
HAL Id: hal-02509621
https://hal.science/hal-02509621v2

Preprint submitted on 8 Feb 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fast incremental expectation-maximization algorithm:
√N iterations for an epsilon-stationary point ?

Gersende Fort, Eric Moulines, Pierre Gach

To cite this version:
Gersende Fort, Eric Moulines, Pierre Gach. Fast incremental expectation-maximization algorithm:
√N iterations for an epsilon-stationary point ?. 2021. �hal-02509621v2�

https://hal.science/hal-02509621v2
https://hal.archives-ouvertes.fr


FAST INCREMENTAL EXPECTATION-MAXIMIZATION ALGORITHM:√
N ITERATIONS FOR AN ε-STATIONARY POINT ?

G. Fort1, E. Moulines2, P. Gach1
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ABSTRACT

Fast Incremental Expectation Maximization (FIEM) is an iterative
algorithm, based on the Expectation Maximization (EM) algorithm,
which was introduced to design EM for the large scale learning
framework by avoiding the full data set to be processed at each iter-
ation. In this paper, we first recast this algorithm in the Stochastic
Approximation (SA) within EM framework. Then, we provide non
asymptotic convergence rates as a function of the batch size n and
of the maximal number of iterations Kmax fixed by the user. This
allows a complexity analysis: in order to reach an ε-approximate
solution, how does Kmax depend upon n and ε?

Index Terms— Statistical Learning, Large Scale Learning, Non
convex optimization, Iterative Expectation Maximization algorithm,
Accelerated Stochastic Approximation, Control Variate.

1. INTRODUCTION

EM [1, 2] is a very popular computational tool, designed to solve non
convex minimization problems on Rd when the objective function is
not explicit but defined as F (θ) = − log

∫
Z
G(z; θ)dµ(z) for a pos-

itive function G. EM is a Majorize-Minimization algorithm which,
based on the current value of the point θc, defines a majorizing func-
tion θ 7→ Q(θ, θc) through a Kullback-Leibler argument; then, the
new point is chosen as the/a minimum of Q. The computation of
a function at each iteration can be greedy and even intractable; in
many applications, Q has a special form: there exist (known and ex-
plicit) functions ψ, φ, s such that Q(·, θc) = ψ(·) − 〈s̄(θc), φ(·)〉
and s̄(τ) is the expectation of the function s with respect to (w.r.t.)
the probability distribution G(·; τ) exp(−F (τ))dµ. In these cases,
the definition of Q consists in the computation of the vector s̄(θc).
It may happen that the expectation s̄(θc) is not explicit (see e.g. [3,
section 6]); a natural idea is to substitute s̄ for an approximation,
possibly random. Many stochastic EM versions were proposed and
studied: among them, let us cite Monte Carlo EM [4, 5] where s̄ is
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approximated by a Monte Carlo sum; and SA EM ([6, 7]) where s̄
is approximated by a SA scheme [8]. With the Big Data era, EM
applied to statistical learning evolved into online versions and large
scale versions: the objective function is a loss function associated to
a set of observations (also called examples); in online versions, the
data are not stored and are processed online which means that the
objective function is time-varying (see e.g. [9, 10]); in large scale
versions, a batch of observations is given but it is too large to be pro-
cessed at each iteration of EM.
This paper is devoted to the convergence analysis of FIEM [11],
an EM-based algorithm designed for large scale learning in a non-
convex setting: FIEM is also a SA within EM algorithm, with a SA
scheme for the approximation of s̄(θc) which combines (i) a ran-
dom selection of a single (or a few) observation(s) in the large batch,
and (ii) a variance reduction technique inspired from SAGA [12]
(see also sEM-VR [13] which uses SVRG [14]). In Section 2, some
SA within EM algorithms are described; FIEM is explicitly recasted
as such an algorithm. Our contribution is essentially the content
of Section 3: we provide non asymptotic convergence rates as a
function of the batch size n and of the maximal number of itera-
tions Kmax fixed by the user. In this non convex optimization set-
ting, errors are relative to L1-convergence when stopping FIEM at
a random time K, prior to Kmax and chosen independently of the
FIEM sources of randomness. We recover previous rates by [11]
in the case K is a uniform distribution, and improve them from
n2/3K−1

max to n1/3K
−2/3
max ; our analysis also includes a definition of

the step sizes in the SA scheme, with an explicit dependence upon
n and Kmax. A corollary of these bounds is a complexity analysis:
to reach an ε-approximate solution, we show that either Kmax =
O(n2/3ε−1) and the step size is constant scaling as O(n−2/3); or
Kmax = O(n1/2ε−3/2) and the step size is constant scaling as
O(n−1/2). The last contribution establishes that the same conver-
gence rates are obtained with any random stopping rule K (bounded
by Kmax), up to the choice of an adequate time-varying step size. In
Section 4, through a toy example, we explore an extension of FIEM.

2. INCREMENTAL EM ALGORITHMS

This paper addresses explicit convergence rates for an algorithm de-
signed to solve the optimization problem

Argminθ∈Θ F (θ), F (θ)
def
=

1

n

n∑
i=1

Li(θ) + R(θ) , (1)

when Θ ⊆ Rd and F can not be explicitly evaluated (nor its gra-
dient or derivatives of higher order when they exist). Two levels of
intractability of F (θ) are considered. The first one is motivated by
the large scale learning setting when the number n is so large that
computations involving a sum over n terms are not allowed or have



to be quite rare along the run of the optimization algorithm. The
second one is motivated by the latent variable statistical framework,
where for all i, the function Li is not explicit and defined through an
integral. A large class of computational learning problems is covered
by this framework: it includes for example the situations when n is
the number of examples, Li is a loss function associated to example
#i and R is a penalty term. In this paper, a specific expression for
Li is considered: we restrict our attention to the case when

Li(θ)
def
= − log

∫
Z

hi(z) exp (〈si(z), φ(θ)〉 − ψ(θ))µ(dz) . (2)

n−1∑n
i=1 Li can be seen as the normalized negative log-likelihood

of n observations in a latent variable model: (i) conditionally to the
missing variables, the observations are independent thus yielding to
an additive expression of the log-likelihood; (ii) the model for the
joint distribution of the observation yi and its associated missing
variable is a curved exponential family w.r.t. a dominating positive
measure dµ on a measurable set (Z,Z). In (2), the dependence upon
the observation yi is omitted (but appears implicitly through the de-
pendence upon i of the functions hi, si). Let us introduce rigorous
conditions on the problem at hand. Denote by [[n]]

def
= {1, . . . , n}.

A1 Θ ⊆ Rd is an open set. (Z,Z) is a measurable space and µ
is a σ-finite positive measure on Z . The functions R : Θ → R,
φ : Θ → Rq , ψ : Θ → R, si : Z → Rq , hi : Z → R+ for
all i ∈ [[n]] are measurable functions. Finally, for any θ ∈ Θ and
i ∈ [[n]], −∞ < Li(θ) <∞.

Under A1, for any θ ∈ Θ and i ∈ [[n]], the quantity pi(·; θ) dµ

pi(z; θ)
def
= hi(z) exp (〈si(z), φ(θ)〉 − ψ(θ) + Li(θ)) , (3)

defines a probability distribution on Z .

A2 The expectation s̄i(θ)
def
=
∫
Z
si(z) pi(z; θ)µ(dz) exists for all

θ ∈ Θ and i ∈ [[n]].
For any s ∈ Rq , the following set is a (non empty) singleton denoted
by {T(s)}:

Argminθ∈Θ (ψ(θ)− 〈s, φ(θ)〉+ R(θ)) ,

Define

s̄(θ)
def
= n−1

n∑
i=1

s̄i(θ) . (4)

A3 The functions φ, ψ and R are continuously differentiable on Θ.
T is continuously differentiable on Rq .
For any s ∈ Rq , B(s)

def
= ∇(φ ◦ T)(s) is a symmetric q × q matrix

and there exist 0 < vmin ≤ vmax < ∞ such that for all s ∈ Rq ,
the spectrum of B(s) is in [vmin, vmax].
For any i ∈ [[n]], s̄i◦T is globally Lipschitz on Rq with constant Li.

Set L2 def
= n−1∑n

i=1 L
2
i . The function s 7→ BT (s) (s̄ ◦ T (s)− s)

is globally Lipschitz on Rq with constant LV̇ .

2.1. An EM algorithm in the statistic-space

In this framework - even including a penalty term R in the objective
function-, the EM algorithm is usually described as an iterative algo-
rithm in the Θ-space: given a current value τk ∈ Θ, the next point is
obtained by a combination of an expectation step which here, com-
putes s̄(τk), and a maximization step through the map T yielding

to τk+1 def
= T ◦ s̄(τk). Equivalently (see [7]), by using T which

maps Rq to Θ, it can be described in the Rq-space: given the current
value s̄k ∈ s̄(Θ), set s̄k+1 def

= s̄ ◦ T(s̄k). In this second point of
view, which is adopted throughout this paper, the limiting points are
characterized as the roots of the field h

{s ∈ s̄(Θ) : h(s) = 0}, h(s)
def
= s̄ ◦ T(s)− s . (5)

Assumption A3 implies that the roots of h are the zeros of∇(F ◦T)
i.e. the critital points of the objective function. Unfortunately, in the
large scale learning setting, EM can not be used since each iteration
involves the computation of a sum over n terms through s̄.

2.2. A SA-based algorithm

A natural idea to overcome this intractability is the use of an iterative
SA scheme for finding the roots of h upon noting that

h(s) =
1

n

n∑
i=1

s̄i ◦ T(s)− s = E [s̄I ◦ T(s)− s] ,

where I ∼ U([[n]]) is a uniform random variable (r.v.) on [[n]]. This
yields Algorithm 1, whereKmax is the total number of iterations, Ŝ0

is the initial value and {γk, k ≥ 1} are positive step sizes.

Data: Kmax ∈ N, Ŝ0 ∈ Rq , γk ∈ (0,∞) for k ∈ [[Kmax]]

Result: The SA sequence: Ŝk, k = 0, . . . ,Kmax

1 for k = 0, . . . ,Kmax − 1 do
2 Ik+1 ∼ U([[n]]) ;
3 Ŝk+1 = Ŝk + γk+1(s̄Ik+1 ◦ T(Ŝk)− Ŝk)

Algorithm 1: The Stochastic Approximation (SA) algorithm

2.3. An Incremental EM algorithm (i-EM)

Another idea, introduced by [15] and studied in [16], can be seen as a
two-level SA schemes where an auxiliary level is introduced in order
to mimic the computation of n−1∑n

i=1 s̄i ◦T(Ŝk) at each iteration
of the algorithm; Ŝk is the current point of the algorithm at iteration
k. i-EM is described by Algorithm 2 with a slight adaptation (in the
original algorithm, γk+1 = 1). Line (8) defines the i-EM sequence;
the update rule is based on S̃k+1, defined through Lines (4) to (7),
and which satisfies for any k ≥ 0

S̃k =
1

n

n∑
i=1

Sk,i, Sk,i
def
= s̄i ◦ T(Ŝ<k,i) ,

where Ŝ<0,i def
= Ŝ0 for all i ∈ [[n]] and for k ≥ 0, Ŝ<k+1,i = Ŝ`

where ` stands for the current index of the statistics Ŝ• during the
last ”visit” to the observation #i: ` = k if Ik+1 = i; ` ∈ [[0, k−1]]
if Ik+1 6= i, . . . , I`+2 6= i and I`+1 = i; ` = 0 otherwise. The
auxiliary quantity S̃k+1 is an online estimate of s̄ ◦T(Ŝk), where at
iteration k+1, only the contribution of the observation #Ik+1 of the
sum is updated. Note however that this algorithm, while avoiding
a sum over n terms at each iteration, necessitates the storage of a
vector Sk,· ∈ Rqn whose length is proportional to n.



Data: Kmax ∈ N, Ŝ0 ∈ Rq , γk ∈ (0,∞) for k ∈ [[Kmax]]

Result: The iEM sequence: Ŝk, k = 0, . . . ,Kmax

1 S0,i = s̄i ◦ T(Ŝ0) for all i ∈ [[n]];
2 S̃0 = n−1∑n

i=1 S0,i;
3 for k = 0, . . . ,Kmax − 1 do
4 Ik+1 ∼ U([[n]]) ;
5 Sk+1,i = Sk,i for i 6= Ik+1 ;
6 Sk+1,Ik+1 = s̄Ik+1 ◦ T(Ŝk);
7 S̃k+1 = S̃k + n−1

(
Sk+1,Ik+1 − Sk,Ik+1

)
;

8 Ŝk+1 = Ŝk + γk+1(S̃k+1 − Ŝk)

Algorithm 2: The incremental EM (i-EM) algorithm

2.4. A Fast Incremental EM algorithm (FIEM)

More recently, [11] introduced FIEM, another incremental EM algo-
rithm; they showed it is faster than i-EM and SA. FIEM combines
the two-levels SA idea of i-EM with an acceleration technique in-
spired from SAGA [12]. The algorithm is described by Algorithm 3.
This algorithm can be seen as a mix of the SA update (see the term
Tk+1

def
= s̄Jk+1 ◦ T(Ŝk)− Ŝk in Line 9) and the (centered) control

variate Vk+1
def
= S̃k+1 − Sk+1,Jk+1 , which is correlated to Tk+1

through the random index Jk+1. The auxiliary quantity S̃k+1 is the
same as the one introduced in i-EM (see section 2.3).

Data: Kmax ∈ N, Ŝ0 ∈ Rq , γk ∈ (0,∞) for k ∈ [[Kmax]]

Result: The FIEM sequence: Ŝk, k = 0, . . . ,Kmax

1 S0,i = s̄i ◦ T(Ŝ0) for all i ∈ [[n]];
2 S̃0 = n−1∑n

i=1 S0,i;
3 for k = 0, . . . ,Kmax − 1 do
4 Ik+1 ∼ U([[n]]) ;
5 Sk+1,i = Sk,i for i 6= Ik+1 ;
6 Sk+1,Ik+1 = s̄Ik+1 ◦ T(Ŝk);
7 S̃k+1 = S̃k + n−1

(
Sk+1,Ik+1 − Sk,Ik+1

)
;

8 Jk+1 ∼ U([[n]]) ;
9 Ŝk+1 =

Ŝk +γk+1(s̄Jk+1 ◦T(Ŝk)− Ŝk + S̃k+1−Sk+1,Jk+1)

Algorithm 3: The Fast Incremental EM (FIEM) algorithm

3. FIEM: NON ASYMPTOTIC CONVERGENCE RATES

The originality of our contribution is to provide new explicit non
asymptotic error rates for FIEM. The proofs of the statements below
can be found in [17] Since the problem (1) is most often a non convex
one, convergence is considered here in terms of the rate at which the
following quantities E0 to E2 decay to zero as a function of the size
of the sample n, and a function of a total number of iterations Kmax

chosen by the user. As in [11] (see also [18]), we derive L1-error
rates along a FIEM sequence stopped at a random time K, chosen
independently of the sequence. The quantities of interest are

E0
def
= E

[
‖∇V (ŜK)‖2

]
, V

def
= F ◦ T ,

E1
def
= E

[
‖s̄ ◦ T(ŜK)− ŜK‖2

]
= E

[
‖h(ŜK)‖2

]
,

E2
def
= E

[
‖S̃K+1 − s̄ ◦ T(ŜK)‖2

]
.

They respectively quantify, at the random stopping timeK, the mean
squared norm of the gradient of the objective function F (when seen
as a function on Rq through the map T); the mean squared (kind
of) distance to the set of the limiting points (see (5)); and the mean
squared error when approximating s̄ ◦ T(ŜK) by S̃K+1.

Proposition 1 provides a control of Ei’s upper bound in the case
K is sampled uniformly on {0, . . . ,Kmax − 1}: as in [11], the con-
trol is proportional to n2/3/Kmax and the dependence upon n of
the step size is O(n−2/3); the constant in the control, and the ex-
act value of the step size are improved w.r.t. [11] (see section 4).
Proposition 2 shows that by using another strategy for the step size,
while still being constant over iterations, the control of the errors
evolves as n1/3/K

2/3
max. To our best knowledge, this is a new result

in the literature. Set ∆V
def
= E

[
V (Ŝ0)− V (ŜKmax)

]
and for n ≥ 2,

C ∈ (0, 1),

fn(C)
def
=

LV̇
2L

(
1

n2/3
+

1

1− n−1/3

(
1

n
+

1

1− C

))
.

Proposition 1 Assume A1 to A3 and choose µ ∈ (0, 1). Let K be
a {0, . . . ,Kmax − 1}-valued uniform r.v. Run FIEM with a con-
stant step size γ` =

√
Cn−2/3L−1 where C ∈ (0, 1) is the unique

solution of √
Cfn(C) = µvmin . (6)

Then, for any n ≥ 2 and Kmax ≥ 1

v−2
maxE0 ≤ E1 +

LV̇
2L

√
C

vminn2/3
E2 ≤

n2/3

Kmax

L ∆V√
C(1− µ)vmin

.

The constant C in (6) is upper bounded by the unique point C+

in (0, 1) solving vminL(1 − x) −
√
xLV̇ = 0; thus showing that

LV̇ (1−C+)−1/(2L) ≤ fn(C) ≤ supn fn(C+) <∞. Hence, the
constant C can be lower bounded and upper bounded (away from 0
and 1) by a constant depending only upon vmin, L and LV̇ .

Proposition 2 Assume A1 to A3 and choose µ ∈ (0, 1). Let K be a
{0, . . . ,Kmax − 1}-valued uniform r.v. Run FIEM with a constant
step size γ` =

√
Cn−1/3K

−1/3
max L−1 where C > 0 satisfies

√
C
LV̇
2L

(
1 + C

(
1 +

1

1− λ

))
≤ µvmin , (7)

for some λ ∈ (0, 1). Then, for any n,Kmax ≥ 1 such that
n1/3K

−2/3
max ≤ λ/C,

v−2
maxE0 ≤ E1+

LV̇
2L

√
C

vminn1/3K
1/3
max

E2 ≤
n1/3

K
2/3
max

L ∆V√
C(1− µ)vmin

.

As a corollary of Proposition 2, it may be shown that there exists a
constant M ∈ (1,+∞) depending upon vmin, L, LV̇ , µ such that
for any ε ∈ (0, 1), we have

n1/3

K
2/3
max

L√
C(1− µ)vmin

≤ ε ,

by setting Kmax = M
√
nε−3/2; which in turn implies that

γ` ∝ 1/
√
n. From Proposition 1, the complexity is Kmax =

O(n2/3ε−1). Proposition 2 provides a new rate which improves
on the known result n2/3, but at a cost on the dependence upon
the precision ε. These two propositions are complementary, one



providing a better strategy than the other one depending on how
√
ε

compares with n−1/6.
We conclude this section by another point of view: given a prob-

ability distribution p0, . . . , pKmax−1 for the random stopping time
K, how to choose the step sizes γk in order to reach the same con-
trols (in n and Kmax) as in the above propositions ? we restrict here
to the ”mirror” of Proposition 1. For C ∈ (0, 1) and n ≥ 2, define
the function Fn,C

Fn,C : x 7→ 1

Ln2/3
x (vmin − xfn(C)) .

Fn,C is positive, increasing and continuous on (0, vmin/(2fn(C))].

Proposition 3 Assume A1 to A3. Let K be a {0, . . . ,Kmax − 1}-
valued r.v. with distribution p0, . . . , pKmax−1, infk pk > 0. Let
C ∈ (0, 1) solving

√
Cfn(C) =

1

2
vmin . (8)

For any n ≥ 2 and Kmax ≥ 1, we have

v−2
maxE0 ≤ E1 +

LV̇
L

minkυk√
Cvminn2/3

E2 ≤ n2/3 maxkpk
2L∆V√
Cvmin

,

where υk
def
= g2

k max`p` /pk and FIEM is run with

γk+1
def
=

gk
n2/3L

, gk
def
= F−1

n,C

(
pk

max`p`

vmin

√
C

2L

1

n2/3

)
.

Since
∑
k pk = 1, we have maxkpk ≥ K−1

max thus showing that
among the distributions {pk, k = 0, . . . ,Kmax − 1}, maxkpk is
minimal with the uniform distribution. In that case, Proposition 1
applied with µ = 1/2 and Proposition 3 provide exactly the same
control: (i) the control evolves as n2/3/Kmax; (ii) the constant C
solving (6) in the case µ = 1/2 is the same as the one solving (8);
(iii) since F−1

n,C(v2
min

√
Cn−2/3/(2L)) =

√
C, then g2

k = C and
υk = C so that the controls of E2 are the same in both propositions;
(iv) the step sizes are equal since gk =

√
C.

The choice of the constant C is also crucial on a numerical point
of view, since it defines the step size γ`: a large one may cause
instability and a small one makes the convergence longer (see sec-
tion 4). We provided here simple conditions for finding C but there
are more intricate conditions than (6), (7) (8) yielding to larger con-
stants C. For example, Proposition 1 holds for C satisfying: there
exists λ ∈ (0, 1) s.t. n−1/3 < λ/C and

√
C
LV̇
2L

(
1

n2/3
+

C

λ− Cn−1/3

(
1

n
+

1

1− λ

))
= µvmin . (9)

4. NUMERICAL INVESTIGATION

Consider a toy example in order to (i) illustrate the role of the step
size on the efficiency of FIEM and to compare different definitions;
(ii) illustrate the interest of the variance reduction technique by com-
paring SA, FIEM and a third strategy called below FIEM-coeff. Both
SA and FIEM update Ŝk by a scheme of the form Ŝk+1 = Ŝk +
γk+1Hk+1 where Hk+1 = Tk+1 + λk+1Vk+1 and λk+1 = 1 for
FIEM; and Hk+1 = Tk+1 for SA (see section 2.4 for a definition
of Tk+1 and Vk+1). The use of Vk+1 can be seen as a control vari-
ate approach [19]: if such, the optimal coefficient λ?k+1, defined as

the quantity minimizing E
[
‖Hk+1‖2|Ŝk

]
, depends on the correla-

tion of Vk+1 and Tk+1, which is not always equal to one. Below,

under the name FIEM-coeff, we explore the benefit of the strategy
λk+1 = λ?k+1 - which in a realistic example, has a non negligible
computational cost and will necessitate to design an approximation.

F is a penalized negative log-likelihood function: the n = 1e3
observations are modeled as independent; each observation Yi, con-
ditionally to a latent variableZi, is a R15-valued Normal distribution
with mean AZi and covariance matrix I; Zi is a R10-valued Normal
distribution with mean Xθtrue and covariance matrix I; A and X
are known; θtrue ∈ R20 is unknown. The penalty term is R(θ) =
0.1‖θ‖2. In this toy example, F possesses an unique minimum
which has an explicit expression in terms ofA,X and n−1∑n

i=1 Yi;
the constants vmin, vmax, L, LV̇ are also explicit. We have si(z) =
XT z, φ(θ) = θ and ψ(θ) = θTXTXθ/2; pi(z; θ) is a Normal
density with explicit parameters; T(s) = (λI +XTX)−1s.
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Fig. 1. [top] Role of the step size; [middle] SA, FIEM and FIEM-
coeff; [bottom] FIEM and FIEM-coeff

Figure 1[top] displays the error k 7→ ‖θk − θ?‖ along FIEM
paths (top,right) with a zoom on the first iterations (top,left). The
paths are run with different step sizes: γ ∈ {1, 0.1, 0.01, . . .};
γGFM =

√
CGFMn

−2/3L−1 where CGFM solves (9), and γKM is
given in [11]. Here, γGFM ≈ 1.4 10−3 and γKM ≈ 3.4 10−6. We
observe that large step sizes may cause numerical instability; and
here, γGFM is larger than γKM by a factor 300, thus yielding to a
faster convergence rate. Figure 1[middle] displays the boxplot of
‖θk − θ?‖ at iteration k = {3e3, 6e3, 8e3, 10e3, 12e3}; on the left
subplot, SA and FIEM are compared (resp. left/right boxplot) and
on the right subplot, FIEM and FIEM-coeff are compared. FIEM
clearly improves on SA; and in the convergence phase (k ≥ 6e3),
FIEM and FIEM-coeff look similar. The boxplots are obtained
with 100 independent realizations. Figure 1[bottom,left] displays



k 7→ λk, for FIEM (λk = 1) and for FIEM-coeff (λk = λ?k).
The plot is the mean value over 1e3 independent runs (the quantiles
0.25 and 0.75 are displayed in dotted line). It is shown that λk
is smaller than 0.85 in the transient phase k ∈ [5e2, 3.5e3]. On
Figure 1[bottom,right], a Monte Carlo estimation (over 1e3 inde-
pendent runs) of E

[
‖Hk+1‖2

]
for SA, FIEM and FIEM-coeff is

displayed for k ∈ {1.5e3, . . . , 4.5e3}: FIEM-coeff can improve on
FIEM up to 15% in the transient phase. In this example, λ?k+1 is
explicit; but the benefit will be investigated in future works, taking
into account a numerical cost for its approximation. E

[
‖Hk+1‖2

]
is a crucial quantity since the convergence rates derived in section 3
are obtained by upper bounding this quantity (see [17]).
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