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Abstract—Spectrum sensing aims at searching and finding 

the unused frequency bands in specific radio spectrum. It 

monitors the frequency bands to detect the activity of 

primary/licensed users and decide if secondary users can use 

these bands or not. In order to improve the efficiency of 

spectrum sensing in wideband cognitive radio networks, 

compressive sensing framework has been recommended and 

studied in many papers since it helps the system to get better and 

faster results using the sparse structure of the radio spectrum. 

Therefore, this paper represents an in-depth survey of the best 

requirements of compressive sensing and spectrum sensing 

techniques for robust combination and effective solution for 

wideband cognitive radio networks. It also provides examples of 

innovative applications of compressive spectrum sensing 

including IoT, smart city and 5th generation of mobile networks. 

To sum up some challenges and research directions related to 

compressive spectrum sensing technique are given at the end. 

Keywords— Cognitive radio; Spectrum sensing; Compressive 

sensing. 

I. INTRODUCTION  

Cognitive radio network (CRN) have been proposed as an 
attractive field of research and effective solution to improve 
the spectrum utilization in the next-generation of wireless 
networks. There exist two popular mode of spectrum access in 
CRN are underlay and interweave. In the first approach, the 
secondary user (SU) can transmit simultaneously with 
primary user (PU) over the same radio frequencies (RF) 
spectrum, while minimizing interferences with primary users 
, i.e., if the interference generated by SU at primary receiver 
is tolerable and controlled by an acceptable level [1][2].  In the 
second approach, the SU does not interfere with PU. It can 
intelligently detect unoccupied primary communication 
channel, named spectrum hole, and efficiently exploit them 
for data transmission. Indeed, the SU observes frequency 
bands and senses any activity of the PU, having license to use 
that particular part of the spectrum, to detect spectrum holes. 
This process is called spectrum sensing. Always transmit 
strategy combines spectrum underlay and spectrum 
interweave approaches [3][4]. In this strategy, the SU can 
transmit anytime and can do spectrum sensing and data 
transmission in parallel whether the primary band is occupied 
or is idle. 

In this paper, we focus on the spectrum sensing, which 
plays a major role in the cognitive radio (CR) cycle for 
detecting a spectrum hole. There are several classification 
methods for spectrum sensing techniques  according to the 
context of the need. One way among others to classify these 
techniques is based on the size of the bandwidth of the 
spectrum of interest: narrowband and wideband. Narrowband 
spectrum sensing techniques made a single binary decision 
about the presence of the PU traffic over narrow frequency 
range. While wideband spectrum sensing techniques attempt 
to detect the primary activity over a wide frequency band. 
Based on this classification, the most popular spectrum 
sensing algorithms for both types include: energy detection 
[5], matched filter detection [6], machine learning based 
sensing [7], wavelet-based detection [8],filter bank detection 
[9], and blind spectrum sensing [10]. 

The common challenge with these approaches is the high 
computational complexity associated with the extremely high 
sampling rates required. Thus, the approaches to perform 
wideband spectrum sensing based on sub-Nyquist techniques 
become increasingly important. These approaches are used to 
mitigate the sensing time and hardware cost used for high 
sample rates implementation. Based on the assumption of the 
scarcity of the wideband radio spectrum, compressive sensing 
has been become a promising solution to realize this sub-
Nyquist approach. The mechanism of combining compressive 
sensing technique with spectrum sensing process is called 
compressive spectrum sensing. 

There exist several methods and perspectives for 
representing and analyzing the concept of compressive 
spectrum sensing for CRN, which has engendered a numerous 
papers and surveys on this field of research. The authors of 
[11][12] provided an overview of compressive sensing theory, 
its implementation, and its applications. In [13-15], the 
authors discussed and detailed different spectrum sensing 
techniques, namely narrowband/wideband spectrum sensing 
techniques and compared the advantages and limitations of 
each type. In [16], the authors represented an overview of 
wideband spectrum sensing challenges and discussed 
compressive spectrum sensing approaches for CN. These 
approaches can be divided into two main categories: detection 
based sparse signal recovery and detection based compressed 
measurements. The authors of [17] described the existing 



approaches for performing the compressive estimation of 
various signal parameters such as SNR, and sparsity order. 

To help researchers to be up to date with the evolution of 
the concept of compressive spectrum sensing, recent surveys 
and detailed reviews are needed on a regular basis to provide 
the latest developments and updates in this field. Therefore, 
this paper provides an in depth-survey on the combination of 
compressive sensing and spectrum sensing to improve and 
speed up the detection of available channels in CRN. Most 
recent works focused on either compressive sensing or 
spectrum sensing part of the model. However, in this paper, 
we aim at providing a study of the best requirements of each 
technique to make robust solution. The rest of this paper is 
structured as follows: Section II represents the state of the art 
of compressive sensing and spectrum sensing. Section III 
describes and analyses the different approaches of 
compressive spectrum sensing. Section IV represents the 
applications of CN compressive spectrum sensing . Section V 
highlights the main challenges and limitations of compressive 
spectrum sensing approaches. To sum up a conclusion is given 
at the end. 

II. COMPRESSIVE SPECTRUM SENSING THEORY 

Fig. 1 represents the basic model system of compressive 
spectrum sensing. The main purpose of this technique is to 
recover the original sparse signal x from only few 
measurements y and then perform spectrum sensing using the 
recovered signal x’ [18]. The sensing decision about the 
primary signal presence performs by choosing between binary 
hypotheses, H1 (occupied) and H0 (not occupied). A detection 
threshold, denoted by λ, is chosen according to the sensing 
technique used and then compared with the output signal. As 
shown in Fig. 1, the performance of compressive spectrum 
sensing depends on several factors, in particular: the sparsity 
level, the choice of measurement matrix, the recovery 
algorithm, and the used spectrum sensing technique. Thus, an 
appropriate selection of these factors is the key of success of 
compressive spectrum sensing. 

 

Fig. 1. Diagram of compressive spectrum sensing. 

For an efficient analysis of compressive spectrum sensing 
mechanism, it is required to overview the theoretical basis of 
each stage of this technique. Thus, in this section we will 
formally study and define the detailed model of each process. 

A. Compressive sensing theory 

The aim of signal processing is the ability to reconstruct a 
signal from a sequence of sampling measurements. The 
conventional approach used is the famous Shannon-Nyquist 
theorem. However, for some wideband applications such as 
radar, wireless communications, and CR, the application of 
Shannon's theorem requires sampling frequencies that exceed 
the hardware limitations of analog-to-digital converters. In 
addition, data compression is essential for an appropriate use 

of available bandwidth and minimization of storage memory 
and energy consumption. 

In order to overcome these problems, compressive sensing 
concept was first introduced by Donoho, Candès, Romberg, 
and Tao, as a new approach to sample signals with a lower rate 
than Shannon-Nyquist. The aim of this technique is an 
accurate and robust reconstruction of a signal from a minimum 
of linear measurements through the resolution of 
underdetermined linear systems. Compressive sensing 
mechanism involves two main operations: acquisition process 
and reconstruction algorithm. In the first process, a sparse 
input signal and the measurement matrix are multiplied to 
generate compressive measurements. Then, using a 
reconstruction algorithm the compressed signal is recovered 
in the second process getting an estimation of the original 
signal at the output of the system. 

1) Acquisition model 

The acquisition model contains two main stages; the first 
is presenting the input signal by a number of projections on an 
appropriate sparse basis. Some examples of these algorithms 
include the wavelet transform, the Fourier transform, and the 
discrete cosine transform. In mathematical form, the sparse 
signal can be formulated as 

X =   S                                           (1) 

Where X is a signal with a number of samples 𝑁, its sparsity 
level D satisfies D << 𝑁 and S is the sparse projection of the 
signal X on the sparse base Ψ. The second stages of the 
acquisition process is compression that can be described 
mathematically by 

                                          (2) 

Where  is an M x N measurement matrix multiplied by the 

input signal X to generate the compressed measurements 

vector Y, which selects only M samples from X (N,1). 

In order to have a robust solution that guarantees the 

system performance, the sensing matrix, must be properly 
selected to satisfy some definite properties. The first property 
to be considered is called the Restricted Isometry Property 
(RIP), which can be described as follows 

∃ ∈ (0, 1)/ (1- D) ||X||2
2    ≤ ||X||2

2  ≤ (1 + D) ||X||2
2      (3) 

Where  is the restricted isometry constant (RIC) of the matrix 

 ,||.||2 is the l2-norm and X is D-sparse signal. The second 
property is the coherence, that consists in calculating the 

maximum correlation between the elements of  and , 
which must be incoherent from each other to guarantee a 
stable solution and a recovery with low error. The relation for 
finding the coherence between two matrices is given by 

(,𝛹) = √𝑁 max |< i | j  >|                       (4) 

Choosing a suitable sensing matrix is very important in the 
cycle of success of compressive sensing. Thus, a careful 
selection of this matrix is necessary. Sensing matrices 
proposed in literature are generally classified in two 
categories: random and deterministic. Random matrices are 
matrices in which some or all elements are random variables 
including Gaussian, Bernoulli, and uniform matrices. Those 
matrices are easy to construct and satisfy the RIP. In the 
second category, deterministic matrices are structured 
matrices that allow faster acquisition with less memory 



storage. Some examples of those matrices are Toeplitz and 
Circulant. 

2) Reconstruction model 

The sparse input signal can be recovered from 

compressed measurements by solving (2), which is an under-

determined system and has an infinite number of possible 

solutions. This process can be formulated as a l0-

minimisation problem to find the sparest and unique solution 

of the system as follows 

min ||X||0    subject to  Y =   X                   (5) 

Where ||.||0 is the l0-norm, which represents the number of 

non-zero elements of a vector. Unfortunately, in the theory of 

complexity, the l0-minimization has been classified as NP-

hard problem. To overcome the complexity of standard l0, 

methods based on convex relaxation, such as Basis Pursuit, 

relax the problem by replacing l0-norm by l1-nom presented 

by the following  

min ||X||1    subject to Y =   X                      (6)                    

Where ||.||1 is the absolute sum of elements of a vector. 

The compressive sensing reconstruction algorithms 

proposed in the literature to solve this problem can be mainly 

classified into six approaches: convex optimization, Greedy, 

thresholding, Bayesian, non-convex, and combinatorial. 

Their main objective is to find the sparse estimate solution of 

the original signal from few measurements taking into 

account a number of factors such as noise, speed, complexity, 

and performance guarantees. 

B. Spectrum Sensing theory 

The aim of spectrum sensing process is to decide about the 
spectrum status (occupied / unoccupied), so that the SU can 
use the radio spectrum without interfering with the PU. It 
refers to choosing between the two binary hypotheses H1 
(presence of the PU ) and H0  ( absence of PU). 

                            H0 : y(n) = (n) 

H1 : y(n) = x(n) + (n)                            (7) 

Where n denotes sensing time, y (n) is the SU received signal, 

x (n) is the PU signal, and  (n) is the additive white Gaussian 

noise (AWGN) with zero mean and variance 𝛿2. 

To analyze the received signal y(n), one of the spectrum 

sensing techniques previously mentioned can be used 

including energy detection, machine learning based 

detection, and matched filter. Finally, to make the sensing 

decision about the primary signal presence, a detection 

threshold, denoted by λ, is chosen according to the adopted 

sensing technique and then compared to the output signal  

,called the test statistic, as follows 

                           H0 :   (y) < λ 

                           H1 :   (y) > λ                                         (8) 

The performance of a spectrum sensing technique can be 

quantified using a number of evaluation metrics such as:  

 Probability of detection Pd: is the probability that the 

SU decides the presence of the PU signal when the 

spectrum is in fact occupied. It is expressed as  

Pd = Prob (H1/H1)                            (9) 

 Probability of false alarm Pfd: is the probability that the 

SU decides the presence of the PU signal when the 

spectrum is actually free. It is expressed as 

Pfd = Prob (H1/H0)                         (10) 

  Probability of miss detection Pmd: is the probability 

that the SU decides the absence of a PU signal when 

the spectrum is occupied. It is expressed as 

Pmd = Prob (H0/H1)                       (11) 

Therefore, to design a robust spectrum sensing technique, 
these three metrics must be considered as success 
requirements of this technique. 

III. ANALYSIS AND COMPARISON OF SEVERAL  

COMPRESSIVE SPECTRUM SENSING APPROACHES 

The implementation of compressive spectrum sensing 
technique in CRN was first presented by Tian and Giannakis 
[19] as a novel solution to identify spectrum holes using 
reduced sampling rates. The detailed procedure is shown in 
Fig. 2. 

 

Fig. 2. Concept of compressive spectrum sensing [19]. 

Firstly, to ensure perfect recovery of the received signal, 

random sampling or universal non-uniform sampling are used 

to obtain the compressive measurements. Secondly, an 

estimate of the frequency response of the received signal is 

recovered based on a reconstruction algorithm such as Basis 

Pursuit (BP), Orthogonal Matching Pursuit (OMP), or Tree-

based OMP. Then a wavelet-based edge detector method is 

applied to detect frequency locations of spectrum holes by 

selecting the local maxima of the wavelet modulus of 

recovered signal. Finally, a boundaries estimator is used to 

classify the detected bands into occupied or vacant [19]. 

Following this introduction, several works and papers 
were published to detail and improve this technique. In this 
paper, we gathered a review of recent advances and classified 
them into four categories based on the model presented on  
Fig. 1: Contribution based on sparsity level, acquisition 
model, and reconstruction algorithm or spectrum detection. 

A. Approaches based on sparsity level 

The sparsity order τ of a signal x is defined as follows 

τ = D/N                                            (12) 

Where D and N respectively denotes the number of non-zero 

elements and the dimension of x. It measures the degree of 

compressibility. 

The sparsity of a signal is a property that plays an 

essential role in compressive sensing cycle. It is used to 

identify the number of measurements required to perform an 

efficient recovery of the signal, which leads to two different 

approaches to develop the concept of compressive spectrum 

sensing. The first one is based on the need to estimate the 

sparsity level of a signal before measurements process to 

reduce the sampling rate and the recovery error. This method 



is referred to as non-blind compressive spectrum sensing. The 

second approach does not require any prior knowledge of the 

sparsity level, to avoid more complexity in sensing process 

and it is called blind compressive spectrum sensing. 

Example of non-blind techniques is presented in [20], 

where the authors suggested an adaptive method to 

determinate the sparsity of the estimated vector that reduces 

the error of the estimation, based on two new variations of the 

Least Mean Squares (LMS) algorithm. Another example is 

proposed in [21] where the authors developed a two-step 

compressive spectrum sensing algorithm for wideband CRs. 

In the first step, they used a small number of samples to 

estimate the sparsity order τ of the unknown spectrum. In the 

second step, they exploited the estimate of τ’ to determine the 

number of samples that must be added and used. Finally, the 

wideband spectrum is reconstructed and the sensing decision 

of the state of the spectrum is taken using the samples 

collected from the two previous steps. 

A number of blind compressive spectrum sensing 

techniques have been proposed in [22-24]. In [22][23], the 

authors proposed a blind algorithm referred to as Residual 

corrElation mAtrix Detection (READ). This algorithm finds 

efficiently the location of non-zero elements of a noisy 

multiband signal without prior knowledge of the signal 

parameters. Then, it uses energy ratios of adjacent 

frequencies of the Modulated Wideband Converter (MWC) 

sub-Nyquist sampling framework as the test statistics to make 

the sensing decision. In [24], the authors suggested a novel 

method that does not require an estimation of the PU signal 

sparsity. This algorithm is called DCT-based compressive 

spectrum sensing and it exploits the performance of energy 

concentration in the discrete cosine transform domain 

compared to the discrete Fourier transform to improve the 

signal detection. 

B. Approaches based on acquisition model 

In the acquisition process, the received signal is 
subsampled and then compressed. This operation is performed 
in practice by numerous acquisition techniques including 
Random demodulator (RD), MWC, Compressive multiplexer, 
Random convolution, and Random filtering. Details of these 
strategies are presented in [12]. 

In the context of compressive spectrum sensing technique, 
several contributions based on these acquisition strategies are 
developed. For instance, the authors of [25] designed a high 
speed chipping sequence architecture for RD. It works at 2.27 
GHz clock frequency to improve the performance of 
wideband sub-Nyquist spectrum sensing. In [26], the authors 
proposed a simplified structure of the MWC. They removed 
the continuous-to-finite block and pseudo inversion operation 
of the MWC to reduce the computational complexity and then 
used sparse Bayesian learning as a recovery algorithm. 

Other techniques have been proposed in the same context, 
but they focused mainly on the compression process of the 
acquisition model. This process is based on the measurements 
matrices. The authors of [27] introduced a modified Regular 
Parity Check (RPC) matrix to enhance the compressive 
sensing performance in CR. They defined a new algorithm 
based on the gradient descent method to convert the basic RPC 
matrix to a semi-orthogonal one. Another example of these 
approaches is presented in [28] where the authors proposed 

chaotic matrices as sensing matrices, which are easy to design 
using few parameters and safe with inherent security to 
secondary users. 

C. Approaches based on reconstruction model 

The reconstruction process is one of the key success 
factors for the compressive spectrum sensing solution. Several 
techniques based on reconstruction algorithms have been 
widely recommended and proposed in the literature [29-32]. 
For instance, in [29][30], the authors presented the Wavelet 
Packet Adaptive Reduced-set Matching Pursuit (WP-ARMP) 
as a new approach and suitable Greedy recovery algorithm for 
compressive spectrum sensing. The basic idea of this 
technique is based on a developed Fast Matching Pursuit 
(FMP) algorithm that practically allows a recovery rate of the 
input signal at 25% of the Nyquist rate. The authors of [31] 
also adopted Greedy algorithms and chose to develop the 
OMP algorithm. As a result, a three different algorithm was 
introduced namely, Stage wise Orthogonal Matching Pursuit 
(StOMP), Regularized Orthogonal Matching Pursuit (ROMP) 
and Compressive Sampling Matching Pursuit (CoSaMP) 
which guarantees better performance for the recovery of the 
wideband signals compared to original OMP. Thus, the 
detection based signal recovery improves the detection 
accuracy, but the interactive algorithms leads to a high system 
complexity. 

To overcome the complexity challenge, other approaches 
were introduced. In [32], the authors presented a Non-
Reconstructed Sequential Compressed Wideband Spectrum 
Sensing (NSCWSS) algorithm. The innovation in this 
algorithm is the use of an efficient sequential sensing process 
based on historical data gathering. Then, the algorithm is 
applied without the reconstruction process to simplify and 
reduce the hardware cost and implementation. 

Another strategy to guarantee the performance of 
compressive spectrum sensing in terms of speed, robustness, 
and error recovery rate is based on the combination of 
acquisition and reconstruction techniques. An example of 
model proposed in this perspective is detailed in [33][34] 
where the authors evaluated the efficiency of Bayesian 
recovery algorithm with the advantages of Toeplitz and 
Circulant measurements matrices respectively. 

D. Approaches based on spectrum detection 

Recently, several research papers have proposed to 
improve spectrum sensing techniques. Among those 
techniques, energy detection method was commonly 
discussed and reviewed as the most used spectrum sensing 
approach. It is performed by comparing the received signal 
energy with a predetermined threshold. However, this 
technique is very sensitive to the noise uncertainty because the 
noise statistics (for example variance) are typically unknown 
at the receiver. 

Thus, to enhance the performance of energy detection in 
the context of compressive spectrum sensing. the authors of 
[35], based on the assumption that the signal energy statistics 
in compressive spectrum sensing is different from that in 
traditional non-compressive spectrum sensing, suggested the 
use of a new algorithm based on Mixture Model (MM) and 
Expectation-Maximization (EM) methods combined with a 
threshold adaption scheme. The first step aims at identifying 
the channel energy statistics of recovered signal and the 
second step uses the model identified in the previous one to 
adapt the threshold and keep the false alarm rate constant.  



Other works focused on improving the spectrum detection 
performance by reducing the false alarm rate and the 
processing time, which leads to increasing the compressive 
spectrum sensing accuracy in a smaller time period. This 
approach was discussed by the authors of [36] as an efficient 
approach to achieve more transmission throughput for the SU. 
The authors proposed a novel Likelihood Ratio Test (LRT) 
applied on the learned feature information of Primary User’s 
signal (eigenvalues and eigenvectors) since this signal is 
position dependent but time invariant. Compared to existing 
spectrum detection techniques that use non-blind feature 
detections, the proposed Feature-Based technique is more 
efficient since is uses Primary User’s signal localized features 
to improve the spectrum sensing accuracy. 

Another approach of improving the spectrum detection 
was introduced in [37] by the combination of machine 
learning and compressive sampling techniques. On one hand, 
compressive sensing was used to decrease the number of 
required measurements. On the other hand, based on some 
activity statistics of both the Primary and Secondary users, a 
prediction technique was then applied to decide if the 
spectrum is occupied or vacant. This step uses one of the 
following regression models: Linear regression using batch 
gradient descent or support vector regression. 

E. Comparison of Compressive Spectrum Sensing 

approaches 

Table I, reviews the advantages and limitations of the 
related compressive spectrum sensing approaches in terms of 
complexity, number of measurements, and sensing time. As 
shown in this table, the approaches based on sparsity level 
(Non-Blind compressive spectrum sensing) and on 
reconstruction model (with recovery) are more hardware 
complex but require low number of measurements. On the 
other hand, the approaches based on acquisition model, 
reconstruction model (without recovery), and spectrum 
detection are fast and easy to implement (hardware cost). To 

sum up, the choice of the solution to implement depends on 
the system requirements (cost, speed, and performance). 

IV. COMPRESSIVE SPECTRUM SENSING 

APPLICATIONS 

A. Internet of Things (IoT) 

With the rise of IoT technologies to enable large-scale 
connectivity of physical devices and objects, the traditional 
static frequency allocation strategies are becoming inefficient 
and wasteful. Therefore, researchers recommended new 
allocation policies based on dynamic frequency allocation and 
CR benefits. For that reason, the implementation of 
compressive spectrum sensing in large IoT networks is 
proposed to enable CR capabilities in wireless sensors and 
connected objects and make those networks more cost-
effective in terms of spectrum occupancy and performance. In 
[38], a practical case of this implementation was detailed by 
presenting a blind compressive spectrum sensing algorithm 
adapted to IoT networks to dynamically adjust the sensing 
time and the sampling rate based on the fact that IoT devices 
uses the spectrum randomly. In addition, a distributed sensing 
scheme was proposed enabling the neighboring devices to 
jointly sense the spectrum using the multi-coset sampling 
theory. 

B. Fifth generation of mobile networks (5G) 

Another attractive area of compressive spectrum sensing 
application is presented in [39] aiming to enable spectrum 
sharing and spectrum aggregation to improve the capabilities 
of 5G mobile networks. The Enhanced 5G Cognitive Radio 
Networks (ECRN) uses the licensed bands shared with the 
primary users (TV white space and LTE TDD Bands) and 
aggregates from Wi-Fi unlicensed spectrum bands. 

C. Smart city 

Due to rapid growth in data acquisition for smart city 

applications, robust approaches are increasingly needed to 

well exploit all spectrum resources.  As result, CR has been 

 

TABLE I.  ADVANTAGES AND LIMITATIONS OF COMPRESSIVE SPECTRUM SENSING APPROACHES 

Compressive Spectrum 

 Sensing approaches 
Advantages  Limitations 

Based on 

sparsity level 

[20-24] 

Non-Blind 

compressive 

spectrum 

sensing 

-Reduces the number of measurements to be used based on 

the estimation of sparsity of the received signal. 

-Minimizes the recovery error 

-More complexity because of the 

estimation process 

Blind 

compressive 

spectrum 

sensing 

-The estimation of the sparsity level is not required, which 

reduces the computational complexity of the system 

-Accelerates the detection process 

-Reduced quality of reconstruction 

compared to non-blind compressive 

spectrum sensing 

Based on acquisition model 

[25-28] 

-Reduces the sensing time 

-Easy to implement 
-Low complexity 

-Ensures security 

-Reduced detection performance under 

low SNR 
-Low detection probability with random 

locations 

Based on 

reconstruction 

model 

[29-32] 

With 

recovery 

-Low number of samples 

-Fast algorithms 

-High complexity due to interactive 

algorithm  

Without 

recovery 

-Simplifies and reduces the hardware cost and 

implementation.  

-Detection based on compressed measurements only 
without recovery 

-Low sensing time 

-Requires more measurements to 

improve the detection performance 

Based on spectrum detection 

[35-37] 

-Low number of measurements needed 

-Adaptive process 
-Reduces the false alarm rate 

-Low processing time 

-Estimates of sparsity level is required  



proposed as new form of wireless communication to examine 
spectrum accessibility via spectrum sensing techniques. In this 
context, an interesting methodology was presented in [40], the 
authors propose a dynamic spectrum sensing approach based 
on multiple antenna and energy detection techniques, to 
improve detection performance of primary users. In further 
research work, compressive spectrum sensing can be studied 
as a better technique to implement CR in smart city context. 

V. CHALLENGES AND FUTURE SCOPE 

With the fast evolution of wireless technology, each 
proposed solution needs to be continually improved to keep 
up with the latest developments. Thus, there are always some 
challenges to face and opening doors to new future directions 
to mitigate. In this section, we are highlighting some of the 
challenges of the two major techniques: compressed sensing 
and spectrum sensing. Examples of these challenges and 
future directions are: 

 Practical limitations: 

The signal acquisition is the most critical step in the 

compressive spectrum sensing process because it is the stage 

where the measurements are taken. Due to several invariants 

including multipath fading, shadowing, hardware anomalies, 

and channel noise correlation, uncertainty can affect this first 

process [41]. Then, sometimes the wrong actions are taken by 

using these affected and uncertain measurements. Because of 

this limitation, most papers assume simple operating 

conditions in terms of noise and channel. Few works exploit 

the compressive spectrum sensing techniques in the presence 

of practical imperfections as in [41][42]. Thus, there is a great 

need for detailed papers that performs compressive spectrum 

sensing in real and complex scenarios. 

 Security issues: 

The security aspect is a key factor in evaluation of new 

techniques. In CR, compressive spectrum sensing with 

multiple secondary users is vulnerable to attacks, which 

requires secure communication between the networks’ users. 

Therefore, approaches based on the SU security are required 

at the signal detection stage. Examples of components 

introduced to improve the compressive spectrum sensing 

security is the use of structured sensing matrices. In [28], the 

authors proposed the chaotic matrices as sensing matrices to 

ensure and provide inherent security to secondary users.  

 Hardware requirements: 

To implement compressive spectrum sensing technique in 

real applications, the solution must be cost-effective in terms 

of processing time, speed, and hardware cost. For this 

purpose, some papers recommended the use of wideband 

antennas with reconfigurable characteristics as in [43]. Other 

works focused on the acquisition strategy such as random 

demodulator and modulated wideband converter as 

introduced in [25][26]. Hence, more research and real-world 

tests need to be done to develop a universal and efficient 

compressive spectrum sensing architecture to simplify and 

standardize the hardware design.  

  Blind compressive spectrum sensing: 

Most of the proposed compressive spectrum sensing 
techniques require prior knowledge of the sparsity level of the 

received signal to reduce the recovery error rate. Relating to 
practical scenarios, especially in the next generation of 
wireless networks, it is difficult to estimate the sparsity of the 
signal. In addition, estimation process can add more 
complexity to the system in term of sensing time. Thus, future 
compressive spectrum sensing systems will have to be able to 
operate without any prior knowledge of sparsity order, which 
lead to another attractive challenge that needs more detailed 
work. 

CONCLUSION 

The introduction of compressive sensing in signal 
processing has a revolutionary effect in several areas 
including CR. Compressive spectrum sensing is the result of 
the combination of compressive sensing with spectrum 
sensing that represents an essential block of the radio 
cognitive cycle. In order to exploit the advantages of 
compressive spectrum sensing, a number of approaches have 
been proposed in the literature. In this paper, we firstly 
presented a detailed review of compressive sensing and 
spectrum sensing theory. Secondly, we introduced a study and 
comparison of the four compressive spectrum sensing 
approaches (based on the sparsity, based on the acquisition 
model, based on the reconstruction algorithm, and based on 
the spectrum detection). Finally, applications and challenges 
of compressive spectrum sensing technique were reviewed. 
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