. Plasticseurope, The facts, 2018.

M. Calero, M. Á. Martín-lara, V. Godoy, L. Quesada, D. Martínez et al., Characterization of plastic materials present in municipal solid waste: preliminary study for their mechanical recycling, Detritus, vol.104, 2018.

S. M. Al-salem, P. Lettieri, and J. Baeyens, Recycling and recovery routes of plastic solid waste (PSW): A review, Waste manag, vol.29, issue.10, pp.2625-2643, 2009.

B. Zhang, Z. Zhong, K. Ding, and Z. Song, Production of aromatic hydrocarbons from catalytic co-pyrolysis of biomass and high density polyethylene: Analytical py-GC/MS study, Fuel, vol.139, pp.622-628, 2015.

F. Obeid, J. Zeaiter, A. H. Al-muhtaseb, and K. Bouhadir, Thermo-catalytic pyrolysis of waste polyethylene bottles in a packed bed reactor with different bed materials and catalysts, Energy Convers. Manage, vol.85, pp.1-6, 2014.

X. Tan, C. Zhu, Q. Liu, T. Ma, P. Yuan et al., Co-pyrolysis of heavy oil and low density polyethylene in the presence of supercritical water: The suppression of coke formation, Fuel Process. Technol, vol.118, pp.49-54, 2014.

J. Mosio-mosiewski, M. Warzala, I. Morawski, and T. Dobrzanski, High-pressure catalytic and thermal cracking of polyethylene, Fuel Process. Technol, vol.88, issue.4, pp.359-364, 2007.

F. Bai, C. Zhu, Y. Liu, P. Yuan, Z. Cheng et al., Co-pyrolysis of residual oil and polyethylene in sub-and supercritical water, Fuel Process. Technol, vol.106, pp.267-274, 2013.

L. Yermán, D. Cormier, I. Fabris, J. Carrascal, J. L. Torero et al., Potential bio-oil production from smouldering combustion of faeces, Waste Biomass Valorization, vol.8, pp.329-338, 2017.

M. Sarker, M. Rashid, M. Rahman, and M. Molla, Low and high density polyethylene waste plastics conversion into liquid hydrocarbon fuel, chim. Oggi/Chem. Today, vol.30, issue.6, 2012.

M. Sarker, M. M. Rashid, M. Molla, and M. S. Rahman, Thermal conversion of waste plastic (hdpe, pp, PS) to produce mixture of hydrocarbons, Am. J. Environ. Eng, vol.2, issue.5, pp.128-136, 2012.

A. Villanueva and P. Eder, End-of-Waste Criteria for Waste Plastic for Conversion, Institute for Prospective Technological Studies, 2014.

K. Ragaert, L. Delva, and K. Van-geem, Mechanical and chemical recycling of solid plastic waste, Waste Manag, vol.69, pp.24-58, 2017.

M. Grigore, Methods of recycling, properties and applications of recycled thermoplastic polymers, Recycling, vol.2, issue.4, p.24, 2017.

H. L. Friedman, Kinetics of thermal degradation of char-forming plastics from thermogravimetry. application to a phenolic plastic, J. Polym. Sci. Part C, vol.6, issue.1, pp.183-195, 1964.

O. Takeo, A new method of analyzing thermogravimetric data, Bull. Chem. Soc. Japan, vol.38, issue.11, pp.1881-1886, 1965.

J. H. Flynn and L. A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data, J. Polym. Sci. Part B, vol.4, issue.5, pp.323-328, 1966.

J. H. Flynn and L. A. Wall, General treatment of the thermogravimetry of polymers, J. Res. Nat. Bureau Stand. Sect. A, vol.70, issue.6, p.487, 1966.

J. H. Flynn, The isoconversional method for determination of energy of activation at constant heating rates, J. Therm. Anal, vol.27, issue.1, pp.95-102, 1983.

H. Kissinger, Reaction kinetics in differential thermal analysis, Anal. Chem, vol.29, issue.11, pp.1702-1706, 1957.

T. Akahira and T. Sunose, Method of determining activation deterioration constant of electrical insulating materials, Res. Rep. Chiba Inst. Technol. (Sci. Technol.), vol.16, pp.22-31, 1971.

M. Starink, The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods, Thermochim. Acta, vol.404, issue.1-2, pp.144-152, 2003.

P. Grammelis, P. Basinas, G. Malliopoulou, and . Sakellaropoulos, Pyrolysis kinetics and combustion characteristics of waste recovered fuels, Fuel, vol.88, issue.1, pp.195-205, 2009.

A. Aboulkas, K. El-harfi, and A. E. Bouadili, Thermal degradation behaviors of polyethylene and polypropylene. part i: Pyrolysis kinetics and mechanisms, Energy Convers. Manage, vol.51, issue.7, pp.1363-1369, 2010.

S. S. Park, D. K. Seo, S. H. Lee, T. Yu, and J. Hwang, Study on pyrolysis characteristics of refuse plastic fuel using lab-scale tube furnace and thermogravimetric analysis reactor, J. Anal. Appl. Pyrolysis, vol.97, pp.29-38, 2012.

L. Diaz-silvarrey and A. Phan, Kinetic study of municipal plastic waste, Int. J. Hydrogen Energy, vol.41, issue.37, pp.16352-16364, 2016.

S. Khedri and S. Elyasi, Kinetic analysis for thermal cracking of HDPE: A new isoconversional approach, Polym. Degrad. Stab, vol.129, pp.306-318, 2016.

P. Das and P. Tiwari, Thermal degradation kinetics of plastics and model selection, Thermochim. Acta, vol.654, pp.191-202, 2017.

J. Conesa, R. Font, A. Marcilla, and J. Caballero, Kinetic model for the continuous pyrolysis of two types of polyethylene in a fluidized bed reactor, J. Anal. Appl. Pyrolysis, vol.40, pp.33-41, 1997.

O. Gutiérrez and H. Palza, Effect of carbon nanotubes on thermal pyrolysis of high density polyethylene and polypropylene, Polym. Degrad. Stab, vol.120, pp.122-134, 2015.

P. A. Costa, F. J. Pinto, A. M. Ramos, I. K. Gulyurtlu, I. A. Cabrita et al., Kinetic evaluation of the pyrolysis of polyethylene waste, Energy Fuels, vol.21, issue.5, pp.2489-2498, 2007.

S. Al-salem and P. Lettieri, Kinetic study of high density polyethylene (HDPE) pyrolysis, Chem. Eng. Res. Des, vol.88, issue.12, pp.1599-1606, 2010.

S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-maqueda, C. Popescu et al., ICTAC Kinetics committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, vol.520, issue.1-2, pp.1-19, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01350051

Y. Badr, Z. Ali, A. Zahran, and R. Khafagy, Characterization of gamma irradiated polyethylene films by DSC and x-ray diffraction techniques, Polym. Int, vol.49, issue.12, pp.1555-1560, 2000.

S. Ikhlef, S. Nekkaa, M. Guessoum, and N. Haddaoui, Effects of alkaline treatment on the mechanical and rheological properties of low-density polyethylene/ spartium junceum flour composites, ISRN Polym. Sci, vol.2012, pp.1-7, 2012.

F. G. Souza, M. T. Orlando, R. C. Michel, J. C. Pinto, T. Cosme et al., Effect of pressure on the structure and electrical conductivity of cardanol-furfural-polyaniline blends, J. Appl. Polym. Sci, vol.119, issue.5, pp.2666-2673, 2011.

, Introduction to Thermal Analysis, Hot Topics in Thermal Analysis and Calorimetry, vol.1, 2004.

E. M. Barrall, Precise determination of melting and boiling points by differential thermal analysis and differential scanning calorimetry, Thermochim. Acta, vol.5, issue.4, pp.377-389, 1973.

D. Dollimore, T. A. Evans, Y. F. Lee, G. P. Pee, and F. W. Wilburn, The significance of the onset and final temperatures in the kinetic analysis of TG curves, Thermochim. Acta, vol.196, issue.2, p.80089, 1992.

M. G. Grønli, G. Várhegyi, and C. D. Blasi, Thermogravimetric analysis and devolatilization kinetics of wood, Ind. Eng. Chem. Res, vol.41, issue.17, pp.4201-4208, 2002.

M. Wojdyr, Fityk : a general-purpose peak fitting program, J. Appl. Crystallogr, vol.43, issue.5, pp.1126-1128, 2010.

J. D. Hanawalt, H. W. Rinn, and L. K. Frevel, Chemical analysis by X-ray diffraction, Ind. Eng. Chem. Anal. Ed, vol.10, issue.9, pp.457-512, 1938.

J. D. Hanawalt, Phase identification by X-ray powder diffraction evaluation of various techniques, Adv. X-ray Anal, vol.20, pp.63-73, 1976.

J. Hanawalt, History of the powder diffraction file, Crystallogr. North Amer.-Appar. Methods, pp.215-219, 1983.

S. Gra?ulis, A. Da?kevi?, A. Merkys, D. Chateigner, L. Lutterotti et al., Crystallography open database (COD): an open-access collection of crystal structures and platform for world-wide collaboration, Nucleic Acids Res, vol.40, issue.D1, pp.420-427, 2012.

S. Kabekkodu, , 2007.

J. Rodríguez, Recent advances in magnetic structure determination by neutron powder diffraction, Physica B, vol.192, issue.1-2, p.90108, 1993.

J. Criado, Kinetic analysis of DTG data from master curves, Thermochim. Acta, vol.24, issue.1, pp.186-189, 1978.

P. E. Sánchez-jiménez, L. A. Pérez-maqueda, A. Perejón, and J. M. Criado, Generalized master plots as a straightforward approach for determining the kinetic model: The case of cellulose pyrolysis, Thermochim. Acta, vol.552, pp.54-59, 2013.

J. P. Elder, Reconciliation of arrhenius and iso-conversional analysis kinetics parameters of non-isothermal data, Thermochim. Acta, vol.272, pp.41-48, 1996.

V. Selikhova, Y. Zubov, N. Bakeyev, and G. Belov, Melting temperature, heat of melting and crystallinity determinations on polyethylene by differential scanning calorimetry, Polym. Sci. U.S.S.R, vol.19, issue.4, p.90243, 1977.

A. Brems, J. Baeyens, C. Vandecasteele, and R. Dewil, Polymeric cracking of waste polyethylene terephthalate to chemicals and energy, J. Air Waste Manage. Assoc, vol.61, issue.7, pp.721-731, 2011.

S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes, 2015.

S. A. Deshmukh, G. Kamath, V. G. Pol, and S. K. Sankaranarayanan, Kinetic pathways to control hydrogen evolution and nanocarbon allotrope formation via thermal decomposition of polyethylene, J. Phys. Chem. C, vol.118, issue.18, pp.9706-9714, 2014.

S. E. Levine and L. J. Broadbelt, Detailed mechanistic modeling of high-density polyethylene pyrolysis: low molecular weight product evolution, Polym. Degrad. Stab, vol.94, issue.5, pp.810-822, 2009.

W. R. Turner, D. S. Brown, and D. V. Harrison, Properties of paraffin waxes, Ind. Eng. Chem, vol.47, issue.6, pp.1219-1226, 1955.

S. Himran, A. Suwono, and G. A. Mansoori, Characterization of alkanes and paraffin waxes for application as phase change energy storage medium, Energy Source, vol.16, issue.1, pp.117-128, 1994.

J. Chmela?, R. Pokorný, P. Schneider, K. Smolná, P. B?lský et al., Free and constrained amorphous phases in polyethylene: Interpretation of 1h NMR and SAXS data over a broad range of crystallinity, Polymer, vol.58, pp.189-198, 2015.

J. Conesa, A. Marcilla, J. Caballero, and R. Font, Comments on the validity and utility of the different methods for kinetic analysis of thermogravimetric data, J. Anal. Appl. Pyrolysis, vol.58, issue.59, pp.130-133, 2001.

M. A. Zanoni, H. Massard, and M. F. Martins, Formulating and optimizing a combustion pathways for oil shale and its semi-coke, Combust. Flame, vol.159, issue.10, pp.3224-3234, 2012.

G. Rein, C. Lautenberger, A. C. Fernandez-pello, J. L. Torero, and D. L. Urban, Application of genetic algorithms and thermogravimetry to determine the kinetics of polyurethane foam in smoldering combustion, Combust. Flame, vol.146, issue.1, pp.95-108, 2006.