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Abstract—The penetration of power electronics in large-scale
interconnected power systems has significantly increased in the
recent years. As a consequence, the electromechanical inter-area
modes are no longer the majority of modes which involve distant
dynamic (modeled by differential equations) devices , i.e., of
coupling modes. In this paper we develop a new methodology
which allows one to determine all the coupling modes (modes
related to classic synchronous generators with large inertia,
modes related to power electronics (Power Park Modules) of a
given power system. To this end, we excite the system with well-
chosen temporal signals and analyse the correlation between the
obtained outputs. This leads to the identification of classes of
coupled dynamic devices of the grid. Next, a selective modal
analysis method is applied to each class to determine good
approximations of coupling modes which involve the devices of
the class. Finally, iterative search of eigenvalues initialized at the
approached values of the coupling modes found at the previous
stage lead to exact values of the eigenvalues of the overall power
system. The proposed methodology is applied on the 23 machines
model of the Spain-France interconnection.

Index Terms—Coupling/Inter-Area Modes, Modal Analysis,
Eigencalculation, Large-Scale Power Systems, Power Electronics.

I. INTRODUCTION

The European electricity network is evolving due, in
particular, to new interconnections, Power Park Modules
(PPMs), i.e, sources connected to the grid (Renewable
Energy (RE), Distributed Generation (DG), storage, etc)
by power electronics and FACTS (STATCOM, HVDC,...).
They enlarge thus the class of devices with models which
consist of differential equations called dynamic devices in
the sequel. In the past, it was custom to consider this class
exclusively composed by classic synchronous generators. A
first consequence is the increase of the size of the resulting
mathematical model which is a challenge, especially for modal
analysis, i.e., computation of eigenvalues and eigenvectors
in order to determine the main oscillatory dynamics of the
systems and the parts (variables) involved in.

Moreover, most of the aforementioned grid components
consist of power electronic devices (VSC converters) or are
connected to the grid via such elements. This leads to new
signatures of the oscillatory modes which involve distant
devices of the grid called coupling modes in the sequel.
Indeed, in the past, these modes, called inter-area modes,
were quasi-exclusively due to large thermic synchronous
generators of which turbine shafts oscillate one against other
(see, e.g., [14]).

Classes of generators which swing together for a given
disturbance were constructed based on coherency (see [4],
[6], [12], [15] or related references). To define classes with
respect to given modes, synchrony was introduced ( [7], [13]
and related references). However, power grids which contain
power electronics may have coupling modes of different
nature. For example, in [1] and [2] coupling modes between
classic synchronous generators but not of inter-area nature
were put into evidence. They are related to the electric parts
(axes D or Q) of distant generators. In [10] oscillatory modes
between converters of distant HVDCs were put into evidence
and analyzed. Also, power converters (from HVDC or Power
Parks Modules) may have important participation in inter-area
modes and thus interact with synchronous generators [1], [5],
[18].

Modal analysis methods should change in accordance to
the nature of the coupling modes mentioned above. More
precisely, the dominant devices in a coupling mode are not
only among the large synchronous generators with large
inertia. New efficient computation methods must be proposed
to cover this general case which becomes actual in case of
large power electronics penetration. Another problem is to
find in an exhaustive manner all the coupling modes of a
given grid, i.e., to scan unknown or new grid model.

In this paper we develop a new methodology to overcome
the difficulties mentioned above. It provides a way to



systematically excite and put into evidence all the coupling
modes of a given power system. The proposed methodology
works independently of the system’s order. Also, the method
does not require any a priori knowledge neither about the
nature of modes nor about the participating devices. To this
end, we excite each dynamic device of the power system with
well-chosen temporal signals. We next analyze the correlation
between the obtained outputs of all dynamic devices to
aggregated them into classes of coupled dynamic devices of
the grid.
This is the main difference (and advantage) compared to
existing approaches which compute modes given a good and
precise starting guess or perform a global scan only for the
inter-area modes.

Next, the modes of each class are computed based on the
Selective Modal Analysis (SMA) approach [11] to finally
provide all the coupling modes of the overall system.

The rest of this paper is organized as follows. Section II
presents the mathematical model used for the power system
and brief description of SMA algorithm. Section III gives the
details of proposed approach. Section IV gives computation
results on a 23 machines model of the Spain-French intercon-
nection. Conclusions and perspectives of future work are given
in Section V.

II. BASIC TOOLS

In this section we present some mathematical tools and
brief description of SMA algorithm, which will be used
subsequently.

A. General power system model

A power system is generally composed of some dynamic
components (generators, dynamic loads, regulators, convert-
ers,...). The mathematical model which results from an ana-
lytical modeling is a Differential Algebraic Equations (DAE)
form { .

x= f(x, y)
0 = g(x, y),

(1)

where x represents the differential variables (machines
angles and speeds, regulators state-variables, ...) and y the
algebraic ones (grid voltages).

The linearization of (1) around an equilibrium point (x0,
y0) gives { .

x= Mx+Ny
0 = Px+Qy.

(2)

Equation (2) can be rewritten as:[ .
x
0

]
= E

[
x
y

]
with E =

[
M N
P Q

]
(3)

where E ∈ IRe∗e and e is the total number of variables. If Q
is invertible, from (3), we can deduce a state-space form

.
x= Ax, (4)

where A = M−NQ−1P ∈ IRn∗n. Notice that n is the length
of x, i.e, equal to the number of differential variables.
Generally the A matrix is used by some power system soft-
wares in the stability study of overall power system.

B. Eigenanalysis

1) Eigenvalues: For exponentially stable (i.e, σi < 0)
complex conjugate eigenvalues of matrix A in (4)

λi = σi ± jwi, (5)

the real part and the imaginary part are used to compute the
damping ratio ξi (in %) and the oscillation frequency fi (in
Hz):

ξi =
−σi√
σ2
i + w2

i

, fi =
wi

2π
. (6)

The damping ratio gives the rate at which the oscillation
amplitude decreases and thus represents the risk of instability.

2) Eigenvectors: The computation of the eigenvectors can
give other information about the nature of the oscillations.
They determine the way in which each mode contributes to a
particular state and the shape of inter-area oscillations (see,
e.g., [14]). The right eigenvectors are piled as columns of
matrix Vr and the left eigenvectors as lines of Wl which satisfy AVri = λiVri

WliA = λiWli for i = 1, ..., n.
WlAVr = Λ

(7)

where Λ = diag{λ1, ..., λn}, with λi eigenvalues of A.

C. Participation factors

The participation factors better quantify the link between
the states and the modes. The participation factor of the jth

variable in the ith mode is defined by

pji = wjivji, (8)

with, wji and, respectively, vji, the jth component of left,
respectively, right eigenvector of the ith mode.

If the eigenvectors are orthonormal (i.e., if Wl = V −1
r ),

then
n∑

i=1

pji =

n∑
j=1

pji = 1 (9)

which allows one to compare the contribution of different
states in a given mode (or, equivalently, of different modes in
a given state).

D. Selective Modal Analysis [11]

SMA is an efficient way to characterize and analyze in-
dividually selected parts of large-scale linear systems (

.
x =

Ax) provided they have small interactions. It requires thus the
vector of state variables x to be divided into two parts, one of
relevant variables r, and the other one of less relevant variables
z in the sense that the dynamics of z have little influence on



the dynamics of r (the length of r is also much smaller than
the length of z) as follows:[ .

r
.
z

]
=

[
Arr Arz

Azr Azz

] [
r
z

]
(10)

with r ∈ IRq and z ∈ IRn−q . Diagram in Fig. 1 corresponds
to this state partition and leads to the transfer matrix of the
less relevant dynamics

H(s) = Arz(sI −Azz)−1Azr. (11)

Figure 1. Block diagram representation of a linear dynamic system with
separation of relevant and less relevant dynamics

The eigencomputation is run only on the relevant variables
and the less relevant ones are only used to take into account
the (small) influence of the missing part of the system on
the eigenvalues of interest. The idea consists of obtaining a
transfer matrix M(s) of the less relevant dynamics valid for
several modes of interest. The block diagram of Figure 1 could
be represented as shown in Figure 2. The computation of M(s)
is done in Algorithm 1 which summarizes the SMA procedure.

Figure 2. Block diagram representation of a linear dynamic system with
matrix transfer function representation of the less relevant dynamics

Convergence of Alorithm 1 is ensured if the split of the
state varaibles (10) is effective, i.e, dynamics of z have little
influence on dynamics of r [11].

Remark 1. The STOP CONDITION is, in general, the vali-
dation of k+1λi as eigenvalue of A. This leads to a condition
of the form

cond(k+1λi ∗ I −A) ≥ ε OR k ≥ kmax, (12)

Algorithm 1: SMA (Inputs: A, Arr, Arz , Azr, Azz;
Outputs: Λr=eigenvalues related to r, Vr=eigenvectors
related to r)
(1) Determine the initial set of modes of interest {0Λr

and 0Vr} by using the eigenanalysis of Arr, that is:
Arr

0Vr = 0Vr
0Λr, with 0Λr={0λ1, ..., 0λr}

k = 0
(2) while (STOP CONDITION==FALSE) do

(2.1) for i = 1, ..., r do
Compute the transfer function H(kλi)
H(kλi) = Arz(kλi ∗ I −Azz)−1Azr, with I the
identity matrix.

end
(2.2) Compute the transfer matrix k+1M of the less
relevant dynamics corresponding to the eigenvalue of
interest according to:
k+1MkVr=[H(kλ1)v1...H(kλr)kvr]
(2.3) Perform the eigenanalysis of modified matrix
k+1Arr and select the modes of interest {k+1Λr and
associated right eigenvectors k+1Vr}
k+1Arr = kArr + k+1M
(2.4) Compute STOP CONDITION
if (STOP CONDITION==TRUE) then

Stop and k+1Λr = {k+1λ1, ..., k+1λr}
else

k=k+1
end

end

where kmax is the maximum number of allowed iterations.
Indeed, k+1λi is an eigenvalue of A if, and only if matrix k+1λi∗
I − A is singular, i.e., its condition number is ∞ in theory.
In practice, we check if its condition number is greater than
a threshold ε, which leads to (12).

A good precision (like, e.g, ε = 106) will lead to accurate
estimation of eigenvalues. However, practical experimentation
conducted us to the conclusion that, for the case of our prob-
lem, it is preferable to run with a rough precision (ε ∼ 103)
in order to capture at this stage a large number of at least
candidates for exact eigenvalues. They would be refined in
our additional step of exact selective modal analysis to exact
eigenvalues of A. This allows one not to miss modes at this
step. This will be shown on the example treated in Section IV.

Notice that if there are important interactions between r and
z, Algorithm 1 could found no eigenvalue.

III. PROPOSED METHODOLOGY

The proposed methodology to systematically find all the
coupling modes of a given power system is structured into
three parts.

First, classes of the coupled dynamic devices are constructed
by exciting one by one each dynamic device with short-
circuits. Indeed, such a large disturbance involve a maximum
number of dynamics. Correlation between the obtained voltage



responses is next analysed to identify all the classes of coupled
dynamic devices of the grid.

This choice of inputs/outputs will be refined in future
extensions of this work (see Section V). The coupled dynamic
devices selection is determined on the basis of the gap between
the steady-state level of the signals and the responses to the
excitations mentioned above.

Next, SMA is done for each class. At each stage, coupling
modes of the overall system are found among the modes of
the class. The coupling modes of the system are identified in
an exhaustive manner if all the classes are treated. Moreover,
because of the redundancy of the sets of modes found for each
class, the full set of coupling modes can be found even without
treating all the classes as shown in the study case presented
in the next section.

Finally, the coupling modes found above are used as starting
points for iterations which converge to the exact values of the
modes of the overall system (see Remark 1). For this, any
classic selective modal analysis method like, e.g, Arnoldi or
Generalized Selective Modal Analysis can be used [3].

A. Classes Identification

Let us assume that the studied grid model contains m
dynamic devices and consider the excitations mentioned in
the section above.

Let

y = maxt{
|Vj(t)− Vj(t0)|

Vj(t0)
}, (13)

be the maximum overshoot of the measured output of jth

dynamic device with respect to its steady-state value.
Let

u = maxt{
|Vi(t)− Vi(t0)|

Vi(t0)
}, (14)

be the amplitude of the disturbance applied at the ith device.
As metallic short-circuits are chosen as disturbances (and the
voltage drop is 100%), u = 1.

The jth dynamic device is considered coupled with the ith

one if y
u > δ, where δ is a threshold to be defined. The thresh-

old value presents a relevant criterion for the construction of
classes. According to this criterion, the devices coupled for the
ith mode will be selected, i.e., the number of dynamic devices
selected in each class varies according to δ.

The threshold δ was chosen at this stage equal to 1%. This
is a very small value which allows one to ensure high redun-
dancy in the construction of each class. As a consequence, a
maximum number of modes will be found for the analysis of
each class and, in the end, the analysis is surely exhaustive in
the sense that all the coupling modes of the overall system will
be found. The price to pay is, of course the large number of
generators in each class. The trade-off between the amplitude
of the threshold δ and the resulting number of dynamic devices
of each class will be investigated in future work.

This protocol is carried out with all dynamic devices. From
these tests, a quasi-symmetric matrix made up with all coupled
devices (see Table I for the case treated in this paper). Each

line corresponds to the device where the disturbance is applied
(reference device) and the columns give all other devices
which are coupled with this reference device.

The main steps of the proposed approach are summarized
in Algorithm 2:

Algorithm 2: Iterative Coupled Mode approach (In-
puts: Grid−model; Outputs: Coupling modes)
(1) Linearize the grid model and generate the state
matrix A
(2) Generate the classes of coupled devices
(3) for i=1:m do

(3.1) Apply the test-scenario in t instant at the ith

reference dynamic device,
(3.2) for j=1:m do

According to the threshold δ, select the different
coupled dynamic devices

end
end
(4) for k=1:number of classes do

(4.1) Generate the sub-matrices (Arr, Arz, Azr, Azz)
for each class
(4.2) Apply the SMA algorithm and compute the
modes related to the relevant dynamics (state
variables r in (10))
(4.3) Select only the complex eigenvalues

end
(5) Starting from each mode found at each class, do a
full eigencalculation in order to obtain the exact values
of the modes of the overall system.
(6) Perform full modal analysis (mode shape,
participation factors, ...) to state which of the founded
modes are really coupling modes.

IV. NUMERICAL RESULTS

This section reports the numerical results of the application
of the proposed methodology to a simplified representation
of Spain-France interconnection (Fig. 3). It consists of 23
generators, 83 buses, 247 branches, 65 loads. See [2] for more
details about this model.

Figure 3. France-Spain interconnected systems



Figure 4. Terminal voltage responses to the G1 short-circuit

The disturbance used at Step 2 of Algorithm 2 is a short-
circuit applied at t1 = 10s and eliminated at t2 = 10.1s.
Simulations are carried out with Eurostag software [9]. An
illustrative example of coupled generators selection is given in
Fig. 4, where the reference generator is the generator number
1 and the responses for some generators (G1, G12, G18 and
G19) are given in the same figure.

The steady-state before the short-circuit of terminal voltages
of G1, G12, G18 and G9 are equal to 19.43kV , 20.4kV ,
20.1kV and 409kV , respectively. After the application of the
disturbance at t = 10s at G1, we notice from Fig. 4 that
the maximum overshoot of the measured voltage of the G1 is
20kV which corresponds to 100% according to (14). For the
other generators, as follows:

• for G12 : 0.02kV which corresponds to 0.09%
• for G18 : 0.02kV which corresponds to 0.09%
• for G19 : 39kV which corresponds to 10%

Using the criterion and the threshold proposed in Section
III, generator G19 is coupled with generator G1 but it is not
coupled with generators G12 and G18. Thus, generator G19
is considered one of the generators of first class. This kind of
test is carried out with the remaining generators.
Table I provides the resulting classes. The number of classes

provided in Table I is 23 (equal to the number of generators,
i.e, of the dynamic devices of the system).

Column 2 of Table II provides the list of modes obtained
with SMA (step 4 of Algorithm 2) for each class. For a given
class k, are given only the new modes found for this class,
i.e., which have not been found for classes 1, ..., k − 1.

Notice that all the modes are found using only 6 classes
among the total amount of 23.

In the third column of the same table is given the exact
value of the mode computed directly on the overall system
(with SMAS3 tool [8], [16]). Notice that this is possible for
this benchmark because its size is not too large.

The proposed methodology has very precisely generated
all the coupling modes, except three modes (mode 1, mode 2
and mode 62) for which the differences are very small. This
means that the constructed classes are efficient in the sense
that there are no significant interactions between the dynamic
devices of each of these classes and the rest of the system.
The small differences pointed out before are due to the
(low) precision chosen for the STOP CONDITION of SMA
research (See Remark 1). They are easy eliminated at step 6
of Algorithm 2. Table III gives the results of this computation
(with Modified Arnoldi method initialized at the figures given
in column 2 of the same table) for the three aforementioned
modes. It can be seen that the values of the full model modes
of column 3 of Table II are retrieved with very good precision.

Notice that if ε of the STOP CONDITION is increased
from 103 to 106, modes 1, 2 and 62 would no longer be found
by Algorithm 1. It was thus concluded that is preferable to
work with a lower precision ε and to add step 5 to Algorithm 2.

For step 6 of Algorithm 2, full modal analysis must be
performed for each mode found at step 5. Table IV provides
the results for mode 5 which is thus proven to be an inter-
area mode. As a matter of fact, we notice in column 3
phase opposition of right eigenvectors associated to the speed
deviations between the most participating machines as well as
several distant generators involved in the mode.

Tables V gives the results for mode 27. It is a coupling
mode since it involves 2 distant generators with significant
participation. However, no phase opposition is noticed for the
right eigenvectors. Also, the most participating parts are not
the rotors but the D axes. This is not an inter-area mode but
an electric coupling mode as defined in [1] and [2].

V. CONCLUSIONS

In this paper, we proposed a new methodology that is able
to find all coupling modes of a given power system. This
methodology does not require any a priori knowledge neither
about the nature of modes nor about the participating dynamic
devices. This methodology enables to directly consider any
kind of dynamic devices of the power system like, e.g, Power
Park Modules and not only classic synchronous generators.



TABLE I
DIFFERENT GENERATED CLASSES

G1 G2 G3 G4 G5 G6 G7 G8 G9 G10 G11 G12 G13 G14 G15 G16 G17 G18 G19 G20 G21 G22 G23
G1 X X X X X X X X X X X X
G2 X X X X X X X X X X X X X X X X
G3 X X X X X X X X X X X X X X X X
G4 X X X X X X X X X X X X
G5 X X X X X X
G6 X X X X X X X X X X X X
G7 X X X X X X X X X X X X X X X
G8 X X X X X X X X X X
G9 X X X X X X X X X X X
G10 X X X X X X X X X
G11 X X X X X X X X X X
G12 X X X X X X X X X X X X X X X
G13 X X X X X X X X X X
G14 X X X X X X X X
G15 X X X X X X X X X X
G16 X X X X X X X X X X X X
G17 X X X X X X X X X X
G18 X X X X X X X X X X X X
G19 X X X X X X X X X X X
G20 X X X X X X X X X X X X
G21 X X X X X X X X X X X X
G22 X X X X X X X X
G23 X X X X X X X X

As it provides a scan of the system for all coupling modes,
it also facilitates the computation of all remaining modes of
the system (which do not involve distant devices). Indeed,
such a mode involve dynamics of only one device which
can belong to a class of coupled devices identified in this
work or not. In the first case, the mode is computed with the
other modes of the class. In the second case, the device is
not coupled with another one and an SMA computation for
which the relevant dynamics are the ones of this device will
provide all (local) modes of the considered device.

In this work the different classes are determined manually
by applying a disturbance on each reference generator. It will
be extended in future work to a more systematic and automatic
procedure. This will open the way to application to large-scale
grids.
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TABLE II
COMPARISON BETWEEN PROPOSED METHODOLOGY AND FULL MODEL

Number Mode with New Methodology Mode of full model Class
1 -50.0394±j7.1054e-15 -50.042±j0.0001 1
2 -37.5814±j0.7695 -37.5016±j0.6842 1
3 -22.0665±j1.1181e-15 -22.0904±j0.0047 1
4 -1.0299±j10.0635 -1.0194±j10.0292 1
5 -0.9325±j8.9418 -0.9325±j8.7160 1
6 -13.5989±j0.0486 -13.6074±j0.0363 1
7 -12.7025±j0.9119 -12.7041 ±j0.9209 1
8 -2.0608±j8.0657 -2.0616±j8.0643 1
9 -0.5873±j7.2499 -0.6016±j7.2280 1
10 -0.5130±j7.1065 -0.5057±j7.1105 1
11 -0.4139±j6.4603 -0.4146±j6.4595 1
12 -1.9356±j6.4785 -1.9283±j6.5036 1
13 -10.5174±j0.7298 -10.5154±j0.7287 1
14 -0.3084±j5.5499 -0.2876±j5.4177 1
15 -6.0659±j0.4383 -6.0455±j0.4717 1
16 -2.1401±j2.0056 -2.1413±j2.0343 1
17 -0.5306±j1.3505 -0.4658±j1.3355 1
18 -4.0397±j0.6234 -4.0394±j0.6262 1
19 -4.2948±j0.1979 -4.2918±j0.1799 1
20 -3.4297±j0.7277 -3.4300±j0.7148 1
21 -0.2059±j1.0676 -0.3008±j1.0570 1
22 -1.3500±j0.8326 -1.4135±j0.7998 1
23 -0.6658±j0.7683 -0.6692±j0.7725 1
24 -0.6116±j0.6817 -0.6192±j0.6878 1
25 -3.2307±j0.0089 -3.2230±j0.0151 1
26 -2.0689±j0.0823 -2.1160±j0.0899 1
27 -0.2894±j0.5739 -0.2962±j0.5685 1
28 -0.3226±j0.5564 -0.3218±j0.5569 1
29 -0.5286±j0.4708 -0.5280±j0.4719 1
30 -0.4187±j0.4105 -0.4185±j0.4108 1
31 -0.2515±j0.1086 -0.2501±j0.1069 1
32 -0.1558±j0.0782 -0.1577±j0.0758 1
33 -0.1838±j0.0559 -0.1912±j0.0657 1
34 -10.0640±j10.2195 -10.0640±j10.2195 2
35 -0.8240±j9.2532 -0.8240±j9.2531 2
36 -0.8347±j9.0916 -0.8348±j90916 2
37 -2.5909±j8.7078 -2.5909±j8.7076 2
38 -1.1302±j7.5639 -1.1302±j7.5638 2
39 -0.3808±j6.0167 -0.3807±j6.0167 2
40 -0.5685±j5.0006 -0.5737±j5.0038 2
41 -0.7051±j4.3033 -0.6661±j4.4412 2
42 -5.4283±j1.8453 -5.4285±j1.8453 2
43 -3.4051±j0.0377 -3.4164±j0.0563 2
44 -2.5164±j0.0259 -2.4581±j0.0360 2
45 -0.4757±j0.3513 -0.4743±j0.3438 2
46 -0.1111±j0.0715 -0.1177±j0.0655 10
47 -0.5404±j3.5016 -0.5398±j3.5023 10
48 -0.5057±j3.0886 -0.5035±j3.2158 10
49 -0.2293±j0.2118 -0.2290±j0.2105 10
50 -0.2234±j0.1862 -0.2248±j0.1895 10
51 -14.7535±j0.0168 -14.7534±j0.0168 12
52 -0.5463±j2.5677 -0.5412±j2.5714 12
53 -3.5785±j0.3516 -3.5776±j0.3479 12
54 -0.2597±j0.6131 -0.2598±j0.6212 12
55 -3.2566±j0.0992 -3.2685±j0.0838 12
56 -0.2280±j0.2002 -0.2277±j0.1999 12
57 -0.2101±j0.1753 -0.2101±j0.1754 12
58 -0.0847±j0.0111 -0.0873±j0.0107 12
59 -0.2176±j0.1679 -0.2176±j0.1679 12
60 -0.6100±j4.0835 -0.6101±j4.0833 13
61 -0.5490±j2.4876 -0.5425±j2.4837 18
62 -2.3482±j0.8690 -2.2503±j1.1076 18
63 -3.5353±j0.4571 -3.5384±j0.4601 18

TABLE III
EXACT COMPUTATION OF THE RELEVANT DYNAMICS

Mode nb. Modes with new methodology Modes with Arnoldi method
1 -50.0394±j7.1054e-15 -50.042±j0.0001
3 -22.0665±j1.1181e-15 -22.0904±j0.0047

62 -2.3482±j0.8690 -2.2503±j1.1076

TABLE IV
MACHINES WITH HIGHEST PARTICIPATION IN MODE 5

Mac. Rel. Part. (%) Phase r. evec. δ (deg)
G7 12.0 177.8
G8 100 173.5
G6 97.6 -79.7
G4 8.7 -34.6
G2 86.5 11.5
G3 87.3 11.3
G5 80.6 0.0

TABLE V
MACHINES WITH HIGHEST PARTICIPATION IN MODE 27

Mac. Rel. Part. (%) Phase r. evec. δ (deg) Rot. part D-axes part.
G1 100 0.0 0.0022 0.4650
G9 30 -40.9 0.0012 0.1259


