ASSESSMENT OF HYDRAULIC PROPERTIES OF TECHNOSOILS CONSTRUCTED WITH WASTE MATERIALS USING BEERKAN INFILTRATION EXPERIMENTS

D. Yılmaz, P.-E. Peyneau, L. Vidal-Beaudet, P. Cannavo, G. Séré

SSS7.6/HS8.3.11
Soil water Infiltration. Measurements, assessment and modeling (co-organized)
CONTEXT

- Construction of Technosoiils using waste materials for greening applications such as parks, gardens, trees lines

- Sustainable Urban Approach:
 - Instead of using excavated soils from arable land for building soils for urban greening
 - Using urban waste materials such as demolition waste: excavated soil waste, brick manufacturing waste, track ballast waste, sludge waste and green waste

- SITERRE Project
 - Funded by the French Environment and Energy Management Agency (ADEME)
OBJECTIVES

- Construction of Technosoils at lysimeter scale
- Study of different mixtures of waste material as Technosol
- Study of the feasibility of the project by:
 - Hydraulic properties characterization
 - Plant development monitoring
 - Soil composition, water and nutrient monitoring
METHODOLOGY

- Construction of two types of Technosols
 - Growing Material
 - Skeleton Materials

- Study of different mixtures of waste materials in two sites in France:
 - Angers
 - Homécourt
METHODOLOGY

Growing Material GM:
- 58 % wt. brick waste
- 42 % wt. sewage sludge and green waste

Skeleton Materials SM:
- CG: concrete, green and excavated soils waste (Homécourt)
- RG: demolition rubble, green and excavated soils waste
- BS: track ballast, sewage sludge
- Reference soil (arable soil + chaceldony) used by the city of Angers
METHODOLOGY

- Homécourt site: 2 lysimeters

Beerkan infiltration experiments performed:
- GM: 1 + 1
- SM: 2 + 0
METHODOLOGY

- Angers Site: 9 lysimeters

- Beerkan infiltration experiments performed:
 - GM: 2
 - Reference: 2; BS: 2; RG: 3
METHODOLOGY

BEERKAN INFILTRATION:

BEST METHOD (Lassabatere et al., 2006) :
- Inversion of particle size distribution
- Cumulative infiltration curve
- K_s: saturated hydraulic conductivity
- h_g: capillarity length
RESULTS AND DISCUSSIONS

GROWING MATERIAL

| GM | BEERKAN INFILTRATION INVERSION | θs (-) | n (-) | |hg| (cm) | Ks (cm/h) |
|---|---|---|---|---|---|---|
| Homécourt - Mean | 0,692 | 2,24 | 1,85 | 19,7 |
| Angers - Mean | 0,771 | 2,22 | 5,9 | 9,9 |

STRUCTURAL MATERIALS

| SM | BEERKAN INFILTRATION INVERSION | θs (-) | n (-) | |hg| (cm) | Ks (cm/h) |
|---|---|---|---|---|---|---|
| Referans - Mean | 0,312 | 2,36 | 5,10 | 18,25 |
| BS : Ballast + Sludge | 0,358 | 2,25 | 7,20 | 14,40 |
| RG : Rubble Demoliton Excavated soil + Green waste | 0,417 | 2,25 | 3,63 | 3,40 |
| CG: Concrete Waste Excavated Soil + Green Waste | 0,484 | 2,31 | 10,23 | 6,57 |
RESULTS AND DISCUSSIONS

- Growing material
 - Evaporation experiment in laboratory (Yilmaz, 2015):
 - $\theta_s = 0.63$; $hg = 12.8$ cm; $K_s = 29.0$ cm/h

- Disk infiltrometer experiments in situ (Yilmaz, 2016):

| GM | DISK INFILTROMETER INFILTRATION INVERSION (2016) | θ_s (-) | $|hg|$ (cm) | K_s (cm/h) |
|----|--|----------------|------------|-------------|
| | Homécourt - Mean | 0.692 | 6.13 | 21.95 |
| | Angers - Mean | 0.771 | 2.95 | 26.35 |

| GM | BEERKAN INFILTRATION INVERSION | θ_s (-) | $|hg|$ (cm) | K_s (cm/h) |
|----|---|----------------|------------|-------------|
| | Homécourt - Mean | 0.692 | 1.85 | 19.70 |
| | Angers - Mean | 0.771 | 5.90 | 9.85 |
CONCLUSION

- Technosoils built from waste materials
 - High macroporosity \rightarrow soil aeration
 - Hydraulic properties \rightarrow between sand and loam
 - Yilmaz et al., 2016; chemical analysis + root distribution of trees
 - Possible to use such technosoils for greening applications
CONCLUSION

- Beerkan infiltration method is well suited to characterize hydraulics properties of Technosools built with coarse materials
 - Easy to set-up

- Results are consistent with those obtained by the disk infiltrometer method
 - Difficulty when soil surface has coarse material
 - Long duration of experiments
THANK YOU FOR YOUR ATTENTION!