "branch" and 

N

j

j 1

(t) (t)
=

 =   for the overall response 

(7) 

Tensile tests at constant imposed strain rate are, for this major reason but among other ones, 

a clear advantage when metrology is the foremost objective. 

In the case considered later where the ever-changing true strain rate excitation must be 

introduced as the input of the model, a numerical scheme is required that computes the 

solution as time steps proceed. We use then a classical two steps implicit Euler Backward 

second order scheme (GEAR or bE2) applied on the system of ODE's of (Eq.6). For the 𝒋𝒕𝒉 

modal component, we consider 

( )
r

j j0 u
jj j

j j

σ (t) σ (t)
t ,σσ (t) p E  ε(t)

τ τ
f= = − + +  (8) 

discretized through 

( )n+1 n n-1 n+1 n+1

j j j j

4 1 2h
σ σ σ t , σ

3 3 3
f= − +  (9) 

with the time step n+1 nh t t= − . 

Initialization of the algorithm rests upon the two first time steps: the initial condition 𝜎𝑗
0 

(material in equilibrium state) and a first single step Euler Backward scheme of order 1. An 

alternative scheme has been used, very precise too, based on a semi-analytical approach of 

the integration of the system of eqs. (6). This algorithm (SA3) is described in Sorvari and 

Hämäläinen (2010). It is used in Section 4 to ensure proper implementations of both 

algorithms but it extends pretty much the computation times. Furthermore, in the case of a 

non-idealized forcing term (experimental data), it amplifies the input noise and appears 

therefore not appropriate to this study. 
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3. Considered test cases 

 

Three different experiments will be considered for this analysis. They all apply to 

specimens of HDPE (same original material from Röchling Grade Natural) at same room 

temperature. Reproducibility is not discussed as already proved excellent with our 

metrological equipments (elements provided for example in Ye et al., 2015). Information 

about the metrological tools involved in these experiments are not discussed here but also 

available from the above-mentioned reference. 

Experiment 1 refers to a tensile test performed at an imposed constant strain rate 

10.005 s −= . It relies on a VideoExtensometer working with a limited number of markers 

located in the specimen gauge (4/5/4 dots located on 3 different longitudinal lines), providing 

a real-time measurement of the local longitudinal strain. This signal drives the actuator of a 

hydraulic tensile machine through a PID feedback loop. In the case of a ramp input; the 

realized strain signal perfectly follows the input command as can be seen in Fig.1: the 

constant strain-rate is achieved with a small random noise of 0-mean superimposed to it. 

Experiment 2 refers to a tensile test performed at an imposed constant displacement rate 

0.02 /u mm s=  on the same machine.  

Experiment 3 is identical to experiment 2 except for an imposed constant displacement rate 

now 4 times greater: 0.08 /u mm s= . 

 

For all 3 experiments, a 3D (stereo) DIC system provides full field strain 

measurements on the 2 front and lateral faces of the specimen gauge, allowing for precise 

true stress measurements (Farge et al., 2015). These 3 experiments will serve the objective 

of the demonstration. With respect to an intrinsic behavior's law expressed in terms of true 

stress and strain, they provide very different strain and strain rate excitations on the 

Representative Element Volume (REV) of the material as shown in Figure 1.  
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Figure 1:  Strain-rate evolution with strain during a tensile test performed at constant 

imposed strain or displacement rates. 

 

It is of the utmost importance at this point to insist on the fact that only true strain-true stress 

analysis of the identification results is relevant to certify the intrinsic character of the 

behavior’s law. As a consequence, the case of experiment 1 is more comfortable for the 

scientist: experimental data are obtained directly with the variables suitable to launch the 

inverse approach based on the model of Eq.(6). This case will be specifically studied in 

section 4. Note that true strain-true stress curves are in that case identical to time-true stress 

curves (the shift in abscissa is the proportional factor 𝜀̇). The case of experiments 2 or 3 

requires from the scientist a preliminary work of determining the local evolution of 𝜀̇(𝑡) 

before going on with the inverse approach (detailed in the Supplementary Information file). 

Additionally, as evidenced in Fig.1, the strong evolution of 𝜀̇(𝑡) and 𝜀(𝑡) requires to know 

or to identify the relationship between the relaxation parameters of the behavior’s law and 

the strain rate. This will be the object of section 5. Note that in that case, the only analysis 

in terms of true strain-true stress makes sense for model identification, hence the adopted 

representation of the results. 
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4. Experiment 1 (constant strain rate): Identification of model parameters. 

 

Applying the model (Eq. 6) to the experimental data obtained for experiment 1 

through an inverse estimation of the model parameters will give key elements of discussion 

to assess our demonstration. Estimation is performed on a least-square criterion optimization 

and using indifferently a Levenberg-Marquardt or simplex algorithm. Because the problem 

is relatively well-conditioned (see explanations in Blaise, 2016) results are always identical. 

Accounting for the Levenberg-Marquardt algorithm’s fast computation times, this latter will 

be used preferentially. 

In figure 2 below, we show a typical result of the adjustment of the model to the data 

for experiment 1. We selected a special set of data which, unlike the one shown in Fig.1, 

suffers from accidental superimposed low-frequency noise on the input (due to a different 

set of PID settings). This signature will make clearer our analysis of the residuals obtained 

after the optimization process. Four different identifications were applied on these data 

whether the true or idealized strain and strain-rate were considered in the model or the 

numerical or analytical versions of the model were used (Eq. (7) versus eq. (9)).  

• Identification 1 = analytical model of Eq.7, which implies the assumption of a perfect 

ramp command effectively realized in the test. 

• Identification 2 = Numerical algorithm (bE2) which uses the real (noisy) strain and 

strain-rate input signals. Considered as the reference case for the study. 

• Identification 3 = Numerical algorithm (bE2) which uses “filtered” (un-noisy) strain 

and strain-rate input signals. Typically, a linear regression is applied to the measured 

input strain command and is substituted for it in the algorithm. 

• Identification 4 = Same as Identification 3 but using the (SA3) algorithm to prove 

the numerical consistency. 

 

As shown by Figure 2, the least-squares optimization of the model produces 

absolutely identical results although the identified parameter values can show 2-3% of 

variations (see Table 1). The model can explain the data very well: the after-identification 

residuals -i.e. discrepancy between experimental and reconstructed data- produce a control 

of the quality of the optimization process. In the residuals signature and as a general rule of 

thumb, two components are present that can be recognized easily in Fig.2.  
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Figure 2: True stress-true strain curves for Experiment 1 – Left axis: Experimental data 

and adjusted model; Right axis: After-identification residuals (magnified by a factor of 4) 

and difference between input and realized strain ramp command (arbitrarily amplified and 

shifted to a mean value set at +40). 

 

• The noise at higher frequency is a direct contribution of the initial noise pre-existing on 

the input excitation. In general, it is essentially the intrinsic noise of the sensors and 

possible electronic conditioning of their raw signal. Here there is an additional nuisance 

noise due to the input command as mentioned previously. Estimation parameter theory 

shows how the noise affects the variance on the estimated parameters. But in case the 

model is a perfect idealization of the experiment and the sensitivity analysis shows 

highly sensitive and perfectly un-correlated parameters, it does not bias the estimated 

parameters. Consequently, it is fully recoverable in the identification residuals i.e. the 

s.t.d of the residuals should be equal to the s.t.d. of the noise on the data. This is nearly 

the case here. After-identification residuals (right axis) are nearly centered on or 

fluctuate around a 0-mean level and corrupted by a noise signal which corresponds 

exactly to the 0-mean input noise observed on the strain signal. This can be seen from 

the data set shifted to the arbitrary 40 mean value for clarity of Fig. 2 (second curve, 
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same right axis) which indeed corresponds to the direct difference between the input 

measured strain and its expected behavior (the command).  

• The long-range wavy behavior of the residuals is reflecting the sole bias due to some 

deficiency in the model/experiment agreement. This bias either results from an 

uncontrolled bias in sensor measurements (clearly not the case here) but in 

contemporary science is more likely the result of a more or less pronounced 

incompatibility between the assumptions of the model (an ideal design) and the 

objective experimental conditions. From our insight on this specific problem, it is more 

likely due to the approximate phenomenological description of the relaxed state 

according to eq.(3). A bias due to the force signal conversion into a true stress signal, 

based on DIC surface measurement strains on the three surfaces of the specimen in its 

central part cannot be excluded totally either. We indicate on Fig. 2 where the local bias 

is at maximum (of the order of 1.5MPa at a strain of 1.2). 

 

 

ˆ
uE  (MPa) 

 
max

T (s) Ĝ  (MPa) 

 
Relative 

error 
 

Relative 

error 
 

Relative 

error 

Identification_1 
Analytical model 

(Eq.7) 

3112 -3.5% 5.394 +3.6% 2.552 -0.2% 

Identification_2 
Reference 

Numerical 

algorithm bE2 

(Eqs 8 and 9) 

3224 - 5.207 - 2.556 - 

Identification 3 

Numerical 

algorithm bE2 

3215 -0.3% 5.22 -0.25% 2.55 0% 

Identification_4 

Numerical 

algorithm SA3 

3218 -0.2% 5.22 -0.25% 2.557 0% 

 

Table 1: Identified model parameters for the different options of model/algorithm for the 

identification. 

 

 Of course, it is essential to constraint the bias as low as possible. In general, the 

variance of the noise on the true strain signal is far below the bias, and is of the order of 
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0.04 𝑀𝑝𝑎 (in our experiments, which corresponds to a noise on the Force sensor of s.t.d less 

than 2N). 

In Table 1, the identification 2 using bE2 algorithm is taken as the reference as a numerical 

approach is mandatory to treat data obtained in the case of experiments of type 2 and 3. 

 

5. Experiments at constant displacement rate: the probation test. 

 

Because a tensile test performed at constant displacement rate makes the central part of the 

specimen (where the true stress-true strain curve is recorded) subjected to very different 

strain rates (Fig.1) due to necking, the constitutive model which is expressed in terms of a 

(𝜎̇, 𝜎, 𝜀̇, 𝜀) law must obviously consider the real excitation 𝜀̇ but not only. The key point is 

that under evolving strain rate excitations, the specimen's viscoelastic response reflects a 

change in relaxation times. As a result, the condition for the model to be applied to fit any 

kind of experimental excitations with pertinent results, is to have available a relationship 

between the strain rate and -in the framework of our model- the maximum identified 

relaxation time. This latter was obtained in Blaise et al. (Blaise et al., 2016), the constitutive 

law having been applied to a series of stress-strain curves monitored at different constant 

strain rates. Thanks to the well designed and parsimonious model described in section 2 

through Eq.(7), the identified parameters show a strain rate dependence which is expected 

to be a real intrinsic property of the material. For the seek of some universal character, the 

Weissenberg number We  was introduced. It corresponds to the ratio between the time 

constant 
matt characterizing the intrinsic ‘fluidity’ of the material and the time scale of the 

experiment or of the observer expt . The fluidity of the material is inversely proportional to 

the Weissenberg number. In the present case, its maximal value can be calculated by the 

following formula  

 

max
mat

exp

t
We  

t
 = =  (10) 

 

where 
max , the maximum relaxation time of the spectrum, is used for the material 

characteristic time and 1   for the experimental characteristic excitation time. 

Table 2 summarizes the findings for HDPE.   
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Strain 

rate (s-1) max  (s) We  G (MPa) 

5.10-5 419.72 0.0209 1.53 

4.10-4 63.23 0.0253 1.85 

2,5.10-3 11.02 0.0276 2.31 

5.10-3 6.01 0.0301 2.31 

10-2 3.21 0.0321 2.46 

 

Table 2. Average estimated maximal relaxation times max , corresponding Weissenberg 

numbers We  and hardening moduli G  for the HDPE specimen subjected to tensile tests 

performed at different strain rates. 

 

 

5.1.Strain rate dependency of model parameters 

 

• Time spectrum: There are two options regarding the “modeling” of the relaxation times 

spectrum dependency with respect to strain rate. For such dependence description, we 

will speak of “companion” relation of the constitutive law, rather than model, law or rule. 

Indeed, it can not be considered as part of the theoretical modelling. It is different for 

instance as to consider models for describing plasticity and damage, including the 

definition of a yield criterion… to complete the formal description of the whole behavior 

In this case, this latter is built from a set of equations (laws) catching independently each 

physical mechanisms: Norton’s law for the viscous description, a hardening law, role 

played by eq. 3 in our approach,  the GTN model for plasticity and damage phenomena… 

Such laws are either phenomenologically or theoretically founded and examples of their 

use to model the behavior or to interpret experimental data of polymeric materials are 

numerous (Laiarinandrasana et al., 2009, Pardoen and Hutchinson, 2000, Negahban et al. 

2006). 

 

Option 1 As reported in Table 1, experiments conducted at various imposed strain 

rates have provided the identification of different maximum relaxation times. The 

corresponding calculated Weissenberg number varies from more than 50% over 3 
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decades of strain rates but in an unknown manner (no model available). A plot of We  as 

function of   in logarithmical scale shows a roughly linear dependency. Applying a 

regression, gives the following relationship with R-square coefficient of 0.976.  

 

max 0.00464 log( ) 0.0367WeWe =   =  +  (11) 

 

When definitely established with prior experiments and if really intrinsic to the material, 

this relation can be seen as the companion relation to be associated to the constitutive law. 

The spectrum parameter max

We  can be considered as known (simple division of We  by  ) 

once the local strain rate   imposed locally on the REV is known. 

Two controls can be applied to check whether this relationship is valid for our material. 

Either the adjustment procedure is reduced to the identification of the only one remaining 

parameter (Relaxed modulus G ) because the model parameter 
max  is supposed to be 

known from (11) (𝜏𝑚𝑎𝑥
𝑊𝑒 (𝜀̇)); 

Or parameter 
max  will be considered as corresponding to max max

We =   and the 

adjustment procedure will consider both the relaxed modulus G  and the correction 

coefficient   as parameters to identify. The latter will measure in some ways, whether 

or not the residuals can be further minimized when authorizing 
max  to slightly fluctuate 

around the supposed known value max

We . Of course, if the relationship (11) perfectly holds, 

this coefficient should be identified equal to 1. As this relation results from measurements 

also delivered by an identification process, some errors may exist but if rather insensitive 

to the obtained results, this will prove the intrinsic character of both the constitutive law 

and its companion material spectrum relation.  

 

Option 2 Without any explanatory concern, a direct fit can be applied to the 𝜏𝑚𝑎𝑥(𝜀̇) 

data of Table 2. In that case a perfect representation of the data is obtained (R-square 

coefficient = 1) with the following exponential relation: 

𝜏𝑚𝑎𝑥
𝑓𝑖𝑡 (𝜀̇) = 27.24 𝑒𝑥𝑝(−2.1 𝑙𝑜𝑔103𝜀̇) (12) 
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The 𝜏𝑚𝑎𝑥
𝑊𝑒 (𝜀̇), 𝜏𝑚𝑎𝑥

𝑓𝑖𝑡 (𝜀̇) and 𝜏𝑚𝑎𝑥(𝜀̇) data are plotted in Figure S2 (Supplementary 

Information). It is shown that both relations (11) and (12) capture the apparent strain-rate 

dependence even if the 𝜏𝑚𝑎𝑥
𝑊𝑒 (𝜀̇) approximation underestimates the time spectrum higher 

bound at very low strain-rates. 

 

• Hardening modulus: In the same way, the Hardening modulus identified from the stress-

strain response to an input ramp at constant strain rate evidently depends on the selected 

strain rate. This is generally observed indirectly by varying the temperature of polymers. 

The decrease of 𝐺 when the temperature increases was already observed for both 

amorphous (Van Melik et al., 2003) and semi-crystalline polymers (Na et al., 2007). It is 

due to thermally activated relaxation mechanisms that can be evidenced by DMA 

(Dynamic Mechanical Analysis) measurements on pre-deformed specimens. In the case 

of polyethylene, the identified relaxation process is the 𝛼 relaxation mode associated with 

the slip of mosaic blocks inside the lamellae (Na et al., 2007). Because of the temperature-

time equivalence principle, a strain rate increase has the same qualitative effect as a 

temperature decreases and results in an increase of 𝐺 values which is exactly what we 

observe from parameter 𝐺 identifications from experimental tensile curves. But as far as 

the authors know, there is no reported idea about the mathematical description of this 

dependency. Unlike relaxation times which can be assumed to shift rather simultaneously 

with a change in microstructure, a direct instantaneous dependence on strain rate could 

hardly be defend for the relaxed modulus G . It would be firstly in contradiction with the 

hypothesis of describing precisely a relaxed state. Secondly, as it describes the elasticity 

of the SCP’s fibrillar network established differently according to the loading path 

history, it can change physically only in a delayed manner (like for temperature). For 

those two reasons, we will keep the strict relation (Eq. 3) for the relaxed state, the modulus 

G  representing the apparent hardening elasticity in a somewhat homogenized manner for 

constant displacement rate tensile tests. 

 

5.2. Overcoming the probation test  

 

The objective of the paper is achieved in this section. Figure 3 shows the best model 

adjustment and vector 
max, ,uE G =     identification on the experimental stress-strain 

curves obtained for constant displacement rate tensile tests (Experiments of type 2 and 3). 
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The model accounts for the exact realized input strain command with varying strain rates of 

Fig.1 (see explanations of the fitting process of these command signals in Supplementary 

Information: Curve fitting process for the command/excitation signals). But it does not 

account yet for the strain rate dependency evidenced in the previous section on the 
max  

model parameter (Eqs.11 or 12). The demonstration is clear. The constitutive law model is 

unable to reproduce the real behavior which nevertheless has an apparent behavior identical 

to experiments monitored by strain rate (compare with the stress-strain curve obtained at 

constant strain rate in Fig.2). It produces a short time behavior corresponding to a sudden 

jump in stress with very low yield stress (around 2MPa) and the post-yield behavior is simply 

unacceptable as well as the identified instantaneous modulus found to be around 60 GPa. An 

expeditious conclusion would lead to consider the proposed constitutive law as non-intrinsic 

to the material, which is, of course, what a rheologist tries himself to prevent from. 

 

Figure 3: Experiments at constant displacement rate and model inconsistency when 

intrinsic strain-rate dependency is neglected  

 

 

If now, the companion relation (11) or (12) is used to subjugate parameter 
max  of the 

constitutive behavior’s law (Eq. 6) to the actual strain rate, then the prediction of the true 

stress-true strain curves for both experiments at constant displacement rate (Fig.4a when 

using Eq.11 and Fig4b when using Eq.12) is very reliable with all rheological regimes of the 
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tensile curve clearly recovered (Comparison to be made with curves of Fig.3). These direct 

simulations were performed for an unchanged instantaneous modulus of 3220𝑀𝑃𝑎  (Table 

1-Line 2). Concerning the hardening modulus G, the best strategy is to determine it in 

accordance with the theory used for the relaxed state description as was presented in Blaise 

et al. (2016). The plot of the experimental stress versus the Haward-Thackray strain variable 

should exhibit a linear behavior. This is nearly the case for both Experiment 2 and 

Experiment 3 tensile tests. From a linear regression (see Fig. S1 in Supplementary 

Information) it can be easily retrieved as G=1.56 MPa and G=1.64 MPa respectively for the 

experiments at 𝑢̇ = 0.02 𝑚𝑚/𝑠 and 𝑢̇ = 0.08 𝑚𝑚/𝑠 . 
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Figure 4a: Comparison between tensile tests at constant displacement rate and direct 

model computation from eq.6 and companion strain rate dependency for the relaxation 

spectrum (Eq.11).  

 

Figure 4b: Comparison between tensile tests at constant displacement rate and direct 

model computation from eq.6 and companion strain rate dependency for the relaxation 

spectrum (Eq.12).  
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It is clear from this direct modelling that the constitutive model (Eq. 6) is able to describe 

the experiment in an intrinsic manner. Residuals show of course that the bias is now 

enhanced as a consequence of the approximation of Eqs.11 or 12 to determine the 

spectrum shift with strain rate variations and of the a priori determination of the overall 

hyper-elastic modulus G . The extreme sensibility of the spectrum shift is evident from 

Figs 4a and 4b. Although the discrepancies between the model prediction and the 

experiment remain at maximum equal to 10 MPa, it happens rather in the yielding regime 

(Fig.4b) or in the hardening regime (Fig.4a) whether Eq.12 or Eq.11 are used respectively. 

This suggests that the metrological approach based on a set of tensile tests at constant 

strain rate should be conducted very carefully. 

 

 

5.3.Identification of the model with strain rate correction  

 

The analysis can be pushed a little forward by producing model adjustments on the 

experiments, with the same constitutive model of eq.6, the exact realized input command 

signal but allowing for the adjustment of parameters max and G .  

 

Results of identifications are reported in Table 3 for experiment 2 (𝑢̇ = 0.02 𝑚𝑚/𝑠). 

Again and accounting for the results of Table 1, the instantaneous modulus measured in 

tensile tests of the type of experiment 1 is considered as known and equal to 𝐸𝑢 =

3.22 𝐺𝑃𝑎 (‘Identifications 2 and 3’ in Table 3). For ‘Identification 2’, the parameter 
max  

of the relaxation spectrum will be determined as either ( )max max

We =    with 𝛼 allowing 

for a correction factor to be identified for each test but with the ( )max

We   assumed relation 

(Eq.11) or, for ‘Identification 3’, ( )max max

fit =    with the ( )max

fit   assumed relation 

(Eq.12). Because 1ref = , this will present the advantage of showing directly in % the 

amount of adjustment made from eqs.11 or 12 to 
max  for providing a better fit. Parameter 

G  will be considered as constant to provide the best overall estimation of the behavior 

in hardening regime (although it has been observed, as discussed earlier, that the 

establishment of the fibrillar regime depends on the strain-rate). It can be initialized to 

the estimated value given in section 4.2. For ‘Identification 4’, both three parameters 

𝐸𝑢, 𝜏𝑚𝑎𝑥, 𝐺 are identified to check the stability of the estimation process.  
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ˆ
uE  (MPa) 

 
 (s) Ĝ  (MPa) 

 
Relative 

variatio

n 

 

Relative 

variation  
Relative 

variation 

Reference 
3220 

known 
- 1  

1.56 

(estimated) 
 

Identification_2 

( ( )max max

We =   ) 

Cost function=1155 

3220 

known 
- 1.11 +11% 1.761 +16% 

Identification 3 

( ( )max max

fit =   ) 
Cost function=1191 

3220 

known 
- 0.928 -7% 1.764 +16% 

Identification_4 

( ( )max max

We =   ) 

Cost function=1138 

3428 +6.5% 1.045 +4.5 1.765 +16% 

Table 3: Identifications performed on Experiment 2 (imposed constant displacement rate of 

𝑢̇ = 0.02 𝑚𝑚/𝑠) 

 

Figure 5 shows how well the model identification compares with the experiment for the 3 

identification options. The estimated response of the model is the same, the Least-Square 

cost function leading to the same value at convergence. Because the noise on the 

experimental strain-stress signals is very low, the residuals (magnified by a factor of 5) are 

the pure reflect of the remaining bias. It is at maximum equal to 2.5 MPa which is pretty 

good (compare with Figs 4a and 4b).  
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Figure 5: Comparison between tensile tests at constant displacement rate and inverse 

identification of parameters 𝛼, 𝐺  with the model of eq. 6 and companion strain rate 

relations for correction of the relaxation spectrum (Eq.12). 

 

Regarding identified parameters, it is shown (Identifications 2 and 3) that whether Eqs 11 or 

12 are used for initial estimation of ( )max   is not so important. The 𝛼 value identified to 

correct (shift uniformly) the relaxation spectrum is of the order of 10% at maximum. When 

the instantaneous modulus is free to adjust the data, it increases by 6.5% when the max  

parameter can be less corrected (𝛼 = +4.5%). This is just the result of a slight correlation 

effect existing between these two parameters. Note that assuming no bias in the couple 

(experiment/model), the ideal relative error on these two parameters was calculated of the 

order of 2% in Blaise et al. (Blaise, 2016). ‘Identification 4’ then proves the robustness of 

the P.E.P. conditioning. Regarding the ‘apparent’ hardening modulus G, nothing can be 

concluded except to observe that the initial value estimated from the linear regression at 

strong deformation is corrected by the estimation process performed on the whole strain 

range to product better adjustment to the experimental data. 

 

Turning now to the tensile test performed at 𝑢̇ = 0.08 𝑚𝑚/𝑠 (Experiment 3), the same 

analysis can be made and results of identifications are reported in Table 4. Results 
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concerning the model adjustment, the residuals magnitude (lower than 3.4 MPa), and the 

parameter estimates are similar to Experiment 2 (see Table 4 and Figure 6) except for 

identification 4. 

In this case, the instantaneous modulus is not considered as known but as a parameter to 

estimate. The less good-conditioning of the P.E.P. becomes obvious. Remember that P.E.P. 

are Non-Linear Problems in terms of the parameters (and possibly also the inputs). It is clear 

here that the wide strain rate range in input introduces a stronger correlation between 

parameters 𝐸𝑢 and   (i.e. 
max ). These two parameters evolve now strongly (+36% and -

24%) and the model adjusts much further than for Identifications 2 and 3: the cost function 

is reduced by a factor of 25%. This can be seen on Fig. 6 where in that case, the residuals 

are very minimized at short times, in the early beginning of the tensile test (cross-dot 

residuals curve of Identification 4). The best strategy here is clearly to consider that 

parameter 𝐸𝑢 remains at its known value, previously estimated and to consider only 

Identifications 2 and 3 as well-founded.  

 

 

ˆ
uE  (MPa) 

 
  Ĝ  (MPa) 

 
Relative 

variatio

n 

 

Relative 

variation  
Relative 

variation 

Reference 
3220 

known 
- 1  

1.64 

(estimated) 
 

Identification_2 

( ( )max max

We =   ) 

Cost function =2100 

3220 

known 
- 1.045 +4.5% 1.85 +12.6% 

Identification 3 

( ( )max max

fit =   ) 
Cost function=2250 

3220 

known 
- 0.855 -14% 1.86 +12.6% 

Identification_4 

( ( )max max

We =   ) 

Cost function =1665 

4374 +36% 0.764 -24% 1.85 +12.6% 

 

Table 4: Identifications performed on Experiment 3 (imposed constant displacement rate of 

𝑢̇ = 0.08 𝑚𝑚/𝑠) 
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Concerning Identifications 2 and 3, the accommodation required on 
max  through   is much 

weaker in the case where the Weissenberg companion relation is used (+4.5% against -14% 

for eq. 12). Because in that case the strain rate variations are very important (up to 

1.7 10−2 𝑠−1 𝑖𝑛 𝐹𝑖𝑔. 1) this may suggest that the Weissenberg approach (eq. 11) is more 

sounded that the mathematical fit (eq. 12).  

 

Figure 6: Comparison between tensile tests at constant displacement rate and inverse 

identification of parameters 𝛼, 𝐺  with the model of eq. 6 and companion strain rate 

relations for correction of the relaxation spectrum (Eq.12).  

 

Still, these last results confirm the intrinsic character of the constitutive law proposed in 

Eq.6 for the HDPE semi-crystalline polymer, which is able to model tensile test in imposed 

displacement command mode once a complementary information is joint to the model to 

account for strain rate dependency. Note that this result tends to confirm two postulates about 

micromechanisms of deformation of HDPE: the relaxation times spectrum is directly 

coupled to strain rate, the hardening modulus characterizing the fibrillar structure is not so 

sensitive to strain rate and linked to it in a more complex manner, still to investigate. 
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6. Conclusion 

The conclusion of this study is two folded. The first conclusion stays in the initial 

objective of the paper: illustrating how the proof can be made that a proposed constitutive 

model is really intrinsic to the material. Following previous results reported in Blaise et al., 

2016, it is shown that a proper application of theoretical concepts in P.E.P. allows the ‘best 

as possible’ estimation of the model parameters. These parameters, if really intrinsic to the 

material, should convey strain rate dependency if tensile tests are performed at different 

strain rates. Once the strain rate effect on the parameters is characterized and a thus named 

‘companion’ relation is derived, the probation test consists in considering tensile tests 

performed now for varying strain rates all along the tensile test. Because heterogeneity in 

strain rates can result from the strain localization (or necking) appearing in SCP specimen, 

simple (usual) displacement rate monitored tensile tests are enough for the probation. The 

pair of constitutive behavior’s model and companion relation describing the strain rate 

dependency is shown to be able to fairly well predict the material behaviors when the strain 

and strain-rates vary. Beyond this example, the method could be extended for instance to 

account for temperature dependence. 

The second conclusion should possibly lead to better practices in mechanical 

characterization. The tensile test at constant strain rate, coupled to both a properly designed 

theoretical behavior’s law and a deep investigation of the parameter identifiability problem 

is very effective to produce meaningful material parameter estimations. This could produce 

an evolution of international standards. To speak only about the instantaneous Young 

modulus, the ASTM and ISO standards for polymers still recommend to calculate the slope 

of a linear approximation of the stress-strain curve in a normalized strain interval. In 

polymers, viscoelastic effects start as soon as a mechanical excitation is imposed on the 

specimen and a modulus estimation should take this into account. 
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probation test. Submitted to Mechanics of Time-Dependent Materials. February 2020. 

 

 

  

 

Figure S1: Stress-Strain curves represented for u=0.02mm/s (left) and u=0.08mm/s (right) 

as a function of the Haward-Thackray strain in abscissa. A linear regression on the datas for 

𝜀 > 0.4  gives a direct estimation of the hardening modulus 𝐺. 

 

 

 
Figure S2: Maximum relaxation times identified experimentally from tensile tests at 

constant strain rate (Experiment1) plotted as function of strain rate, along with the two 

relations (Eq.11 and Eq.12 in dashed and solid lines) proposed for their description.  

Error bars correspond to a 10% uncertainty.  
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Curve fitting process for the command/excitation signal 

 

When the excitation in the real experiment is applied on the grip displacement ( , )u u , curve 

fitting of the excitation variables ( , )   of the behavior's law is required and was performed 

under Matlab Curve fitting Toolbox 3.5.6. Note that very good fits are sought to in order to 

make the model computations precise and un-biased but there is no need of any explicative 

model. Mathematical forms can then be selected without any physical constraints. For this 

reason the curve fitting process is performed in two steps to enhance the quality. 

A first fit is performed of the signal ( )t . In many cases, the mathematical function used for 

the fit is of the form  

( )
( e )

fit

c at

bt
t

t d
=

+
  (A-1) 

An example is given in the figure S3a below where texp figures the experimental time and 

xexp the strain variable as measured with the DIC system. 

 

Figure S3: (a) upper plot of experimental strain versus time. (b) fitting residuals. 

Residuals ( ) ( ) ( )fitr t t t= −  are calculated after this first step. 
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A second fit is performed on these residuals. Generally a series in sine function of a few 

terms is obviously appropriate. 

 

Figure S4 : Fit of the residuals under a series of sine functions. 

Figure S5 plot the residuals after this second step. They are in this example of the order of 

0.001 for a signal which varies from 0 to 1.8. 

 

Figure S5 : fit of the 1st step residuals and residuals after this second step. 

Then Figure S6 shows the strain fit that can be obtained for the real experiment at 

u=0.02mm/s 
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Figure S6 : Final curve fitting of the experimental strain signal. 

The process can be repeated now on the experimental strain-rate signal 𝜀̇ which is obtained 

from a numerical differentiation. Figure S7 gives an example of the experimental strain-rate 

signal and its 1-step and final (2-step) fitted counterpart.  

 

 

Figure S7 : Experimental and successively fitted strain-rate signal. 

Note that having a good un-noisy signal for the strain-rate realized during the experiment, 

it is possible to compute the strain signal resulting from the displacement command by 
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cumulative integration 
0

( ) ( )du

t

t u =   to check and validate the whole process. This is 

what is shown in figure S8 below. 

 

Figure S8 : Validation of the strain-rate fit with a numerical time integration to recover the 

strain signal. 

 

 


