N

N

AN AVERAGING PRINCIPLE FOR STOCHASTIC
FLOWS AND CONVERGENCE OF
NON-SYMMETRIC DIRICHLET FORMS

Florent Barret, Olivier Raimond

» To cite this version:

Florent Barret, Olivier Raimond. AN AVERAGING PRINCIPLE FOR STOCHASTIC FLOWS AND
CONVERGENCE OF NON-SYMMETRIC DIRICHLET FORMS. 2020. hal-02509295v2

HAL Id: hal-02509295
https://hal.science/hal-02509295v2

Preprint submitted on 18 Sep 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02509295v2
https://hal.archives-ouvertes.fr

AN AVERAGING PRINCIPLE FOR STOCHASTIC FLOWS AND
CONVERGENCE OF NON-SYMMETRIC DIRICHLET FORMS

FLORENT BARRET AND OLIVIER RAIMOND

ABSTRACT. We study diffusion processes and stochastic flows which are time-
changed random perturbations of a deterministic flow on a manifold. Using
non-symmetric Dirichlet forms and their convergence in a sense close to the
Mosco-convergence, we prove that, as the deterministic flow is accelerated, the
diffusion process converges in law to a diffusion defined on a different space.
This averaging principle also holds at the level of the flows.

Our contributions in this article include:

e a proof of an original averaging principle for stochastic flows of kernels;

e the definition and study of a convergence of sequences of non-symmetric

bilinear forms defined on different spaces;
o the study of weighted Sobolev spaces on metric graphs or “books”.

INTRODUCTION

Let X* be a diffusion process on a Riemannian manifold M with generator
A% = A+ kV, where A is a second order differential operator, V is a vector field
on M and k is a large positive parameter. The diffusion X*, after an appropriate
time change, is a random perturbation of the dynamical system % =V (xy).

Averaging principles for such diffusions X* in R? have been studied by Freidlin
and Wentzell in [9]. They were mostly interested to the particular case where
d = 2 and where the vector field is given by V = (—d2H, 1 H), with H : R?> - R
(sometimes called an Hamiltonian) a sufficiently regular function. More precisely,
they first construct a mapping 7 : R — G, with G a metric graph. Each point of G
corresponds to an orbit of V' (or equivalently to a connected component of a level
set of H) and for a generic point x € R?, 7(x) = (H(z),i) where the index i labels
the orbits of V. Then they show that as Kk — oo, the process 7(X") converges in
distribution towards a diffusion on the metric graph G. The scheme of their proof
was, after having checked that the family of the distributions of 7(X*) is tight, to
prove that every limit point for this family solves a well-posed martingale problem,
whose unique solution is a diffusion on G.

An alternative proof for this result was proposed by Barret and von Renesse in
[2]. The main tool used in their proof is the convergence of non-symmetric Dirichlet
forms. The assumptions (on the Hamiltonian H and on the generator A) of the
theorem stated in [2] are weaker than the ones in [9]. But there is an inaccuracy in
their proof (more precisely the proof of Lemma 3.1 in [2] is not correct).
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In this paper, we will follow (and correct) the approach initiated by Barret
and von Renesse. Our results will permit to state averaging principles in higher
dimension and at the level of flows. Let us explain this in more details.

We will suppose that the vector field V' is such that

e V is complete and generates a flow ¢;

e the flow ¢ has an invariant measure m having a C! positive density with
respect to the volume measure on M;

e there is an increasing sequence (M,,) of compact sets, invariant for ¢, and
such that M = |J,, My.

The flow ¢ generated by V can be viewed as a shear flow. We denote by P(M)
the set of Borel probability measures on M, equipped with the topology of narrow
convergence. Then (see Proposition 4.6) there is a measurable map P : M — P(M)
such that for m-almost all x € M, P(x) is a probability measure on M, ergodic for
¢ and with x € Supp(P(x)).

In this introduction, for sake of simplicity, we will suppose that M = R? A = %A
is the generator of a Brownian motion on M and m is the Lebesgue measure on M.
Then, the process X" can be constructed as a solution of a stochastic differential

equation (SDE)

dX[ = kV(X[)dt + dB; (0.1)

with (B;); a Brownian motion in R%. For large &, the process Y/ := X, Is a
random perturbation of the flow ¢. Indeed, Y satisfies the SDE:

dYy = V(YS)dt + k~Y2dBr, (0.2)

where B = \/kB; /18 also a Brownian motion in R4,

Suppose also that one is able to construct a metric space M , a continuous map-
pingm: M — M and a measurable mapping p : M — P(M) such that for m-almost
all z € M, P(x) = pon(x). Then the drift term xV (which explodes as K — < in
(0.1)) disappears in the SDE satisfied by the M-valued process Xr = n(XF). Note
that if P is continuous, one can simply take m = P and for M , the set of ergodic
probability measures. Our first main result is Theorem 4.12 in Section 4, whose
statement is the convergence in law of X" as k — o0 towards a diffusion process X
in M.

Theorem 4.12 extends Theorem 2.2 in [9], Chap. 8, where Freidlin and Wentzell
consider the case M = R? and V = (—02H,0:H), with H : R? —» R a regular
function. Theorem 4.12 also extends, corrects and gives a correct formulation of
Theorem 3.11 in [2].

In [10], Funaki and Nagai also studied a diffusion X* solution to SDE (0.1), but
defined on a manifold. They were also concerned with the asymptotics of X* as
Kk — 00. Assuming that the vector field V' has a regular, compact with no boundary,
submanifold M of asymptotically stable fixed points, they prove the convergence
of X* as k — oo, towards a diffusion on M via a martingale problem. Their
framework is however different to the one of this article: in [10], the vector fields
are typically gradient vector fields and in our setting, they are typically divergent
free.

Let us now consider n particles X (™% = (X5 . X™") in a turbulent fluid
with a shear flow generated by V. For some 1 > 0 (a viscosity parameter), X (%)<
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solves an SDE on (RY)": for 1 <k <n
AX{" = KV(XP")dt + ndBf + ) Ui(X[") 0 dW, (0.3)

el
where (I being a countable set) {W? i € I} is a family of independent Brownian
motions, {U’, i € I} is a family of vector fields on M such that Y, _, U;(U;f) = Af
for all f € C*(R?) and {B!,B?,...,B"} is a family of n independent Brownian
motions in R? independent of {Wiie I}. The n particles X175 ... X™" are n
diffusions with generator %(1 +1%)A + KV and are correlated through the common
noise W =Y., U;W*

The process X ("% is also a time-changed perturbation of the flow ¢®", which
is generated by V®". In order to apply Theorem 4.12 to X (™* we will have to
assume in addition that for m®"-almost all z € M", @, P(z;) is ergodic for ¢".
This allows to prove Theorem 7.10 in Section 7, Whose statement is the convergence
in law as k — 00 of (7(X1F), ..., 7(X™*)) to a diffusion X ™ on M™.

By construction, the family of processes (X(™* n > 1) is a consistent and
exchangeable family of Feller diffusions (see Section 7.8). Using Theorem 2.1 from
[17], X (™% is the n-point motion of a stochastic flow of kernels (SFK), K" =
(K7 ;)s<t- This SFK solves the following SDE: for all f € CZ2(M), z € M and s <t

K: o f(x JK (1 +7)A+KV)f(x) du—i—J K2, (W f(du))(z), (0.4)

with W = . U;W" a vector field-valued white noise, {W* i € I} being a
family of independent white noises (we use the notation Sz KZ (W f(du))(z) =

le]s K? (U f)(x)W(du)). The covariance of W is given by C' = >,._; U; ® U;,
and (followmg [17]) the SDE (0.4) is called the ((1 + n?)A + &V, C)-SDE. Under
the condition that for all n, the diffusion X X s Feller, the family of processes
(X (") 'n > 1) is consistent and exchangeable and is associated to a SFK K on M.
We then prove Theorem 7.12 that states that the SFK K”* converges in the sense
of finite dimensional distributions to K as x — oo.

In order to prove Theorem 4.12, we had to revisit the framework of convergence
of non-symmetric closed forms of [15], in which Hino only considers convergence of
forms all defined on the same space. This is done in Section 3, where Theorems
3.8 and 3.9 are proved. These two theorems extend Theorem 2.4 in [16] to non-
symmetric closed forms.

In Sections 1 and 2 the standard objects of the theory of non-symmetric Dirichlet
forms are introduced and the correspondence with Markov processes is given. In
Section 3, we recall and extend the notion of convergence (called Mosco-convergence
by analogy to the symmetric case) of non-symmetric closed forms and show that this
convergence entails the convergence of their associated semigroups. The main result
of these sections is Theorem 3.15 where the convergence of the finite dimensional
distributions of the Markov process associated to the regular Dirichlet form £% is
proven.

In Section 4, after recalling some notions of ergodic theory, Theorem 4.12 is
proved, i.e. we prove the convergence of 7(X"*) to a diffusion process X in M. To
prove Theorem 4.12, we prove the Mosco-convergence of the Dirichlet forms £ on
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L?(m) with domain H!(R¢) towards a Dirichlet form on L?(), where m = mem.
The Dirichlet form €% := € + k€Y is such that for f,g e H'(R?),

&0 =g | VEVpdm  V(fg) == | VHgam  (05)

Since m is invariant for ¢, the form £V is anti-symmetric: £V (f,g) = -V (g, f).
Using Theorem 3.8 of Section 3, Theorem 3.13 shows that £ converges to a bilinear
form £ with a domain H as k — oo0. This limiting form is defined on M by:

H={f: MR, foreH] E(f.g) =E(fom gor). (0.6)

(5 7—7) can be viewed as a contraction of the Dirichlet form (€, ) by 7. Proposition
4.11 states that the contracted bilinear form (5 H) is itself a regular Dirichlet form
and thus associated to a process X in M. In particular, the regularity (5 7—[) of the
form is non-trivial (this is the difficulty overlooked in [2]).

In Section 5 and Section 6, two examples inspired by the literature are studied.
In Section 5, we consider the classic example of [9] of a complete vector field in
R? given by an Hamiltonian. In Section 6, we analyze a specific example on R?,
based on a previous analysis by Mattingly and Pardoux in [21] and describe the
limiting diffusion process and its generator. In Section 5, M is a metric graph (i.e.
a gluing of segments) and in Section 6, M is a gluing of four cones in R2. In each
case, proving the regularity of the form & is a difficult task. This has required a
careful analysis of the space 7—7, which can be viewed as a weighted Sobolev space
on M. This study is conducted in the Appendix and we believe it is of independent
interest.

In Section 7, an averaging principle for SFKs is proved. Finally, the two examples
of Section 5 and Section 6 are studied at the flow level.

NOTATION

For M a topological space equipped with a positive Radon measure m,

o C(M), Co(M), Cp(M) and C.(M) denote respectively the spaces of con-
tinuous functions, continuous functions vanishing at o0, bounded continu-
ous functions and compactly supported continuous functions on M. These
spaces will be equipped with the uniform norm ||-|| ..

e For p > 1, LP(m) is the usual LP-space associated to m and its norm is
denoted || 15 -

e The inner product on L*(m) will be denoted by (-, ) 2(m).

And when M is a smooth manifold,

e for r < oo, C"(M) denotes the spaces of r-times continuously differentiable
functions on M, and CZ (M) denotes the subspace of C" (M) of compactly
supported functions.

For an operator S on a Banach space £ with norm denoted by |||, set ||S||, :=

sup el =13 19 F 1 -
1. BILINEAR CLOSED FORMS, SEMIGROUPS AND RESOLVENTS

1.1. Resolvents and semigroups. Let £ be a Banach space, with norm denoted
by [||l;- A strongly continuous contraction resolvent (Ga)a>ay, With ag € R, is a
family of operators on £ such that:
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o Go—Gp+ (a— B)GaGp =0 for all o, > ap;
e Forall fe L, [[(a—ao)Gafll, <Ifll
e Forall fe, lim, oo aGof = fin L.
A strongly continuous semigroup (Tt)¢=o on L is a family of operators on £ such
that,
o Tof = fand Tsyef =TT f for all fe £ and s,t > 0;
e Forall fel, limoT:f = fin L.
From [20], Propositions 1.1.5, 1.1.10 and Theorem 1.1.12, we have

Proposition 1.1. If (T}) is a strongly continuous semigroup such that for some
o, [[e” Ty, <1 for all t > 0, then (Ga)a>aq, defined by the Bochner integral

+o0
Gafzf e T, fdt, VfeclL, (1.1)
0

is a strongly continuous contraction resolvent. Reciprocally, if (Ga)a>ao 8 @ strong-
ly continuous contraction resolvent then there exists a unique strongly continuous
semigroup (Ty) satisfying |le”*'Ty|| . < 1 for allt > 0 and such that Equation (1.1)
holds.

Let (7}) be a strongly continuous semigroup such that for some ayp, ||e”*'T;|| . <
1 for all ¢ > 0. Let A be the infinitesimal generator of (7;) with domain D(A), i.e.
the set of all u € £ such that Au := limy g %(Ttu — u) exists in L.

Lemma 1.2. (i) For all a > ap, D(A) = Go(L).
(ii) For fe L, AGof = aGof — f.
(iii) D(A) is dense in L.

Proof. The resolvent equation implies that for o, 8 > ag, Go (L) = Gg(L). Using
(1.1), we prove that G, (L) < D(A) and (ii). And we prove that D(A) < G, (L) by
taking for u € D(A), f = au — Au. Then it holds that u = G, f. ]

1.2. Bilinear closed forms. Let £ be a real separable Hilbert space, with inner

product denoted by (:,-); and norm |-||,. Let £ be a bilinear form on £ with

domain H, a dense linear subset of £. We denote by £° and £® respectively the

symmetric and antisymmetric parts of £. For a € R, set £,(-,-) = E(+, ) + al, Hr.

Note that £2 = £%. The bilinear form £ is said closed if there is some ag € R such

that

(E£.1) (&;,,H) is a positive definite symmetric bilinear form and, equipped with

the inner product (-,-)x := &} .1, H is a Hilbert space. The associated
norm will be denoted by ||-||,,

(£.2) (&£,H) satisfies the following weak sector condition: there exists K > 1
such that

|E o1 (1, 0)] < KEnyi1(t,u)?Eny 1 (v,0)Y2, for all u,v e H. (1.2)

Note that for u e H, [|ul|, < ||ull4-
Following [24] (Theorem 1.1.2) or [20] (Theorem 1.2.8), we have

Proposition 1.3. There exist two unique strongly continuous contraction resol-

vents on L, (Go)as>ae and (Ga)a=ay, Such that for all a > ag, Go(L) < H,
Go(L) € H and

Ea(Gaf,u) = Ea(u,Gof) = {f,u)r forall fe L, ueH. (1.3)
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Moreover, for o > o, G is the adjoint of Gq, i.c. (Gof,g)c =/, @ag>£ for all
f,ge L.

Let ©(u) = supgyeps; o), =1} Eao+1(v; u) for ue M.
Lemma 1.4. ForueH, |lull,, < O(u) < K |lull,-
Proof. The sector condition (£.2) implies that ©(u) < K [lul|;, and since
Full2, = Eaer (0) = ully, Eags (v, ),
with v = u/ ||ull,,, we have ||lul|,, < ©(u). O
We thus have that ©(-) is a norm on H equivalent to [|-||,.

Lemma 1.5. For f € £ and o > o, O(Gof) < Cllfllz, with C =1 + |2zae=l],

a—Qq

Proof. It holds that, for v e H with ||v[|;, = 1, Eagt1(v, Gof) =, for+ (ap+1—

00, G Frz and |Eapsr (v, Cof)] < I + 252811 O
For 8 > ayg, define the bilinear form £ on £ by
8('6 (u,v) [3<u7ﬂG5u v>£, u,v € L. (1.4)

The form £P) approximates the form & as shows the following proposition.
Proposition 1.6. (1) €®) (u,v) = S(ﬂGgu, v), forue L, veH.
(ii) E(BGsu, BGau) = EP) (u,u) — B |lu— BGsul|%, forue L.
(iii) If limsupg ., €@ (u,u) < o0, then ue H.
(iv) limg_o P (u,v) = E(u,v), for u,v e H.
Proof. Assertion (i) follows from the fact that
E(Gpu,v) = E3(Gpu,v) — B{Gpu,v), = <u — BGBU,’U>£. (1.5)

Assertion (ii) is a consequence of (i):

E(BGgu, BGgu) = EP(u, BGau) = Blu — BGau,uye — B |u— BGaul%.  (1.6)

Proof of (iii): Let w € L. Using (ii) and that (8 — ag)Gs is a contraction,
we obtain that (8Ggu)g=a,+1 is bounded in H. Therefore, using Banach-Saks
Theorem, there is a sequence (3, G, u) with 3, — 00 whose Cesaro mean converges
in H to a v € H. We also have that (8,Gg,u) converges to v in £. Thus u = v € H.

Proof of (iv): Let @« > ag and f € L. For u = Gof, v € H and f > «p, using
the definition of G, and the resolvent equation,

EP(Gaf,v) — E(Gaf,v) = BGaf — BGsGaf,v)r — {f — aGuf,v)r

— (a6l + 8Ga. e~ — a0

- aGaf.ve — 5 = BGsf. v

which converges to 0 as 5 — . To conclude, we prove that G, (L) is dense in H.
Let u € H. As in the proof of (iii), using Banach-Saks Theorem, there is a sequence
(BnGg,u) with 8, — o0 whose Cesaro mean converges in H to v € H. Since
Go(L) = Gg, (L) for all n (by the resolvent equation) this implies the result. O
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By Proposition 1.1, there exists a unique strongly continuous semigroup (7})
such that [le”*!T}| ., < 1 associated to (Ga)a>a,- One then says that (T3) is
associated to (&, H).

Lemma 1.7. Let A be the infinitesimal generator of (Ty) the semigroup associated
to (€, H), with domain D(A). Then for ue D(A) and v e H,

E(u,v) = =(Au,v),. (1.7)
Moreover, u belongs to D(A) if and only if, as a functional with domain H, the
mapping v — &(u,v) is continuous with respect to | - ||z.

Proof. Fix a > ag, u € D(A) and v € H. Using Lemma 1.2, there is an f € £ such
that u = G, f. Since Au = oG, f — f, we easily obtain (1.7) by using the definition
of G, f. The second part is Proposition 1.2.16 p.23 in [20]. O

2. DIRICHLET FORMS

2.1. Dirichlet forms and Markov processes.

2.1.1. Definitions. Let M be a locally compact separable metric space. Let m be a
positive Radon measure on M such that Supp[m] = M. Let € be a bilinear closed
form on £ := L?(m), with domain H. In particular, there is some oy > 0 for which
(£.1) and (£.2) are satisfied. If the bilinear form £ also satisfies

(E3)forallueHand a=>0,uraecH and E(u na,u—una)=0

then (€, H) is called a Dirichlet form on L.
Note that, if (T}) is the semigroup associated to &£, then (Theorem 1.1.5 in [24])
(£.3) is equivalent to

(€.3a) (T;) is sub-Markov : if f € L?(m) satisfies 0 < f < 1 m-a.e.,then 0 < T;f < 1
m-a.e.

So, when (€.3) is satisfied, the restriction of T} to L?(m) n L®(m) can be extended
to an operator Ty on L®(m) which satisfies |T{°|[;(,,) < 1. Then (Ty") is a
strongly continuous contraction semigroup and if we set G f = SSO e~ TP fdt for
feL®(m)and o > 0, (GL)a>0 is a strongly continuous contraction resolvent on
L*(m), i.e. such that |G| x(,) < 1 for o > 0. Moreover, for f € L?(m) n
L*®(m) and o > ap, Gof = GX f m-a.e.

The Dirichlet form & is said regular if H n C.(M) is dense in H with respect to
||-l;, and is dense in C.(M) with respect to |- .

Theorem 2.1 (Theorem 3.3.4. in [24]). For any given regular Dirichlet form &
on L*(m) with domain H, there exists a Hunt process whose resolvent Ry f is a
quasi-continuous modification of G f for any f € L*(m) and a > 0.

We say that a Dirichlet form (€, H) possesses the local property if €(u,v) = 0
whenever u, v € H have disjoint supports.

Theorem 2.2 (Theorem 3.5.12 in [24]). Let (£,H) be a reqular Dirichlet form,
then the following conditions are equivalent to each other:

(i) (E,H) possesses the local property;
(ii) the Hunt process associated to (£,H) is a diffusion process.
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2.1.2. Dirichlet form associated to a diffusion on a manifold. Let M be a smooth
connected oriented Riemannian manifold. Let m be a positive Borel measure m
on M equivalent to the volume form on M, with a C! density we also denote by
m. For V a C'-vector field, set div,,V = m~ldiv(mV) € C(M), where div is the
divergence operator on M. Then we have the following integration by part formula

VI grem) =~V @ r2m) — J fgdiv,,Vdm, for all f,ge CL(M) (2.1)
M

Let S be a second order differential operator on M, with S1 = 0. Suppose also
that
(i) Sfe L?*(m) for all fe CP(M).
(ii) S is symmetric on L?(m), i.e. {(Sf,g)r2(m) = {f,S9)r2(m), for all f,g €
C*P(M).
(iii) S is non positive, i.e. {(Sf, f)r2(m) <0 for all f e CX(M).
Let ' be the carré du champ operator of S defined by

D(f,9) = 315(f9) - 1S9 — 951 (22)
Then, one has that —(Sf, g>r2(m) = §,, T(f, g)dm.
Let V be a Cl-vector field on M and define
£(.9) = [P0~V fgya. frge C2OM) (2.3)

Remark 1. The symmetric and antisymmetric parts of £ are given by: for u,v €

Cr (M),
E(f,g) = fF(f,g)dm + %JfgdiVdem (2.4)

£ (f.9) =% J(ng — gV f)dm. (2.5)

It may be convenient to take for m the volume form on M, in which case div,,, = div.
Proposition 1.3.3 in [20] and Theorem 1.2.1 in [24] imply the following proposition

Proposition 2.3. Assume that for some constant ¢1 € R,
div,,V =2 1 (2.6)

and that for some constant K < oo and for g := —5, the weak sector condition

[V E, 9 r2m)| < KEaor(f 1) Easi1(9,9)'"?, for all f,g€ CE(M), (27
holds. Then
(i) (€,CL(M)) is closable and its smallest closed extension (E,H) is a closed
form satisfying (£.1) and (£.2) with ag = —5-.
(ii) (€,H) is a regular Dirichlet form that possesses the local property.

Proof. 1t is straightforward to check that £; is positive definite. Then the fact that
(Eay, CF(M)) is closable follows from Proposition I1.3.3 in [20], which is applied with
S replaced by S+ V — ag. And we can conclude the item (i) by using Theorem
1.2.1 in [24]. By construction, (ii) is satisfied. O

The Dirichlet form (£,H) will be called the Dirichlet form on L?(m) associated
to T (or S) and V.
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Remark 2. Denote by H'(m) the Hilbert space obtained as the completion of

1

3
Cg (M) with respect to the norm | f| g1 () = <J(f2 + |Vf|2)dm) . Then
e 7 > H'(m) as soon as there is a positive constant ¢z such that
T(f,f) < c2|Vf|*, for all f e CP(M); (2.8)

e % < H'(m) as soon as I' is uniformly elliptic, i.e. if there is a positive
constant c3 such that

es [VfI2 <T(f, f), for all fe CP(M). (2.9)

We now give sufficient conditions ensuring that the weak sector condition (2.7)
holds.

Proposition 2.4. Assume that (2.6) is satisfied and that there is a measurable
function v : M — R such that for all f € C*(M), |Vf|> < v*T(f,f). Then
the weak sector condition (2.7) holds for all f,g € CL (M) as soon as one of the
following conditions is satisfied:
(1) ve L*(m).
(2) For some q > 2, v € LY(m) and (T',m) satisfies a Sobolev inequality with
dimension q > 2 (or of exponent p := ;%2 > 2) and constants A € R and
C >0, ie. forall feCP(M)

£y < Alf By + € [ TS P
(3) Sexp(v?)dm < oo, m is a probability measure and (I',m) satisfies a loga-
rithmic Sobolev inequality with constants C' > 0 and D > 0, i.e. for all
f e Cr ()

Ent,, (/) < 2C f P(f, )dm + DI 2

where Ent,, (f) 1= J fln fdm — J fdmIn (J fdm), with f = 0.

Proof. Tt is straightforward to check that (2.7) holds under condition (1).
To prove the weak sector condition (2.7) for all f,g € C* (M) under condition
(2) or (3), we use

| ngdm] < [l AIVETg g)am

< (le|2|f|2dm>% ( | F<g,g>dm)é

< ( | v2|f|2dm> £ 1(g.9).

When condition (2) is satisfied, Holder inequality and Sobolev inequality imply
that, for some constant K < o0,

N

2

f (o[22 < (J |v|qdm) ! ( f Ifl”dm) T <KL 1)
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When condition (3) is satisfied, we use the entropic inequality (5.1.2) p 236 in
[1] and the logarithmic Sobolev inequality :

[isam < Bt (%) + [ dmin ( | exp<|v|2>dm) < K€ (. f)
for some constant K < oo. O

Note that when T is uniformly elliptic, then condition (1) is satisfied as soon as
V' is bounded.

Example 1. Let {V;:0 < ¢ < L} be a finite family of C*-vector fields. Define

L
Su =Y Ve(Veu) + Vu (2.10)
=1

with V = Zle(divng)Vg. Then S is symmetric on L*(m) and

L
T(u,v) = Y (Veu)(Viv). (2.11)
(=1

Suppose that Vi satisfies (2.6) and condition (1). Then there is a (unique) Dirichlet
form on L?(m) associated to T' and Vp.

In the two following examples, M = R?, T'(f,g) = £(Vf,Vg) and m = e~ A4,
where W e C%(M) and ), is the Lebesgue measure on R<.

Example 2. Suppose that d >3, W = 0 and that V is such that §|V|%dm < .
Then (T',m) satisfies a Sobolev inequality with exponent p = dsz and condition (2)

2
is satisfied.

Example 3. Let us assume that (I',m) satisfies a curvature-dimension condition
CD(p, ) with p > 0 (for instance, CD(p,0) holds as soon as HessW = p). Sup-

pose also that Je_Wd)\d =1 and fexp(|\V\|2)e_WdAd < 0. Then (T',m) satisfies
a logarithmic Sobolev inequality (see [1] p.268) and condition (3) is satisfied.

Example 2 can be found in [20] or in [24]. But Example 3 is new up to our
knowledge.

3. CONVERGENCE OF BILINEAR CLOSED FORMS

Let us given for all integer n > 0, a bilinear closed form (£",H,,) on a separable
Hilbert space £,, and let (£,H) be a bilinear closed form on a separable Hilbert
space L. We assume that there is ag € R such that the bilinear forms (€, ) and
(E™, Hn)nso satisfy (£.1) and (€.2) with an eventually different constant in (£.2)
for each n, K, > 1.

For each n, let (G%)a>a, be the resolvent associated to (€™, H,,) (by Proposition
1.3) and let T* be its associated semigroup on L, (by Proposition 1.1). Let also
(Ga)a>a, be the resolvent associated to (£, H) and T} be its associated semigroup
on L.
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3.1. Convergence of Hilbert spaces. Assume that £, converges to £ in the
sense that there are linear operators ®,, : £L — L,,, such that

Jim [ Dl = ull,,  uwel (3.1)
Let (u,) be a sequence with u,, € £,,, and let u € L.

Definition 3.1. We say that (u,) strongly converges to u if

nlLH%o [®nu —unll, =0. (3.2)
We say that (u,) weakly converges to u if

lim (up, vp )y, = {u,v)r (3.3)

n—o0
for any sequence (v,,) with v, € L, strongly converging to a v € L.

Note that the strong convergence do imply the weak convergence, and that these
convergences correspond to the usual strong and weak convergence in £, when for
all n, £, = L (and ®,, is the identity on L£).

Lemma 3.2. Ifsup,, |lusll, < o0 and if for allve L,
hm <’U,n, (I)n’U>£n = <u7 1}>£,
n—a0

then (un) weakly converges to u.

Proof. Let (v,,) be strongly converging to v. The lemma follows from the fact that
’<un= Ve, — (un, Prv)c, | < ”un”Ln [ ®nv — Un”ﬁn (3.4)

converges to 0, by definition of the strong convergence of (v, ) towards v. d

Lemma 3.3. If sup,, [lun|, < oo, then there exists a weakly converging subse-
quence (U, ).

Proof. See Lemma 2.2 in [16]. O

Lemma 3.4. (i) If un weakly converges to u, then sup, ||unll, < o and
lul| , < liminf, HunHLn
(ii) wy, strongly converges to w if and only if w, weakly converges to u and
l[ull g = limp o0 [Junllz, -
(iil) u, strongly converges to u if and only if

lm (g, vy, = {u,v)z,
n—0o0

for any sequence v, weakly converging to v € L.
Proof. It is lemma 2.3 (for (i) and (ii)) and Lemma 2.4 (for (iii)) in [16]. O

3.2. Convergence of bounded operators. For each n, let A, be a bounded
operator on L,, and let A be a bounded operator on £. Denote by A% and by A*
respectively the dual operators of A, in £, and of A in L.

Definition 3.5. We say that (4,) strongly (resp. weakly) converges to A if
A, uy, strongly (resp. weakly) converges to Au, for any sequence (u,,) with u,, € £,
strongly (resp. weakly) converging to a u € L.

It should be noted that the strong convergence do not imply the weak conver-
gence in general.
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Proposition 3.6. A, strongly converges to A if and only if A weakly converges
to A*.

Proof. Suppose A,, strongly converges to A. Let (u,) be weakly converging to a u
and (vy,) be strongly converging to a v. Then, as n —

<A:un7 Un>[,n = <un7 Anvn>£n - <u7 AU>£ = <A*u7 U>£

which proves that A* weakly converges to A.
On the converse, suppose that A* weakly converges to A*. Let (u,) be strongly
converging to a u and (v,,) be weakly converging to a v. Then, as n —

(Aptin, vy, = {un, Akvyye, — (u, A*v) e = (Au,v)..
We then conclude using Lemma 3.4 (iii). O

A consequence of this proposition is that the strong convergence and the weak
convergence are equivalent for symmetric bounded operators.

3.3. Mosco convergence. In this section, a convergence of bilinear closed forms
is defined. Since this convergence and the Mosco convergence are equivalent for
symmetric Dirichlet forms, it will be also called the Mosco convergence. We follow
and adapt [15] to our framework (in [15], we would have £,, = L for all n). Following
the notation before Lemma 1.4, set ©"(u) = sup{veﬂn;llvl\ﬂn:uSSOH(U,u) for

u€ Hy.

Definition 3.7. We say that £" Mosco-converges to £ if (F1) and (F2) hold, with

(F1) If (uy) with u, € H, weakly converges to w and if lim inf,,_,o O™ (uy) < 0,
then u € H.

(F2) For any sequence (u,) with u, € H, weakly converging to a u € H, and
any v € H, there exists a sequence (v,,) with v, € H,, strongly converging
to v such that

lim E™(vy, up) = (v, u). (3.5)

n—aoo
We introduce also the two following conditions

(F2’) For ng 1 o, up € Hy, such that uy weakly converges to a u € H which
satisfies sup;, ©™* (uy) < 00, there exists a dense subset C' in H such that for
all v € C, there exists a sequence (vg) with vy € H,,, strongly converging
to v with

lim inf £ (vg, ug) < E(v, u). (3.6)

k—o0
(R) G strongly converges to Gy, for a > ayg.

Theorem 3.8. We have

(i) €™ Mosco-converges to £ if and only if (F1) and (F2’) hold.
(ii) &™ Mosco-converges to £ if and only if (R) holds.

Proof. This theorem corresponds to Theorem 3.1 in [15], whose statement is:

(F2) = (F2"),(F1)(F2') < (R) « (F1)(F2). We follow the proof of this theorem.
Proof of (F2) = (F2'): Note first that (F2) implies that for all v € H, there

exists (v,,) with v, € H,, strongly converging to v (it suffices to take u, = u =0 in

(F2)).

Let us now prove (F2’) with C' = H: Let n; 1 o0 and a sequence (uy) with uy, € Ha,

such that (ug) weakly converges to a u € H and such that sup, O™ (ux) < 0.
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There exists (w,,) with w, € H,, strongly converging to u. By taking u/ = w, for
n ¢ {ny : k= 0} and vy, = uy for k = 0, we have that (u;,) weakly converges to
u. Condition (F2) implies that for v € H, there exists (vy,) with v, € H,, strongly
converging to v satisfying (3.5), which easily implies (3.6).

Proof of (F1)(F2') = (R): Fix a > ag. Let (f,,) with f,, € £,, weakly converging
toan f e L. Set u, = Gy*f,. Then if u, weakly converges to G f, then Gl\'*
weakly converges to G which implies (R) (using Proposition 3.6).

First, since [[(a — ao)unlls, < [fallz, Supy [l < (a—a0) " sup, |fullz, <
oo (using Lemma 3.4-(i)). Thus, Lemma 3.3 implies that there is a subsequence
(un, ) weakly converging to a u € L. Using Lemma 1.5, sup,, ©™(u,) < 00. There-
fore, (F1) implies that u € H.

From (F2’), there exists C' dense in H such that for all v € C, there exists a
sequence (vg) with vy € Hy, strongly converging to v with

lim inf E™* (v, Un,, ) < E(v, u). (3.7)

k—o0

Now, EX* (vi, Uny) = (Vk; fny)c,,, Which converges to (v, f)r. As a consequence we
have that for all v € C,
Ea(v,u) = v, Hr. (3.8)
Using the fact that C' is dense in H, this inequality also holds for all v € H. Then,
using this inequality with —v instead of v, we get E4(v,u) < (v, f)r for v € H.
Therefore, £, (v, u) = (v, f). for all v € H, and thus u = G% f. The sequence (uy,)
has a unique weak accumulation point therefore it converges weakly to u = G* f.
Proof of (R) = (F1): Let (uy) with u, € H, be weakly converging to v € L
such that M := liminf,,_,o ©"(u,) < 0. From Proposition 1.6-(iii), to prove that
u € H, it suffices to prove that limsupg_,,, EP) (u,u) < w. Set v, = ®,u, then
(vn,) strongly converges to u. Fix 8 > ap v 0. On one hand, since Gjv, strongly
converges towards Ggu,

5”’(5)(1}”, Up) = Blvn — BGRUn, Un)L, — Blu — BGpu,uys = EP (u,u). (3.9)
On the other hand, using Proposition 1.6-(i),

EM O (v, un) = E(BC RV, un) = ER 11 (BGRVR, un) — (g + 1){BCKUn, un) e,
< 0" (un) [|BGvnll,, — (a0 + 1)(BChvn, un)e, (3.10)

Then, let us proceed as in Equation (3.9) to get

This entails that lim,, o Hﬂvan

= |BGpull,, which implies that (using that
(8 — ap)Gp is a contraction)

£ (u,u) = lim £ (vn,un) < M [|BGgully, — (a0 + D){BCpu, e

lag + 1|8 2
< M ||BGsull,, + 2T 2702 3.11
18Gsully, B —o0) l[ullz (3.11)
Proposition 1.6-(ii) and that (8 — ag)Gp is a contraction imply that
ag + 1|8
I5Gul, < £ ) + 120 e (3.12)

(B — a)
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Equations (3.11) and (3.12) easily imply that limsupg_,, EP) (u,u) < 0.

Proof of (R) = (F2): Let (uy) with u, € H,, be weakly converging to a u € H,
and let v € H. Set w, = ®,v, then (w,) strongly converges to v. Thus (the
convergences below being strong convergences),

lim li Bw, = 1i = 1
im lim BG{w 51_{2@[36?;—;1} v (3.13)

B—00 Nn—0
Since (by definition) £ (w,,u,) = Blwn, — BGjwn, un)c,, , we have that
lim lim ™) (w,,u,) = ﬁlim EB (v, u) = E(v,u). (3.14)
—00

[3—00 Nn—00

This implies the existence of a sequence (3,, 1 o such that v, := Bnngwn strongly
converges to v and

nli_r)rgoé’"’(m)(wn,un) = E(v,u). (3.15)

Since E"(Un, up) = E™Bn) (w,,, u,,) (Proposition 1.6-(i)), we have that
Ji_r)roloé’"(vn,un) = E(v,u). (3.16)
(]

3.4. Convergence of semigroups. The next theorem proves the equivalence be-
tween the convergence of the resolvents (G%) (condition (R)) and the convergence
of the semigroups (7;*). Using Theorem 3.8 (i), this proves that the Mosco-
convergence is also equivalent to the convergence of the semigroups (7}").

Theorem 3.9. Denote ||| = supjer.si =1 [1®nfll, and let us assume that
SUP,>¢ ||Pn|| < c0. Then, the following statements are equivalent:
(1) For some o > ag, G strongly converges to G ;
(2) T} strongly converges to Ty for all t = 0;
(3) T} strongly converges to Ty uniformly on bounded intervals i.e. for all
T > 0 and all sequences (fy,) strongly converging to f,
lim sup |77 fn — ®,T3f]|, = 0. (3.17)
=% 4el0,7] "
Proof of Theorem 3.9. (3)=>(2) is immediate. We prove (2)=(1) and (1)=(3).
Proof of (2)=(1): Fix some a > . Let (f,,) with f,, € L, be strongly converg-
ing to a f € £ and let (g,) with g, € £L,, be weakly converging to a g € L. Then,
for all ¢ > 0, limy,— oo} froy gy, = {Tif,g)c. Using Lemma 3.4 (i), there exists
M > 0 such that (T fn, gnyc, | < e | fallz, lgnllz, < Me®t for all n. We also
have: [(T3f,g)c] < e[| f]|. l|l9|l.- By the dominated convergence theorem,

+00
lim (G7 fo, gude, = f e T (TP fo, gude, dt

+o0
- fo T, f,g)edt = (G fog)c. (3.18)

Lemma 3.4-(iii) implies that G f,, strongly converges to G, f. This proves (1).

Proof of (1)=(3): We follow Kato (p.504, Theorem IX.2.16). Set for each n,
K" = Gi®, — ®,Go. Then for f € L, limy o [[K"f[|, = 0 and, using that
(a0 — ap)G™ and (o — )G, are contractions respectively on £,, and L,

K :=sup ||K"|| < sup ||D,]] < o0, (3.19)

o — (o



AVERAGING OF STOCHASTIC FLOWS AND CONVERGENCE OF DIRICHLET FORMS 15

with [[K™[| := supserpy.=1 K" fll., -
Let (f,) with f, € L, be a sequence strongly converging to a f € L. For T > 0
and t € [0,T],
”Ttnfn - (I)nth”Ln < HTtnfn - Ttnq)anﬁn + HTtnq)nf - (I)nthHLn . (3'20)

Since

sup ||T}"fn — Ttnq)anLn < et | fr — (I)nf”gn —0 (3.21)
te[0,7] n—m

To prove (3), it remains to prove that for all f € L,
lim sup [|T7'®,f — S, T0f||, = 0. (3.22)

N0 ¢e(0,7]

Suppose first that f = G,g for some g € £ and o > «g. For t € [0,T]

T/ ®,Gq — ©,T,Go = —T/'K" + J' + K"T; (3.23)
with JP = GPTr®, — G, T,.
sup [[=T/'K"glz, <e® K gz, ——0. (3.24)
te[0,T] n—m
We also have, for t € [0,T'], limy, o0 [[K"T3g| ., = 0. For s,t € [0,T],
|K"Tig — K"Tygl,., < K |ITug — Togll,. (3.25)

Therefore, since t — T;g is uniformly continuous on [0, 7], the family of functions
t — K™Tg is uniformly equicontinuous on [0,77]. This permits to prove that
limy, o SUPeqo 77 1K T2gll = 0.

We now prove that || Ji'g||, converges to 0 uniformly on [0,T]. Suppose first
that g = G,h for some h € L.

Lemma 3.10. For allhe L, n>0 andt = 0,
¢
G (T7'®,, — D, T,)Goh = J TP (G"®, — ®,Go)Tshds (3.26)
0
Proof. Let us denote F(s) = T .G"®,G,Tsh. We denote the generators (A,;)
(resp. A) of T™ (resp. T'). We have

%F(s) =T (—A,GL®, + ©,AG,)Tsh (3.27)

Then using the fact that AG, = —I + oG, we have
%F(s) =T (P,Go — GL®,,)Tsh (3.28)
which implies the result when one integrates from 0 to t. (Il

With this Lemma, we have that
t
I Gahll . <J e =) |K"Toh||, ds < Te®” sup [|[K"Tohll, , (3.29)
0 s€[0,T]

which converges to 0. We have thus obtain (3.22) for f € G,G4(L£). Lemma 1.2
implies that GG, (L) is dense in L. Let f € L. For all € > 0 there is g € G,Go (L)
such that ||g — f||, < e. Now, for ¢t € [0,T]

I T7 @0 f — @uTifll ., <2ee®” sup|| @]l + | T7 0 f — PuTifll, (3.30)
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and thus for all € > 0,

limsup sup ||T]'®nf — @, T3 f|, < 2ee” sup ||, || (3.31)
n—o0 tE[O.,T] n
and therefore, we obtain (3.22) for all f € L. O

3.5. Main Application. Let M be a locally compact separable metric space and
m a positive Borel measure on M with full support. Let (£,7) be a Dirichlet form
on L?(m) with domain #H. In particular, £ satisfies (£.1) for some constant ag € R
and, equipped with the inner product (-, )% := &5 1, H is an Hilbert space. Let
£ be an antisymmetric bilinear form on H. Suppose that there is K < oo such
that for all u,ve H

|ga(u, v)| < KgOtOJrl(ua u)1/280t0+1(va 1))1/2. (332)

Then, for all kK € R, (£ := € + k€, H) is a Dirichlet form on L?(m).
Let M be also a locally compact separable metric space and 7 : M — M be a

measurable mapping. Set m := m,m and suppose that Supp[m] = M.
Set

H={tel?(M): GomeH) (3.33)
and equip H with the inner product (i, 0y = (W om, ¥om. Note that f for
defines an isometry from L2(m) onto L?(m).

Lemma 3.11. H is an Hilbert space.

Proof. The fact that H is prehilbertian is quite obvious. Let us now prove it is
complete. Let (@,) be a Cauchy sequence in #H. Then it is also a Cauchy sequence
in L?(f) which thus converges in L?(m) to some % € L?*(m). We also have that
(T, o) is a Cauchy sequence in H, hence it converges to some u € H. Then it
must hold that u = % o 7. Thus % € H and @i, converges in H to 4. O

Let € be the bilinear form on H defined by

~

E@,d) =E@omdon), for 7,7 € H. (3.34)
Proposition 3.12. Assuming that H is dense in L2(m), then (g, 7—7) s a Dirichlet
form on L2().

Proof. Let ag be such that (£.1) and (€.2) are satisfied by (£,7). Then (£.1) and
(£.2) are satisfied by (£,H) with this ap (and with the same K > 1). It is also
straightforward to check that (£, H) satisfies (£.3). O

Set, for k € R, L, = L?(m), and £ = L*(m). Then, if &, : L — L, is
the linear operator defined by @Hf = fo m, then L, converges to £. Note that
sup,, [|®x|| < o0, thus Theorem 3.9 can be applied in this setting: if (£, H) Mosco-
converges as kK — 00, then the corresponding resolvents and semigroups strongly
converge.

Theorem 3.13. If one assumes that for all uw e H,
E%u,v) =0, YveH — 3t e H such thatu =Wow (3.35)

then, as k — o0, (€%, H) Mosco-converges to (€, H).
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Proof. We recall that, for u € H, ©(u) = sup(,eyex e =1} Engt1(v,u). To
ag ’

prove that (€%, H) Mosco-converges to (EN’ ,H), we have to prove that for any se-
quences k,, 1 o, (%, H) Mosco-converges to (g, 7—7) Using Theorem 3.8, to prove
the Mosco-convergence, it suffices to prove that for all sequence k,, 1 o0,

(1) For all x, £f* is a positive definite closed form and the weak sector as-
sumption is satisfied (with this aqp, but with a constant K, > 1).

(2) If (u,) with u,, € H weakly converges to @ and if liminf,_, 4 0" (u,) < 0,
then 7 € H.

(3) For any sequence (uy,) with u,, € H weakly converging to a @ € H such that
sup,, O (u,) < o and for any ¥ € H, there is a sequence (v,) with v, € H
strongly converging to ¥ with

lim inf £ (v, u,) = (¥, 7). (3.36)

n—aoo

(1) is immediate since £%° = £%%. Before proving (2) and (3), let us state a
short lemma

Lemma 3.14. Let (u,) be weakly converging to U such that iminf,_,., ©"(u,) <
o0, then U belongs to H and (uy) weakly converges in H to %o .

Proof. Let (u,) be weakly converging to @ such that liminf,,_,,, ©"(u,) < co. Then,
for all ¥ € L*(M), (un, V0 T)r2(my — (U V)r2(mm) and sup, [[uxl 2,y < 0. There
is also a sequence (uy,) with u., € H, K, — o0 and such that sup,, ||ux, ||, <
sup,, ©"" (uy, ) < ©© by Lemma 1.4. This implies that there is a subsequence, we
also denote (uy, ), weakly converging in H (and in L?(m)) to a u € H.

This shows that for all ¥ € L2(), (u,¥ o T)r2(m) = (WO T, VOM)2(m), ie. UoT
is the orthogonal projection of u onto {¥o 7 : ¥ € L?(m)}.

Note also that limy, .o E%(v,uk,) = E%v,u), for all v € H. However, since
sup,, ©"" (uy, ) < 0o, it must holds that lim,,_,o £%(v, u,,, ) = 0, and thus £%(v,u) =
0 for all v € H. This shows that u = To . g

Proof of (2): Tt is a direct consequence of Lemma 3.14.

Proof of (3): Let (uy,) with w, € H be weakly converging to a @ € # such that
liminf,, o ©% (u,) < 0. Lemma 3.14 implies that for all v € L?(m),

m (v, Un)2(m) = U, T O T)12(m)- (3.37)

n—ao0

Let ¥ € H and set v, = ¥ o7 for all n. Then (vn) strongly converges to .
Moreover, £ (v, up) = E(U o, uy,). By Lemma 3.14, u,, weakly converges in H

~

(v
to Tom. Thus limy, e £ (v, uy) = E@omuom) = ET,u). O

Suppose that (£,H) and (£, H) are regular. Then (£%,%) is also regular for all
k € R. Applying Theorem 2.2, for all k € R, to the Dirichlet form (£%,H) (resp.

(€,H)) is associated X* (resp. X), a Hunt process on M (resp. M) with life time
% (resp. () taking its values in M U {A} (resp. M u {A}), with A (resp. A) a
cemetery point we adjoin to M (resp. ]\N/[) We extend 7 to M u {A} by setting
7(A) = A. The processes 7(X*) and X are random variables taking their values
in D(R*, M U {A}), the set of cadlag functions from R+ to M U {A}, equipped
with the Skorohod topology.
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Theorem 3.15. Assume that
o (&,1) and (€,H) are reqular and that £ satisfies (3.32) and (3.35);
o (X{§) converges in law to Xo;
e For all k, the law of X} (resp. )~(0) has a density with respect to m (resp.
to m) and this density belongs to L?>(m) (resp. to L*(m)).

Then the finite dimensional distributions of w(X") converges to those of)? as K
goes to +00.

Proof. Tt is a consequence of Theorem 3.13, Theorem 3.9 and of the definition of
strong convergence. (|

Let us finish this section by pointing out some properties of the Dirichlet form
(E,H).
Lemma 3.16. Suppose that w : M — M s continuous and that (E,H) possesses
the local property, then (E,H) possesses the local property.

Proof. Straightforward after having remarked that for all u € H, Supp(@ o ) =
7 (Supp()). O

Remark 3. Let us consider o(7) the smallest complete o-algebra on M such that
7 is measurable. Then u : M — R is o(7) measurable if and only if u is Borel
measurable and there is & measurable on M such that u = iow m-a.e. Then, one can
introduce the space L?(m,o(r)) of functions in L?(m) which are o () measurable.
For u € L?(m), we denote Iu the orthogonal projection of u onto L?(m, o(r)) (i.e
the conditional expectation E(u|o (7)) if m is a probability measure). Assumption
of Proposition 3.12 and Assumptions (2) and (3) of Theorem 3.15 can be formulated
using this orthogonal projection:
(1) If one assumes that for u € H, there is a version of ITu in H and that
u — IIu is a bounded operator from H to H (i.e. ||II||;, < o) then H is
dense in L?(m). This is equivalent to: there exists C' < o0 such that for all
u € H, llu € H and

E(Mu, Tu) < CE(u,u). (3.38)

(2) Additionally, suppose that (£,H) is regular. Assume also that for u €
C.(M) there is a version of ITu in C.(M), that v — IIu is a bounded
operator from C.(M) to Ce(M) (i.e. there is ¢ > 0 such that |[ITul|,, <
cllull,, for all u e C.(M)), that = : M — M is continuous and that for all
compact K in M, 7=1(K) is compact in M. Then (€, H) is regular.

(3) Condition in Equation (3.35) is equivalent to L?(m, o(r)) nH is the kernel
of £

Proof of (1). Let @i € L?(m) and set u := @iomw € L?(m). Since H is dense in L?(m),
there exists a sequence (u,) in H converging to u in L?(m). Let @, € L?(m) be
defined by u,, o w = Ilu,,. Then, by assumption, ITu,, € H and that entails ,, € H.
Using that @ o 7 = Ilu and that the orthogonal projection IT from L?(m) onto
L?(m,o(r)) is bounded,

[ — anHLz(%) = [I(u — un)||L2(m) < u— UnHL2(m) : (3.39)

Thus (#,) converges to % in L2(/2). This proves that H is dense in L% (). O
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Proof of (2). Let us first prove that CC(M) AH is dense in CC(M). Let @ € CC(M),
then u := wom € C.(M) and there is a sequence (u,) in Co(M)NH converging to u
in C.(M). Define @, by @, om = ITu,,. Then u,, € C(]\?)m’;’jl since unyom = Iu,, € H.
Thus ||@, — 4|, < c¢|lup —ul,, and (%,) converges to u in C.(M).

Let us now prove that Co(M) A H is dense in . Let @ € H, then set u := o €
7, there is a sequence (uy,) in Cc(M) N H converging to u in H. Again, define @,
by @i, o = Iuy,. Then @, € Co(M) nH and ||, — @15 < |[T|l4, l[un — ully, which
implies that (%,) converges to u in H. O

4. AN AVERAGING PRINCIPLE FOR DIFFUSIONS

In this section, M is a smooth oriented Riemannian manifold. Denote by B its
Borel o-algebra, by M(M) (resp. M (M)) the set of signed (resp. nonnegative)
Borel measures on M, and by P (M) the subset of M (M) of probability measures.
We equip these sets with the narrow topology (i.e. the weak- topology with respect
to continuous bounded functions on M).

Let m € M, (M) be equivalent to the volume form on M, with a positive C*
density also denoted m for the sake of simplicity. We will say that a set N is
negligible if it is m-negligible i.e. if m(N) = 0.

4.1. Ergodic decomposition. Let V be a C'! vector field on M. Suppose that V
is complete, i.e. V generates a flow of diffeomorphisms ¢ = (¢)ter on M.
Let us recall the following definitions.

e A set Ae B is called invariant if ¢;'(A) = A for all t.
Let pn € My (M).
e 11 is called invariant if for all A € B, u(¢;*(A)) = p(A) for all ¢ (ie.

1t = p for all t).

e 4 is called ergodic if p is an invariant probability measure such that for
all invariant set A € B, then either u(A) = 0 or p(A) = 1.

e A Borel function u is called py-almost invariant if, for all ¢, u = u o ¢,

p-a.e.
Henceforth, we denote by E the set of ergodic probability measures.

Using the fact that for u € CH(M), §,, Vudm = —§,, udiv,,V dm, one can
prove

Proposition 4.1. m is invariant if and only if div,,V = m~1div(mV) = 0.
We have the following proposition (see [13] Section 3.6.a)

Proposition 4.2. An invariant probability measure i is ergodic if and only if every
w-almost invariant function f is p-essentially constant, i.e. there is a constant c
such that f(x) = ¢, p(dx)-a.e.

Proposition 4.3. Let C be the subset of P(M) of invariant probability measures.
Suppose that C is non empty. Then

(1) C is convex and the set of its extreme points is E.
(2) E is a Gs-subset of P(M) and therefore is a Polish space (metrizable, com-
plete, separable) with the same topology as P(M).
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(3) Moreover for any invariant probability measure i, there is a unique proba-
bility measure [i on E such that

pde) = | plda)ica).

Proof. The first item is a consequence of Proposition 4.2 (see [13], Theorem 4.2.4 or
[25], Proposition 12.4). Ttem (2) and existence in (3) are consequences of Choquet’s
Theorem on the structure of convex subsets of locally convex topological linear
spaces (Theorem 4.2 in [4]). The uniqueness is a consequence of Choquet’s Theorem
given in [25] p.60 Section 10, see also Theorem p.77 in Section 12, using item (2). O

Assumptions 4.4. m is invariant and there is an increasing sequence of compact
invariant sets (M, )n>1 with |-, M, = M.

Note that this assumption is satisfied as soon as there is a C'-function H : M —
R, such that VH = 0 and that for alln > 1, M,, := {x € M : H(z) < n} is compact
(i.e. limg_o H(z) = 0).

Suppose that m is an invariant probability. Let us denote by Z, the o-field
generated by the invariant sets of B and completed by the negligible sets of B. For

€ [1,0], let L? (m) be the space of m-almost invariant functions in LP(m), or
equivalently of Z-measurable functions in L?(m). For f € L'(m), denote by IIf the
conditional expectation E,,[f|Z] of f with respect to Z and m. Then If € L}  (m),
and when f € L?, IIf is the orthogonal projection on L2, (m).

From [23] (corollary of Proposition V-4-4), there is a function P : M x B — [0, 1],
called a regular conditional probability with respect to Z and m, such that

e for all z € M, P(z,-) is a probability measure on B
e for all A€ B, P(-, A) is a Z-measurable version of E,,,[14|Z] (in the proba-
bility space (M, B, m)).
If P is a regular conditional probability with respect to Z and m, then for any
feLYm), z— Pf(x):=F§,, f(y)P(x,dy) is a version of E,,|[f|Z].

Theorem 4.5. Assume that m is an invariant probability measure, then there is a
reqular conditional probability P with respect to T and m such that

(1) P is a measurable map from M to E;
(2) For f e L*(m), we have

t—oo

Pf(z) = lim - J f(¢s(x m(dz) — a.e. (4.1)

The convergence (4.2) holds in LP(m) for f € LP(m) and 1 < p < o0;
(3) Let m be the unique probability measure on E such that m = SEpﬁ"L(dp).
We have Pym = m and P induces a bijection between L?,, (m) and L?(i).

Proof. Let us recall Birkhoff’s Theorem ([13] Theorem 3.5.2): if y is an invariant
probability measure and f € L'(u), then

B [fZ)(0) = Jim 7 [ f(6.(o)ds  pldo) e (42)
0

Item (1): using (4.2) with g = m, the construction of a regular conditional
probability P with respect to Z and m given by Neveu (23], corollary of Proposition
V-4-4) can be modified such that P : M — P(M) defined by P(z)(A) = P(z, A) is
Z-measurable and P(x) is invariant for all z € M. Using again (4.2) with p = P(z),
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we obtain that, m(dz)-a.e., P is also a regular conditional probability with respect
to Z and P(x). Thus, using [26], Proposition 3.3, it proves that P(x) is ergodic
m(dx)-a.e, and P can modified such that P(z) € F for all x € M.

Item (2) follows from (4.2) with ¢ = m and P defined in item (1). The conver-
gence in L? is von Neumann’s ergodic Theorem (see [13] Theorem 3.5.1).

Item (8) is a consequence of the uniqueness of m from Proposition 4.3. The
bijection between L?  (m) and L?(m) is then defined by u +— 4, with a(p) = pu
and then when u is invariant, o P = u. O

Remark 4. Note that if P and @ are regular conditional probabilities with respect
to Z and m then for all f € L', m(dx)-a.e., Pf(z) = Qf(x).

Proposition 4.6. If Assumption 4.4 holds, then there is a measurable map P :
M — E such that for all f € L*(m), we have

Pf(z) = lim - J fos(x m(dx) — a.e. (4.3)

t—0o0 t

Moreover, for all f € L?(m), Pf is the orthogonal projection of f in L?(m) onto
the space of T-measurable functions. In particular, (Pf,g)r2(m) = {Pf, Pg)r2(m)
for all f,g in L?*(m).

Proof. If m is an invariant probability measure, this proposition is just Theorem 4.5.
Suppose now that Assumption 4.4-(2) is satisfied. Then, m, = m,y, /m(M,) is an
invariant probability measure on M,, to which we apply Theorem 4.5. Let P,, be a
corresponding regular conditional probability satisfying the statement of Theorem
4.5 and let us define P(z) = P,41(z) for x € My11\My, so that P : M — E is
measurable. Note that for all f € L'(m) and n > 1, f, := flp, € L*(m,) and for
mp(dx)-a.e., Pf = Pfy, = Py fn.

Let now f € L?(m) and g a Z-measurable function in L?(m), and set for all n,
frn = flu, and gn = glu,. Since |Pflr2in) = limnoo | Lar, Pofnlr2(m) and
since for all n, H]anPnan%%m) < m(Mn)\|Pnan%2(mn) S m(Mn)\|an%2(mn) S
HfH%Q(m), we have Pf e L?(m) and

(Pfgyrz(my = 1 (P fo, gn)r2(m)
= lim M (M) Pp frs Gn) L2 (mn)
= lim m(Myp){fns gn)r2(m.) = fr 9r2(m)s
where we have used that P, f,, is a version of E,, [f»|Z]. O

4.2. Main Results. Let I" be a carré du champ operator associated to a second
order differential operator S as in Section 2.1.2 and let V; be a C'-vector field. Sup-
pose that T and Vj are such that (2.6) and (2.7) are satisfied. Applying Proposition
2.3, set (€,H) the Dirichlet form on L?(m) associated to I' and Vj.

Let V be a C' complete vector field on M. Suppose that

e m is invariant for the flow (¢.) associated to V, i.e. div,,,V = 0;
e the weak sector condition (2.7) is satisfied by V;
o fog,eH forall feCP(M)andall teR.

Note that this last condition is satisfied for example if V' is C® or if M is an open
subset of R? and if H o H}, (M) (which is satisfied when T is uniformly elliptic).
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For k € R, define the bilinear form £% := £ + k€Y, with £ the form defined by

EV(f,9) = =V f, 9r2my, for f,geH. (4.4)

&V is antisymmetric. Then, by Proposition 2.3, it holds that (£%,H) is a regular
Dirichlet form on L?(m), for all x € R.

We denote by A (resp. A*) the infinitesimal generator of (7;) (resp. T}*) asso-
ciated to &€ (resp. to £F). Then, for all x, it holds that A and A" have the same
domain (i.e. D(A") = D(A)) and A® = A + kV. Note that CX (M) c D(A) < H,
and for f e CP(M), Af = (S+W)/f.

We suppose

Assumptions 4.7. There is a C?-function H : M — [0, +oo[, such that

e VH =0;
e There is A > 0 such that for all x € M, AH(z) < A(1 + H(z));
e Foralln>1, M, :={re M : H(z) <n} is compact.

Note that this assumption ensures that Assumption 4.4 holds. We also suppose

Assumptions 4.8. There is a continuous application 7 : M — ]\7, with M a
locally compact, separable, metric space, and a measurable application p: M — F
such that P := p o is a regular conditional probability with respect to Z and m.

Note that this assumption is satisfied when P is continuous, by simply taking
7r=P,1\7=Eandp(u)=uf0rallueE.

Let us now apply the results of Section 3.5 with 7 : M — M , define H as in
(3.33), and set m = m,m a measure on M. Finally, we suppose

Assumptions 4.9. (i) C.(M) nH is dense in L2().
(i) Ce(M) nH is dense in H.
(iii) There is a vector space C subset of {t € H, % ome C%(M)} dense in C.(M).

Proposition 4.10. Let u € H. Then the following items (i), (ii) and (i) are
equivalent.

(i) w is invariant;

(ii) There is € H such that u =W om m-a.e.;
(iii) For allveH, EV (u,v) = 0.

Proof. Fix u e H.

(1) = (29): If uw € H is invariant, then Pu = u by (4.3). Define u : M — R by
U(Z) = p(T)u (recall that p(Z) is a probability measure on M). Then m(dx)-a.e.,
tiom(x) = pom(x)u = Pu(z) = u(z). Moreover, u € L?(m) since |\17||12(%) =
S(p(@)u)?>m(dT) = §{(Pu)*(xz) m(dz) = ||u||iz(m). We thus have that, %o T = u and
tieH.

(ii) = (33): If u € H is such that there is & € H for which u = @0 m-a.c. then
for all v e CP (M),

EV(u,v) = —u, Vuyramy = —(Pu, Voyr2(m) = —(Pu, PVv) 2 ().
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Since m(dz)-a.e.,

PVou(x) =tlin010% . Vu(ps(x))ds = tll)rrolo% ; %U(@(m))ds (4.5)
~ Jim % ({0 (2)) — v(z)) ds = 0. (4.6)

Therefore £ (u,v) = 0 for all v € C% (M) and by density of C* (M) in H we prove
(ii).

(#41) = (i): Note that for all u € CX (M) and v € CL (M) it holds that for all
t>0,

t
(uo G, v)r2(m) — (U V)L2(m) = J (Vuo ¢s,v)p2(m) ds (4.7)
0
t
= J;J<VU=UO¢S_1>L2(m) ds. (4.8)
Since v o ¢! € H, we get that for all w € H and v e CL (M),
¢
(U0 Gt V)12 (my — (U V)12 (m) = J Ev(u, Vo qs;l) ds. (4.9)
0
Equation (4.9) implies that if (iii) holds for some u € H, then for all v € CL (M),
(U0 Gt V) 12(m) = (U, V)L2(m), and therefore that u is invariant. O

Remark 5. When condition (1) of Proposition 2.4 is satisfied, then for all u € H,
Vue L*(m) and u € H is invariant if and only if Vu = 0.

Proposition 4.10 proves that £V satisfies (3.35).
Let (£,H) be the Dirichlet form on L?(m) obtained by contracting (£,H) on
s

M using Proposition 3.12. To apply Theorem 3.15 we need to prove that (EN’, 7—7) i
regular.

Proposition 4.11. The Dirichlet form (EN,?-N[) is regular and possesses the local
property. Moreover, (€, H) is a contraction of (£%,H) for all k.

Proof. Assumption 4.9 ensures that (c‘j‘, 7—7,) is regular. By Lemma 3.16, (g', 7—7)
possesses the local property. Then, since for all & € H, uwow € H is invariant and
thus E*(wom,vom) = 0 for all ¥ € H, the contraction of (£7,H) is (€, H) for all
K. (]

Note that Assumption 4.7 ensures that the Dirichlet forms (£%,7) are conser-
vatives for all k (i.e. the life times of their associated Hunt processes are infinite
a.s.). Denote by A the infinitesimal generator of the semigroup associated to (5 , ’7’-7,)
Denote by H the mapping on M defined by ﬁ(%) = p(Z)H. Then Assumption 4.7
implies that H ow = H, H € D(A) and AH < A(1 + H), which implies that (£, H)
is also conservative.

By Theorem 2.2, for all x, there is X” a diffusion on M associated to £ and
X a diffusion on M associated to &. The processes w(X") and X are random
variables taking their values in C(R™, M ) equipped with the topology of uniform
convergence on compact sets. Our main result is

Theorem 4.12. Assume that
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o T(X{§) converges in law to Xo;

e For all k, the law of X} (resp. )~(0) has a density with respect to m (resp.
to m) and this density belongs to L*>(m) (resp. to L*(m));

* sup, E[H(Xg)] < .

Then, m(X[)i=0 converges in law to (X¢)i=0 as k — 00.

The proof follows usual technics: we prove first the tightness and then apply the
convergence of the finite dimensional distributions (proved in Theorem 3.15).

Proposition 4.13. {7(X"), k> 0} is tight in C(R*, M).

Proof. Note that, 7 being continuous, we have 7(M,,) is compact for all n.
To prove this proposition, we apply Theorem 9.1 of [8], which states that the

collection {m(X*), & > 0} is tight in C(R*+, M) as soon as for all T > 0,
lim supP[n(XY) ¢ w(M,) for some s € [0,T]] =0 (4.10)
n—0

and {&i o 7(X*), x > 0} is tight in C(R™,R) for all & € C.

Note that (4.10) holds when M is compact (and so (M) is compact). When M
is not compact. By applying the It6 Formula, Y,* := e M (H(X[f) + 1) is a positive
supermartingale. Set 77 = inf{t, H(X[") > n}. Then, 77 is a stopping time and

E[Yy] = E[YF, ] = E[Y i Irsrs] = (n + 1)e M P[T > 777] (4.11)

n

Thus

ME[H(XE) + 1
P[supH(Xf)zn]z]}D[T>Ts]<e [H(X§) + ]
t<T n+1

Using that sup,, E[H (X{§)] < +0, we get that

(4.12)

lim supP[sup H(X) > n] = 0.
n—w0 g t<T
Note that H(z) < n implies that m(x) € 7(M,,). Therefore (4.10) is proved.
Let e C. Then tion = mu € C?(M) < D(A) by Assumption 4.9, A%(Tio7) =
A o), and
t
M :=ton(X[) —uom(Xf) ff A(Wom)(XYF)ds (4.13)
0
is a continuous local martingale with quadratic variation given by
t
(M"Y, — J D@ o 7,1 0 1) (X5) ds. (4.14)
0
Fix T > 0. Using that % o m € C?, using Burkhélder-Davies-Gundy inequality, for
v>2andforall 0 <s<t<T,

E[(@on(X[) — o m(XO)] < Cyrlt — )3

where C, 1 is a constant depending only on «, 7" and on % o 7. Using Theorem
12.3 (and the remark that follows this theorem) of Billingsley [3], we get that {& o
7(X*®), k = 0} is tight in C(R*,R). This finishes the proof of the proposition. [

Proof of Theorem 4.12. We use Theorem 8.1 Chap. 2 of [3], which states that if
a family of laws of processes is tight and converges in the sense the finite dimen-
sional distributions, then this family converges. Tightness is proved in Proposition
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4.13. Convergence of finite dimensional distributions is proved in Theorem 3.15.
Therefore (w(X")) converges in law in C(R*, M). O

5. RANDOM PERTURBATIONS OF HAMILTONIAN SYSTEMS IN R?

In this section, we recover results from [9] and [2]. We noticed that the proof
of the regularity of the Dirichlet form £ in [2] is incorrect (in particular, there is a
mistake in the proof of density of continuous functions with compact support in the
domain of c‘j’) In order to correct this mistake, we had to modify the assumptions
on the Hamiltonian H.

In this section, we set M = R? and m the Lebesgue measure on R?. Let S be a
second order differential on R?, with S1 = 0 satisfying conditions (i), (ii) and (iii)
as in section 2.1.2. Denote by T its associated carré du champ operator. Let V{ be
a C! vector field on R%. We assume that (2.6), (2.7), (2.8) and (2.9) hold. Recall
that a sufficient condition for (2.7) to hold is that Vj is a bounded vector field.

Let (€,H) be the regular Dirichlet form on L?(m) associated to ' and Vp, defined
in Proposition 2.3. Then H = H!(R?). This Dirichlet form is associated to the
diffusion on R? with generator A = S + V5.

Let H : R? - RT be a C? function and set V = (=0, H, d,, H). We suppose
that |VH| s < o0 so that condition (1) in Proposition 2.4 is satisfied. Since divV =
0, Proposition 2.3 permits to define (£%, H'(R?)) the Dirichlet form on L?(m)
associated to I'" and Vg + sV for all k € R.

Note that VH = V10, H + V20,,H = 0. Set S the set of stationary points of V'
(or equivalently the set of critical points of H). We will assume that

e Assumption 4.7 holds and that the stationary points of V' are non-degene-
rate.

This assumption implies that S is locally finite. The vector field V' is complete and
generates a flow we denote by ¢ = (ét)rer. Assumption 4.7 implies that the orbits
of ¢ are compacts, and since divlV = 0, the measure m is invariant for this flow.

Our results improve the one obtained by Freidlin, Wentzell and their coauthors
(exposed in [9], Chapter 8) in the sense that, with our setting, the Hamiltonian H
needs only to be C?, S can be infinite and it is possible to add a drift V5. The
description of the limiting process is also easier with the framework of Dirichlet
forms.

In order to apply the results of Section 4, we need to construct a set M mappings

: M — M and D M - E satisfying Assumption 4.8. We then show that

Assumptlon 4.9 holds. With this in hand, the averaging principle of section 4 can
be used. In Section 5.5, we describe the Dirichlet form E.

5.1. Description of FE, the set of ergodic measures. The Poincaré-Bendixson
Theorem (Theorem 14.1.1 p.452 in [14]) states that the recurrent orbits of ¢ are
periodic, and thus that the support of an ergodic measure is a periodic orbit.

Let h > 0. Then H™'(h) = Usernyyi(h), where I(h) is a finite set, v;(h) is
connected and compact for all 4, and ~;(h) N ~;(h) = & if i # j. Then ;(h) is
a periodic orbit provided ~;(h) = S or v;(h) n S = . On the converse, if v is a
periodic orbit, then there is ¢ and h such that v = ~;(h).

Let v be a periodic orbit of ¢, with period denoted T’,. Note that there is 7 and
h such that v = v;(h). When T), = 0, then v = {2} < S and we set py := d,.
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When T7, > 0, for all z € v, the measure TL Sg” 4, (z) dt does not depend on x, and
ol
we denote this measure . Then E consists of all .y, with v a periodic orbit.

5.2. Construction of ]\7, 7 and p. The set M. For z € S, denote by F, the
connected component of {y € R? : H(y) = H(z)} containing x. Let F = UzesFy.
Then Q := F¢ is the union of all periodic orbits v, with 7, > 0, and there is
an at most countable partition (€2;);c; of Q into open connected sets. For i € I,
set m; := myq,, l; := inf{H(x) : v € Q;} and r; := sup{H(z) : v € Q;}. Then,
H (%) =]l;, [, with r; = +00 for at most one i € I. Note that H=(l;) n Q;  F,
for some = € S, and if 7; < +00, H (1) nQ; < F, for some 2’ € S. For h € [I;, 7],
set y(h,i) := H™'(h) n Q; and Ti(h) = Ty, then v(h,i) is a C* periodic orbit
when h €]l;,r;[ and T;(h) is the associated period. For v a C! curve and f a
bounded measurable function on -, denote by §v fdf the curve integral of f on ~.

Proposition 5.1. Fixie I.

(1) For all f € L'(my), §, fdm; = §" 8, . framdh-

de

(2) For all h€]l;,ri[, setting v = ’y(h,z), we have Ty, = §,Y v end
1 de
7, ]
(3) Forl; < h < k < r; and f a C'-function on Q;, setting Q?’k =N

“L(Jh, k[), we have

3€ fIVH|d¢ — § fIVH|d¢ = J . div(fVH)dm. (5.2)
7 (ki) y(hoi) k
(4) For all continuous function f on Q;, h— S'y(h 0 FIVH|dC is continuous on

i, vi[. If in addition f is bounded continuous on Q;\S, then this function
has finite limits at l; and at r; (when r; < o).

(5) For all C'-function f on Q;, h — §7(h7i)f|VH|d€ is C1 on |l;, 7, with
derivative at h given by:

Jﬁ FIVH|d¢ = 3@ div(fVH)——

v (h,) v (hyi)

o (de) = (5.1)

de

N2k (5.3)
Proof. (1) follows from the coarea formula. (2) follows from the change of variable
formula. (3) is a consequence of Stokes formula applied to the vector field U =
fVH. When f is C1, (4) follows from (3), and this can be extended to continuous
functions with a density argument. To prove (5), it suffices to use (5.2), the coarea
formula given in (1) applied to the right hand side of (5.2) and (4) applied to the

function %. O

A first consequence of Proposition 5.1 is that, for h €]l;, r;[
d VH de
—T;(h) = div| == | =—.
0= § o () o
v (h,i)

Set M := Uicr[ls, 7] x {i} (using the abuse of notation [I, +c0] = [I, +o0[) and
define the equivalent relation (h,) ~ (k,j) if (h,i) = (k,j) or if h = k € {l;,r;} N
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{ZJ, r;} and there is x € S such that Q; n F, and Q; n F, are both non empty. Set
M =M / ~. By abuse of notation, an (h,i) € M will be identified to its equivalent
class in M. Fori e 1, set E; =]l;,r;[x{i}. Then M = u;E; YV, with V being
the sets of the equivalent classes of (I;,7) and of (r;,4), for all ¢ € I. Then M is
a connected metric graph (see e.g. Hajri and Raimond [12]). The set of edges
is {E; : i € I}, the set of vertices is V and the distance d on M is such that if
(h, k) € [Li;73]?, d((h,9), (k, i) = [h — kI.

Construction of = and p. Let us define 7 : M — M by m(x) = (H(x),i(x))
where i(x) = min{i € I,z € Q;}. To construct p : M —E fixype E. If¥e V),
we set p(Z) = po. If T = (h,i) € E; for some i € I, set p(Z) the ergodic measure
associated to the periodic orbit y(h, ).

Proposition 5.2. ]\7, m and p satisfy Assumption 4.8.

Proof. By construction, Mis a locally compact separable metric space. Note that
x — i(x) is constant on ;. The fact that 7 is continuous is a simple consequence
of the fact that H is continuous and that for (z,y) € Q; x Q;, d(n(y),n(z)) =
|H(y) — H(x)|. Note that Proposition 5.1-(4) implies that Z — p(Z) is continuous
in F; for all ¢ € I. The set of vertices of M being at most countable, p is measurable.

It remains to check that pow(z) = P(z) m(dx)-a.e. Note that, for x € Q;, porw(x)
is ergodic and that x belongs to the support of pon(z), which is H=Y{H (x)} n ;.
This implies that p o m(x) = P(z) for all z € Q = U;erQ;. Since m(Q°) = 0, we get
that p o w(x) = P(z) m(dx)-a.e. O

Note that M is a treei.e. there is no self-intersecting closed path (or cycle) in M.
Each edge E;, i € I, is given an orientation by the function H. For v € V), a vertex,
set I ={iel (i) =v}, Iy ={iel, (ri) =v}and I, = [} U I . Choose
i1el, and set h, = [; ifv = (ll, i) or hy, = 1; if v = (r;,1). Remark that h, does not
depend on the particular choice i € I,,. For v e V, we define y(v) := U i)~vY(h, 1),
the connected level set associated to the vertex v. Set d(v) := |I,|, the cardinal of

the set I,,, which is the degree of v in the graph M.

Proposition 5.3. For i € I, set m;(dh) := Hym;(dh). Then, we have that
mi(dh) = T;(h)1y, »,(h)dh is a finite measure on [l;,7;] if r; < 00 and is o-finite
on [l;,o0[ if r; = o0.

Proof. Follows from Proposition 5.1. O

5.3. The space #H and Assumption 4.9. For a function f : M —>TRandic I,
define f; :|l;,ri[— R by fi(h) = f(h,i). Set m := mem. If f € L'(m), then
Sfdﬁ’b = Zlelsfldml Foriel and h E]li, T [, define

a;i(h) = J |VH|dC. (5.4)
v(h,i)

For (h,i) € E;, set a(h,i) = a;(h) and T'(h,i) = T;(h).

Lemma 5.4. Let f € H. Then, for each i, the map f; is weakly differentiable on
Ui, [ and we have that

1= [ o) aman+ X [ (@) Twan 69)
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Proof. The fact that f; is weakly differentiable follows from the fact that on €,
VH # 0 and form = f;o H. Now, since on Q;, V(fon) = (fi o H)VH, | fllgz =
[f o |l g1 (re) easily yields (5.5). O

Proposition 5.5. Set V; := {v e V: d(v) = 1}. A function f : M — R belongs
to H if and only if f is continuous on M\Vy, the mappings (fi, i € I) are weakly
differentiable, and || f| < 0.

Proof. This will be explained in the appendix. (I

For a measurable function f : M — R such that for all i e I , [ is differentiable
(or weakly differentiable), define a measurable function f’ : M — R such that

f/(ha Z) = fz/(h’)a ml(dh)_ae
Proposition 5.6. Assumption 4.9 is satisfied.

Proof. Let C be the space of all f € C’C(]\N@ such that f; € C?(]l;,r;[) for all i e T
and such that f’ and f” are continuously extendable by continuity at all v € V.
Then C' < {f : fore C2(M)} c H.

The fact that C is dense in CC(M ) follows from the Stone Weierstrass Theorem:
C is an algebra and it is a simple exercise to show that C separates the points in
M. This proves that 4.9-(iii) is satisfied.

Since C' < C’C(]W) ) 7—7, to prove that 4.9-(i) is satisfied, it suffices to check
that C is dense in L2(7). Note that m(V) = m(F) = 0. Let f € L%(m). Fix
0 > 0. Since Hf”;(%) = Duer If1E, F () < o0, there is a finite set J such that
IIf=>, ) < 0/2. Denote by n the cardinality of J. For each ¢ € J,

there is a function g; € C' with support in E; such that ||g; — fillpzmy < 6/(2n).

Then g := Y, 9i € C and || f = gl| 25 < 6/2 + nd/(2n) = 6.
The proof of 4.9-(ii) is more complicated and is given in the Appendix. O

5.4. Application of Theorem 4.12. Let (£,H) be the Dirichlet form on L%()
obtained by contracting (£, H) on M using Proposition 3.12. By Proposition 4.11,
(g’ , 7—7) is regular possesses the local property. Moreover, (EN’ , 7—7) is a contraction of
(€%, H) for all k, where £ = £+ kEY. Then we can apply Theorem 4.12, recovering
results of [9] and [2]

5.5. The Dirichlet form & and its generator. The aim of this sectlon is to give a
more comprehensive descr1pt10n of the limiting diffusion process X on M associated
to the regular Dirichlet form (8 , ’H,) by computing the infinitesimal generator of the
associated semigroup.

Proposition 5.7. For i€ I and h €]l;,r;|, set

a7 (h) = p(h,i)(20(H, H)), ci(h) = p(h,i)(VoH). (5.6)

2

Then, for (f,g) € H2,

Zf o} figiTi dh — ZJ ¢i fi9:Ti dh (5.7)

el iel
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Proof. Let (f,g) € #2. Then
E(f.9)=E(fomgon)
= Jl"(fow,gow)dm - fVo(fow)gowdm

:Z (L I(fioH,gio H) dmi_J

iel 22

_ ; <L T(H, H)(flg)) o H dm; — Li(VoH)(f{gz—) oH dmz‘)

VO(fz o H)gl o H dmz)

and then one can conclude using Proposition 5.1-(1), and the definition of p(h, ).
(]

Using the notation o(h,i) = o;(h) and c(h,i) = ¢;(h), Equation (5.7) can be
written in the shorter form:
~ 1 ~ ~
E(f,g9) = §fazf’g’dm—fcf’gdm. (5.8)
For i € I, set b; := %Ti(afTi)’ + ¢;. Since % is bounded continuous on
R?\S, Proposition 5.1-(4) implies that the limits o;f := limj_, 4 (0?7;)(h) and
o; = limpy,— 2(62T;)(h) (when r; < o0) exist and are finite. Moreover, if i € I}
with v € V such that d(v) = 1, then a = 0.

Proposition 5.8. A function f belongs to ’D(A) if and only if f € H and for all
iel,
(i) f! is continuous and is weakly differentiable;
(i1) If i e I} (resp. I ) with d(v) = 2, then f] has a finite limits at l; (resp. i if
r; < 0);
(iii) If i € I} (resp. I, ) with d(v) = 1, then limj_,+ o?T;f/(h) = 0 (resp.
limp, ., — 02T; f/(h) = 0);
(iv) Aif; := $02 fI' + b f] belongs to L*(m;);
and for allveV,
D ad flliH) = D) oy fi(rio). (5.9)
ielf i€l

Moreover, if f € D(A) and if ¥ = (h,i) € E;, then Af(h,i) = A; fi(h).

Proof. Let f € H be such that (i), (ii), (iii) and (iv) are satisfied. Then Af defined
such that on E;, Af(h,i) = A;f;(h), belongs to L?(m). Let now g € H n C.(M),
then

E(f.9) = _Zjlbi(Aifi)giTi dh + %Z[UfTifi’gi]zT:

el el
—[Gngan+ ¥ ow | X arsee) - Y al s
veV:d(v)=2 iely iel}

If (5.9) is satisfied, then £(f,g) = — S(Af)g di. Therefore £(f,-) is a linear form
on #H, continuous with respect to | - | 27y, which implies that f e D(A).



30 FLORENT BARRET AND OLIVIER RAIMOND

On the converse, let f € D(A). Then f e H and E(f,g) = (Af, g)r2(m for all
g € H. This implies that for alli € I, f; € H? _(Jli,ri]) and so f; satisfies (i) (choose
g€ C¥(]l;,r;[)). This also implies that for all i € T, «/_( o?T; f1) € L?(]l;, ri[), thus
o?T; f! is uniformly continuous on ]l;,r;[. Using the asymptotics of T; as h — [;
and as h — r; given in Lemma 8.4, it can easily be proved that f satisfies (ii), (iii)
and (iv). To conclude, since (i), (ii), (iii) and (iv) are satisfied, the fact that £(,-)
is a linear form on H, continuous with respect to | - |22y, implies that (5.9) is
satisfied for all v e V. O

Proposition 5.8 shows that the Markov process on M associated to & evolves as
a diffusion with generator A; on E; with reflecting boundary conditions at a vertex
v given by (5.9) with transmission parameters (Oéii)iEIv at a vertex v.

Proposition 5.9. Letve V and i€ I,. Then, for the diffusion on E; of generator
A;, v is an entrance boundary point if d(v) = 1 and is a regular boundary point if
d(v) = 2.

Proof. Let us fix hg €]l;,7;[. The 1-dimensional diffusion with generator A; on
1l;, [ has scale function u and speed measure p(h)dh given by

L}: exp ( Lk 2:2((85)) ds> dk = Lh % exp ( Lk 20_62—((5)) ds> dk,

(5.10)

o9 (s
p(h) = m = T;(h) exp (LO icg((s)) ds) . (5.11)

K2 3

£
>
S~—
i

Let us assume that v = (I;,7), we need to compute the asymptotics of the two
functions u and p as h — [;+. Since Equations (2.8) and (2.9) hold, Lemma 8.4
ensures that o27T satisfies the same asymptotics as a. Thus, as h — lj

o if d(’l)) = 1, Ug(h)Tl(h) ~ Co(h — ll) and Tl(h) ~ C1,

e if d(v) =2, 02(h)Ti(h) ~ co and T;(h) ~ c1|log(h — ;)]
where ¢y and ¢; are two finite positive constants. Note that by Stokes’ Theorem,

e(h) = — 3@ vo-ﬂde:LLhdiv(vo)(x)dx (5.12)

Ti(h) IVH] Ti(h)
7 (hyi)
where QF is the compact set enclosed by the orbit v(h,4). Since V; is a C! vector
field, by the same arguments as Lemma 8.4, ¢;(h)T;(h) = O(1) as h — [; and
furthermore, if d(v) = 1, ¢;(h)T;(h) = O(h — li).
This gives the asymptotics of u and p as h — [;: for some positive constants
6, Chs
o if d(v) =1, u(h) ~ cgln(h —1;) and p(h) ~ ),
o if d(v) = 2, u(h) ~ ¢f and p(h) ~ c}|In(h — 1;)|.
Therefore (see e.g. [5] pp. 369),
o if d(v) = 1, u(li+) = —o, § |u(h)|p(h)dh < +o0, and v is an entrance
boundary point;
e if d(v) = 2, u(l;+) is finite, Sli (u(h)—u(li+))p(h)dh < +00, and Sli p(h)dh <
+00, and v is a regular boundary point.
O
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6. AN EXAMPLE ON R?3

In this section, we set M = R? and m(dz) = eV®) dzx, where W e C%(R?). For
feC?*R?) and x € R?, set

Sf(x) = divim(Vf)(z) = Af(z) = (VW(2), Vf(2)). (6.1)
Then S is a symmetric operator on L?(m) and its associated carré du champ oper-
ator is given, for f € C*(R?), by I'(f, f) := |V f|?. Applying Proposition 2.3, there
is a unique (symmetric) Dirichlet form (€,H) on L?(m) associated I" and Vg = 0.
Moreover, H = H'(m). This Dirichlet form is associated to the diffusion on R?

with generator S.
Let V be the vector field defined for z = (1, x,73) € R3

223
V(I) = Tr1x3 . (62)
—25[:11:2

The flow (¢;)er generated by V leaves invariant the quantities |x|? and 23 — 3.

Suppose that W is such that

(i) W is strictly convex, i.e. HessW = p > 0;
(i) W(z) = W(||z|) for some function W : Rt — R*;
(iii) [e!V@P W@z < oo,
For example, one can take W(z) = (1 + ||z|?)%, with o > 2.

Condition (ii) ensures that div,,V = 0, and thus that the measure m is invariant
for the flow (¢:)ser generated by V. Note that Assumption 4.7 holds for the function
H defined by H(x) := |z|? = 23 + 2% + 23.

Conditions (i) and (iii) ensures that I' and V satisfy condition (3) in Proposi-
tion 2.4. Proposition 2.3 permits to define (£%,H) the Dirichlet form on L?(m)
associated to I and Vg + sV for all k € R.

This example is a variant of a model studied by Mattingly and Pardoux in
[21]. Their primary interest is the limit as k — o0 of the invariant measure of
the diffusion X* in R?® with generator £ (0%, + 03,) + xV. In order to obtain the
limiting measure, they prove the convergence in law towards a diffusion in Ri of
(w(XF),v(XF)) where u(z) = 223 + 25 and v(x) = 223 + 23 .

Significant differences exist between our models. In order to use the Dirichlet
form approach, we need a confinement potential W that the authors in [21] do not
need, and we require that the diffusion be uniformly elliptic (Equation (2.9)). In
[21], S = 0%, + 03, and the authors could not add noise on the z3-coordinate.

To avoid the use of a confinement potential W, one could also replace the vector
field V by Vy(z) := g(||z||)V () with a well chosen C! function g. Then, (iii) could
be replaced by the assumption that Vj is bounded ((1) of Proposition 2.4) and m
could be taken as the Lebesgue measure.

We slightly adapt their notations and computations to our framework.

6.1. Construction of M and w. The set of stationary points S is {1 = x5 =
0} u{ze =23 =0} U {zg =21 = 0}. Set

M1 = {LL‘ € RB\SZ T, > |$2|}; M3 = {LL‘ERg\S: T < —|£L‘2|};
My ={zeR)\S: x5 > |11]}; My ={xeR)\S: z3 < —|z1]}.
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Then, we get R® = u?_; M; and My, M2, M3 and M, are invariant for ¢.

Denoting 71 (z1, z2, x3) = (x2,21,x3) and ro(x1, 2, x3) = (—21, —x2,x3), r1 and
ro commute with ¢ (in the sense that r; o ¢y = ¢y or; for i € {1,2} and t € R). We
have that M2 = T‘1(M1), M3 = Tg(Ml) and M4 =T OT‘Q(Ml).

The set M. Set now

For i € {1,2}, define s; : R? — R? by s1(y) = (y2,y1) and sa(y) = —y. Then
51(01) = CQ, 81(03) = 04, 52(01) = Cg and 82(02) = 04. Set M = U;—l:lci. For
y e D :=[0,00[, we identify (y,y) € C1 n Cy and (—y, —y) € C3 n Cy with y. Set
also D* =]0, oo[ CF = C\{0,0} for i € I and C* = C\{(0,0)}.

We equip M with the distance d induced by the euclidean distance on each C;

(setting |y| := /97 +¥3):

ly — /| ify,y’eCruCyorify,y eCzuCy
d(y,y") == 4 ly = s2(4) if (y,y') € C2 x C3 orif (y,y') € C1 x Cy
ly —s10s2(y')|  if (y,9') € C1 x C5 or if (y,y') € Cy x Cy.

Recall that when ¢’ € Cs (resp. Cy), then so(y’) € C; (resp. Ca) and s10s82(y’) € Co
(resp. C1). Then, M = u;C; is a 4-pages book, with D being the binding. Set
I:={1,2,3,4}.

The function . Let us define 7 : R? — M by

\/JJ%-F?,\/JJ%-F?) if e My U Ms;

2 2 e —
\/x§+%,\/x§+%) if z € M3 U My.

m(x) =

We then have that

Proposition 6.1. The mapping 7 : R3 — M defined above is continuous. More-
over, for each i€ I, m(M;) = C;.

6.2. Description of F, the set of ergodic measures. We first describe the
orbits of the flow generated by V. For each i € I, let ®; : C; x [0,27[— w;M; be
the C''-diffeomorphism defined by

Dq(y,0) = (1 [y? — y3 sin? 0, y2 cos 6, /2ys sin 9) if (y,0) € ¢y x [0, 27[;
P2(y,0) =110 P1(s1(y), 0) if (y,0) € (?2 x [0, 2n[;
P3(y,0) = r2 0 P1(s2(y), 0) if (y,0) € Cs x [0, 2n[;
Dy(y,0) =11 0ry 0 D151 082(y),0) if (y,0) € Cy x [0, 27].

Then, for i € I and y € Cj, 7, := {®:(y,0); 0 € [0,2x[} is a periodic orbit living in
M;. We also have that for i € I, 70 ®;(y,0) = y for all (y,6) € C; x [0, 2x[, so that
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For i e I and (y,0) € C; x [0,2x[, set & = ®;(y,0). The Jacobian matrix of ®;
is,

Y1 Y2 sin® 0 _ y3 sin 6 cos @

1 T1 T
Jac(®1)(y,0) = | 0 cos 6 —yosinf

0 +/2sinf  +/2yscosh

and the Jacobian of ®; is Jy(y,0) = ﬁ+11” Similarly, the Jacobian Jo, J3 and Jy4
of &5, &3 and P4 are given by:

2 2 2
ol 0) = YV gy YRR gy V20
T2 KA T2
Therefore for all f € L*(m),
fdm = ZJ fo®i(y,0)Ji(y,0)[e WD dyds. (6.3)
R3 . JC;ix[0,27)
Set m := mym and for ¢ € I and y € Cj, set h;(y) = gﬂ |J:(y,0)|df. Then, (6.3)
yields that
4
Ady) = ) L, ()haly)e™ 0D dy. (6.9
i=1

Let us denote, for ¢ € [0,1],

/2 46 /2
K(t) = J ———— and E() = J V1 — 12 sin” 0d6.
0 \1—12sin%0 0

Then
hi(y) = 4v2y K (22 )5 haly) = 4V2p| K (2 )
ha(y) = 4vV2 K (2 )5 haly) = V2| K (2

For all y € M \D, let v, be the probability measure on R* defined by
1 27

Vy(f)zm .

Vy = 6(y170)0) if Yo = 0 and Vy = 5(07y270) if Yy = 0.
Then (Proposition 7 in [21]), the set of ergodic measuresis E = {05,z € S}u{yy :

fo®i(y,0)|Ji(y,0)|d0 ifyeCy,

y e U, CZ} Moreover if y € |, C; converges to (yo,%0) € D, then v, narrowly
converges to %(5(070)\@1}0) + 6(0,0,—+/3yo)) (Proposition 6 in [21]).

For f € L*(m), it may be useful to use the change of variable formula (6.3)
written in the form

| f@mids) = [ v, (pma). (6.5)

6.3. Assumptions 4.8 and 4.9. It can easily be checked that Assumption 4.8 is
satisfied with the map p : M — FE defined by

_ ifye M\D 6.6
p(y) { 5(070)0) if RS D. ( )

Proposition 6.2. Assumption 4.9 is satisfied.
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Proof. Let C be the set of all f € CC(M) such that 0 ¢ Supp(f), f is C2 on C; for
all 7 and such that Df(y) and Hess(f)(y) are continuously extendable at all y € D.

If f € C, then fore C2(R3). Indeed, f o is continuous with support included
in R3\{x; = 23 = 0 or 22 = 23 = 0} and since the mappings = +— Jac(r)(z) and
x — Hess(m)(x) are continuous on R3\{z; = w3 = 0 or 29 = z3 = 0}, we have that
fome C3(R3).

TItems (i) and (ii7) of Assumption 4.9 can be proved with this set C in the same
way as in the proof of Proposition 5.6. The proof of item (i) of Assumption 4.9 is
more complicated and is given in the appendix. O

6.4. Application of Theorem 4.12. Let (£,H) be the Dirichlet form on L2()
obtained by contracting (£, H) on M using Proposition 3.12. By Proposition 4.11,

(g’ , 7—7) is regular possesses the local property. Moreover, (EN’ , 7—7) is a contraction of
(€%, H) for all k, where £% = £ + k€Y. Then we can apply Theorem 4.12.

6.5. The Dirichlet form € and its generator. The aim of this sect1on is to give a
more comprehensive descr1pt10n of the limiting diffusion process X on M associated
to the regular Dirichlet form (5 H) by computing the infinitesimal generator of the
associated semigroup.

Recall that m(dz) = eV(®) dz, that the carré du champ is given by I'(f, f) =
|V f|?, for fe C(R3), and that Vy = 0. Recall also that, H = H'(m).

Proposition 6.3. Forye .., Ci, set a(y) := vy (Ve @ V). Then

iel

J a* o fosg div,  for all (f,g) € H. (6.7)
M 1<k e<2

Proof. Let (f,g) € H2. We get

5(f,g)=JF(fo7r,go7r)dm=J Z (Vwk-Vwé)((ﬁkfﬁgg)ow)dm. (6.8)

1<k, <2
Then (6.7) follows from the change of variable formula (6.5). O
The matrix a is given in the Appendix (Equation (8.6)) and takes the form:
11 vy(23) 12 21 vy(23) 22 vy(23)
a(y)=1-—=—"2% a“(y)=a =——"2 o (y)=1-—=22

As y goes to (yo,yo) € D, using the remark at the end of section 6.2, v,(x3)
converges to 2y2. Thus a'l, a'? = a?! and a?? all converges to %

For y € M, set W(y) := W(|ly|) and for k € {1,2}, define b* : | J
that for each i € I,

el C’Z — R such
= Z h;lewal(hie_wafl). (6.9)
1=1,2
Let f: M — R. Forie I, set fi == fic,- For y € 0C¥, set n;(y) € R* the unit
outward normal vector at y.
For y € C%, set t(y) = {l2l2l ) = |y| and 6(y) = arctant(y). Then

[yalvlyz2|”
(t(y), 7(y),0(y)) € [0,1]x]0, 0[x[0, w/4]. Note that the mapping y — (r(y),6(y))
is a C1-diffeomorphism from C; onto ]0,0[x]0,7/4[. As noticed in the appendix,
for ¢ € I and y € C, the eigenvalues of a;(y) are 1 and A(t(y)). For 0 € [0, 7/4], set




AVERAGING OF STOCHASTIC FLOWS AND CONVERGENCE OF DIRICHLET FORMS 35

Ao = A(tan @) and hy = 44/2K (tan®)sinf. Then, using the coordinates (r,0) on
Cy, mi(dy) = her?e=V(drdf and for (f,g) € H?,

/4
TR | J (a fidvgi+ 0 aefiaegi) hor?e W) drdo.
el

For t € [0,1] and 0 = arctant, set ny(t) = (—siné, cosh), na(t) = (cosd, —sin ),
n3(t) = —ny(t) and na(t) = —n2(t). Note that if i € I and y € D*, then n;(y) =
nz(l)

For i € I, y € C; and f such that Vf; is defined at y, set &, f;(y) = v - Vfi(y)
for all v € R?. Note in particular that dgfi(y) = 0, 1) fi(y) (with ¢ = (y)) and
Orfi(y) = Ovfily), with v = 2.

For (i,t) € I x [0,1], set D! := {y € C; : t(y) =t} and denote by p! the isometry
between D and D!.

Proposition 6.4. A function f belongs to D(A ) if and only if fe H and

(i) For all i € I, f; € H2 (Ci) and Aifi := Dicnicr W0 Si + Dy 0 V¥ Ok fi
belongs to L?(;);

(i) For all i € I, we have that as t — 1, (Op,)fi) ©
L2(e=Wdr). Denoting this limit 0, f;, we have:

Do fi=0. (6.10)

el

pt converges weakly in

Moreover, if | € D(/I) and if y € C;, then Af(y) = A;fi(y).

Proof. Suppose first that f € ’D(A) Then by definition, f € H and there exists
u = Af € L?(m) such that for all g € H,

E(f.g) = —{uy g L2 (6.11)

(i): Fix some i € I and an open set B € C;. Then (6.11) implies that for all
gi € H}(B), we have that

f (a;ﬂgakfiaégi)hie_w dy = —f uigihie™" dy. (6.12)
B B

Since h;e™ al € Cl(Ci) and is elliptic, we have (following the proof of C} p185 in
[6]) that the restr1ct1on of fi to B belongs to H?(B). This shows that f; € HIOC(C’ )

and that u; = 35, by e ﬁl(h e a¥* 0, f;). This proves (i).
(i) : Forie Tand 0 < s <t < 1set C7":={yeC;: s <t(y) <t}. We have
that for all g € H,
5(f, = lim ZJ (a; Zﬁkfiaggi)hie_w dy.

(s,t)—(0,1)

Using on each C; the polar coordinates (r,6), setting 6; = arctans and 6, =
arctant,

o0
| . (@0 ongme Wdy—J | (arfiaTgiN—ﬁaefiaegi) hore™ ) drdp.
ot 0 r
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Integrating by parts, we obtain that for all g € ﬁ

ZJ (a¥0n fi00gi) hie Wdy— ZJ uigihie” Wdy (6.13)

el el
+ /\92 h92 ZJ 09f1 gi € Wir) dr (614)
el
- /\91h91 ZJ aﬁfz gi € W dr. (615)
el

Since
lim f uigihie_w dy = u, g)r2(m),
<s,t>~<o,1>; ot (s 9712

the equality (6.11) implies that both (6.14) and (6.15) converge to 0. Using Lemma
8.6, we get that limg_, /4 Aehe = 4. Hence, (7i) holds.

Suppose now that f € H is such that (i) and (ii) are satisfied. Let g € C,.(M )m?—[
As in the proof of (ii) above, we integrate by parts. Since (#) is satisfied, (6.14)

converges to 0 as t — 1, and since g € C.(M ) (6. 15) converges to 0. Therefore,
(6.11) holds for all g € Co(M) ~H and since C,(M) nH is dense in 7, (6.11) holds
for all g € H. (|

When f € D(/T), using the polar coordinates (r,8), we have for all i € I,

Aifi =120, (12700, ) + (o) 3o (he oo )
2 A
=g (2w ) ok + 28 [dBafi 4 botos).

where bg := dg log(Aghg). Note that as 6 goes to 0, then bg ~ 6~ and as 0 goes to
T by ~ —log(m/4 — ) and \g ~ m.

7. AN AVERAGING PRINCIPLE FOR STOCHASTIC FLOWS

In Section 4, for all k, X" is a diffusion in a manifold M with generator A" =
A+ kV, with V a vector field, and we have proved the convergence in law as Kk —
of m(X*) towards a Markov process X in M, where 7 : M — M is a measurable
mapping determined by V.

We extend in this section this result to the convergence of K" the stochastic flow
of kernel (SFK) solution to the following SDE on M

K f(a J K, (W f(du)) f Kl (z)du, (7.1)

where W is a vector field white noise of covariance C' (see Section 5 in [17]). The
main result of this section is Theorem 7.12 which states that K* converges in law (in
the sense of the finite dimensional distributions) to a stochastic flow on M , where
Iz'gtf(%) = p(@)K{,(f om) (recall that p(Z) is an ergodic probability measure for
the vector field V).

The law of a SFK is described by a consistent and exchangeable family of n-
point motions, which can be a system of n particles solving a given SDE. Using
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the framework developed in Section 4, we prove that the n-point motion of K*
converges to the n-point motion of I}, a SFK on M.

In Section 7.1, the one point motion (X*) of K* is described. From Section 7.2
through 7.5, we recall the notion of the covariance for a vector field valued white
noise on M and define the n-point motion of K*. In Sections 7.6 and 7.7, we
apply Theorem 4.12 to prove the convergence of the n-motions, and therefore to
prove Theorem 7.10. In Sections 7.8 and 7.9, we recall the definition of a SFK and
use Theorem 7.10 to prove Theorem 7.12. We finish this section by revisiting the
Examples of Section 5 and Section 6.

7.1. The one-point motion. We use the framework of the Section 4. That is :

e M is a smooth oriented Riemannian manifold and m € M, (M) is equiva-
lent to the volume form on M, with a C' density.

e [' is a carré du champ operator associated to a second order differential
operator S, symmetric on L?(m), as in section 2.1.2.

o 1y and V are Cl-vector fields.

We suppose that Vj satisfies (2.6) and that there is a measurable function v : M —
R such that |Vo f|2+|V f|? < v?T(f, f) and that one of the three following conditions
is satisfied
(1) ve L*®(m).
(2) For some g > 2, v € L™(m) for all n = 1, m is probability measure and
(T, m) satisfies a Sobolev inequality of dimension ¢ > 2.
(3) SeA”Q dm < oo for all A > 0, m is a probability measure and (T', m) satisfies
a logarithmic Sobolev inequality.

Then Proposition 2.4 implies that Vj satisfies (2.7). Applying Proposition 2.3, set
(€,H) the Dirichlet form on L?(m) associated to I and Vj.
We suppose that V is complete and that

e m is invariant for the flow (¢.) associated to V, i.e. div,,,V = 0;

o fog,eH forall feCP(M)andall teR.
For all k € R, define the bilinear form £% := £ + k€Y, with £V the antisymmetric
form defined by (4.4). The vector field V satisfies (2.7) and by Proposition 2.3, it
holds that (£%,H) is a regular Dirichlet form on L?(m), for all k € R.

We denote by A (resp. A*) the infinitesimal generator of (T3) (resp. T}*) asso-
ciated to &€ (resp. to £¥). Then, for all &, it holds that A and A" have the same
domain (i.e. D(A®) = D(A)) and A" = A + kV. Note that CL (M) c D(A) < H,
and for fe CP(M), Af =(S+W)f.

We suppose that Assumptions 4.7 and 4.8 are satisfied. The results of section
3.5 are applied with 7 : M — M. Define H as in (3.33), set M = mxm a measure
on M. Finally, we suppose that Assumption 4.9 is satisfied.

7.2. Vector field valued white noises.

Definition 7.1 (Definition 5.1 in [17]). C is a covariance function on the space of
vector fields on M, if C' : T*M x T*M — R is a symmetric map whose restriction
to Ty M x T M is bilinear and such that for any n-uples (§1,...,&,) € (T* M),

Y&, &) = 0.

.3
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For (f,g) € CH{(M) x CL(M), define C(f,g) : M x M — R by C(f,9)(z,y) :=
C(df (x),dg(y)). The covariance C is assumed to be continuous in the sense that
C(f,g) is continuous for all (f,g) € CL(M) x C}(M).

In Definition 5.3 of [17], a vector field valued white noise of covariance C is
defined as a two-parameter family W = (W, s < t) satisfying (b) and (c) (with
K replaced by W), such that for s <t < u, Ws,, = Wy + Wy, and for all s < ¢,
{Ws4,6),& € T*M} is centered Gaussian with covariance function given by

EKWS,U €><W57t7 §/>] = (t - S)O(f, 5/)7 for &, 51 e T*M. (72)
Following Section 1 in [18], the covariance C' can be written in the form C =
>k Uk ® Uy, with (Uyg)i a family of vector fields. Thus, a vector field valued white
noise W of covariance C' can be constructed out of an independent family (W*);
of standard white noises by W = Y, W*Uj.
Let C be a continuous covariance such that C is dominated by the carré du
champ T" in the sense that

C(f, /) z) <T(f, f)(z), for all fe CY(M) and z € M. (7.3)

When (7.3) is an equality, we will say that there is no pure diffusion, and that there
is a pure diffusion otherwise. We will say that there is a uniformly pure diffusion if
there exists § > 0 such that

C(f, f)(z,z) < (1 —=8)T(f, f)(x), for all fe CY(M) and z € M. (7.4)

7.3. The generator A%, For x € M", we identify T,,, M and T M respectively
to linear subspaces of T, M™ and T M™. For f € CX(M™) and x € M™, let d, f(x)
be the restriction of df () to T, M. Then d; f(x) € T M and df (z) = >, d; f(x).
For u € T, M and £ € T*M, denote the dual pairing (u,§) := &(u) or, in local
coordinates, (u,&) = Y., u*é;.

For n = 1, let A(™)% be the second-order differential operator on M" defined by
(with A, = A+ kV)

AL () = 3 Afi(w) [ | fulan) + 3 O fi)@iszy) [ fulww)s  (75)
i k#i i#j ki,

for all f € C2(M™) of the form f(z) = [[;_, fi(x:), with f; € C2(M).

Set A = A0 and note that AW+ = AM 4 xV ) where V(™ is the
complete C'-vector field on M™ defined by

n

VO f(x) = Y (V(w), di f (), for feCPM™), (7.6)

i=1
For 1 < i,j < n, define did; f(z) € T;; M ® T;jM. Again, we identify 7" M ®
T M to a linear subspace of T*M™ @ T:*M™. Then the Hessian of f is d*f(z) =

2 did; f ().
The covariance function C can be extended to a function
c: |J mMeTiM >R (7.7)
11,I2€M

Then, for f € CX(M?), one can define C'f(x1,72) := C(didaf(z)). For i # j,
define C; j : U, TM T} M — R by

Cij(d*f(x)) = C(did; f(2)), for f e CL(M™). (7.8)
In the following, we set C; ; f(z) := C(d;d; f(x)).
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Lemma 7.2. For fe CP(M) and x € M™, we have

INgE

AW f () = N (Aif (@) + k(V (), di f(2)) + D) Cij f () (7.9)

1 i#]
with A; f such as A; f(x) = Afi(w:) [ [40; fu(zk) when f can be written in the form
f(z) = HZ:I fr(@r).

Remark 6. Consider the case M = R%. Let V be a vector field on R%. Let (Uy) be a
family of vector fields such that C = £ 3, U, ®Uy, suppose that I'(f, g) = 3V f-Vg
and let m be a measure absolutely continuous with respect to the Lebesgue measure
on R?, with density denoted e="V. Suppose that the assumptions given in subsection
7.1 and suppose that C(f, g)(z,z) = (1 —€*)T'(f,g)(z). Then A = LA+ Vy — VW.
and A(™-* is the infinitesimal generator of the diffusion X = (X1,...,X,,) on M"
solution of the SDE

[

dX;(t) = edB;(t +Zw; ENAWE ) + (Vo — VW + 6V)(X;(t))dt  (7.10)

where (B;); and (W*) are independent families of independent Brownian motions
respectively in R? and in R.

7.4. Integration by parts formulas and the carré du champ I'™. A C'-
vector field U on M™ can be written in the form U = Y | U;, where for 1 <i <n
and x € M™, U;(x) € T, M is defined by

(Ui(x),d; f(z)) = (U(x),d; f(x)), for feCH(M™). (7.11)

Set U; f(z) := (U(z),d; f(z)). Fixing z;, j # 4, U; can be viewed as a vector field
(depending on x;, j # i) on M. One can define divergence operators d;, 1 <14 < n,
depending on m, by:

;U = div,nUs. (7.12)

We then have the following integration by parts formula, which is a direct con-
sequence of (2.1):

Lemma 7.3. for f,ge C(M"™) and 1 < i < n,

Uif, @r2(meny = =, Uig)L2(meny — fg(8:U)dm®". (7.13)
M'n.
Note that ], ; = div,,en, and we obtain the integration by parts formula (2.1)
on M™ by taking the sum in .

To the vector field V on M, define vector fields V;, 1 <1i < n, on M™ such that
Vi(x) =V (x;) € Ty, M < T, M™.

When the covariance function C' is C* (i.e. C(f,g) € CY(M?) for all f,g €
C*(M)), the vector fields on M™, §;C; ; and §;C; ;, are well-defined. For i # j,
note that 61'01')]‘(,@) = 510(:@,9@) € T%M and 6jCi7j(£L') = 520(551'7%‘) € T%M
Note also that 6;0;C; j(z) = 0102C(xi, z;) = 0102C(z;, x;) depends only on z; and
x; and is symmetric. In the case where 6;C; ; = 0 for ¢ # j, the covariance C' will
be said m-divergent free. Note that in this case the stochastic flow generated by a
Brownian vector field of covariance C' preserves the measure m.
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Writing C' = . Up ® Uy, so that C; j(zs, ;) = >, Ur(xi) ® Ug(x;) and setting
Dk = diVmUk,

61'Ci7j($) = ZD’“(IZ) Uk(,Tj) € ijM, (714)
5,Ci ;(x ZUk ;) Di(z;) € T, M, (7.15)
6:0;Ci j(x ZDk ;) Dy (x;). (7.16)

The integration by parts formula yields

Cijif,@)r2meny = —f C(dif,djg)dm®" —{(8;Ci ;) f,9)r2(men) (7.17)
M’Il

Lemma 7.4. Assume that C is C'. Then, for f,ge CX(M"),

~(AWf, g 12(men) = f PO (f, 9) dm®" — (Vg™ f, 9) ra(men) (7.18)
with
L™ (f,9) = Y. T(dif,dig) + Y C(dif,d;g), (7.19)
i=1 i#]
Vot (@) = VE (@) + 3 (Volwi), dif (@) (7.20)
i=1

where V( — ZH&] 0;C;.5 is a vector field on M™.

Proof. Recall that A™ f can be written in the form
ADJ@) = 335 @) + (ol df @) + D Coaf @) (721

i=1 1#]

The operator S; are symmetric in L?(m®"), and
*Z<S £, 9L (mem) Z J T(d; f, dig) dm®". (7.22)
Using (7.17), we get that

=SNG 2 meny = f S Cdif, dig)dm® — (VS £, 3 pameny (723

i#] 1#]

and this implies the lemma. 0

Lemma 7.5. Suppose that C is such that there is a uniformly pure diffusion, i.e.
(7.4) is satisfied with § > 0. Then for all f € CX(M™),

LM (f, f) = 5Zrdf,df) (7.24)
=1

In particular, if T is uniformly elliptic, i.e. satisfies (2.9), then '™ s also uni-
formly elliptic.
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Proof. This simply follows from the following calculation

n

TOVf, f) = > (O(dif,dif) = C(dif,dif)) + Y, Clds f, ds f) (7.25)
i=1 ij
Z (dif, dif), (7.26)
where we have used in the last inequality (7.4) and that C' is non negative. (Il

7.5. The Dirichlet form £(")* associated to I'™ and VO(") + £V, From now
on, we assume that there is a uniformly pure diffusion, i.e. (7.4) holds for some
0 < § < 1. We also suppose that C is C?, that there is a constant ¢ < oo such that

|(02C (1, 22), df (1))|* < eI'(f, f)(x1), for all z € M? and f e CP(M). (7.27)
and that
H5162CHOO < Q0. (728)

Remark 7. Suppose that T' is uniformly elliptic, i.e. that (2.9) holds and that
C =Y, Us®Uj, with (Uy)y, a family of C'-vector fields. For all k, set Dy, = div,, Uy.
Then, (7.27) and (7.28) are equivalent to the existence of a finite constant ¢ such
that

618,C 2 Di(z)2 < ¢ forall z e M. (7.29)

Condition (7.28) is simply obtamed by using Cauchy-Schwartz inequality and (7.27)
is obtained by using also (7.3) and (2.8).
Lemma 7.6. T(™ and V" satisfy (2.6) and (2.7).
Proof. We compute
lem®nV0 25 Vo n) ZlemVO x;) Z 0:0;Cy (i, x5)
= nep —n(n — 1)”61520”00 > —0 .

and (2.6) is satisfied.

Recall that there is a measurable function v : M — R such that (Vof)? <
v2(f, f) for all f € C1(M). To check (2.7), we use Proposition 2.4. For all
feCHM™), we have

n 1
Vo fla) = Y (Volwi), dif (1)) — 5 35(8;C (i, x), dif ().
i i#j
and so for some constant K,

by
<K, (21;2( +nc> (ZI‘ dif,dif)(z ))
J
<ol (ff)
with v, (z) = (K0~ 1)"/? (Z] vi(zj) + nc) 2 and using Lemma 7.5 for the last

inequality.
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Therefore, if condition (1) in Section 7.1 holds, then v,, € L®(m®") and (2.7) is
satisfied by I'™ and Vo(n).
Suppose now that I and Vj satisfy condition (2) in Section 7.1. By tensorization,

we have the following Sobolev inequality of dimension ng (see Section 6.5 in [1]):
For all f € CP(M™),

112 e () < Anll FIZ2(m@ny + Cn f Y T(dif,di f)dm®",
=1

with p, = %, A, € R and C, > 0. Lemma 7.5 then implies that ('), m®»)
satisfies a Sobolev inequality of dimension ng. Since v € L™¥(m) and since m is a
probability measure, v, € L™(m®") and (2.7) is satisfied by I'™ and VO(").
Suppose finally that T" and V} satisfy condition (3) in Section 7.1. By tensoriza-
tion, we have the following logarithmic Sobolev inequality (see Section 5.2.3 in [1]):

For all fe CP(M™),
Bntyon (%) < 20 | 3 Dld:f,def)m® + Dol
=1

with C,, > 0 and D,, > 0. Lemma 7.5 then implies that (I'™) m®") satisfies a
logarithmic Sobolev inequality (with constants C,,0~* and D,,). Since § M dm < oo
for all A > 0, {e*ndm®" < o and (2.7) is satisfied by T'™ and V™. O

Applying Proposition 2.3, set (£ #(™)) the Dirichlet form on L?(m®") as-
sociated to I'™ and VO("). Note that H(™ = #®. Note also that when C is
m-divergent free and when V = 0, the Dirichlet forms £ are symmetric for all
n.

The vector field V(™ is C! and complete. If ¢ denotes the flow generated by V.
The flow generated by V(") is ¢ := ¢®* and m®" is invariant by ¢("). As for
VO("), it can be checked that T(™) and V(") satisfy (2.7) and that f O¢§") € H®" for
all fe CP(M™) and all t € R.

Still following Section 4, one defines the Dirichlet form (€)% H®") on L?(m®"),
with £(r = g0 4 ggV™,

7.6. Assumptions 4.7, 4.8 and 4.9. It is straightforward to check that Assump-
tion 4.7 is satisfied with H™ defined by H™ (z) = 3" | H(x;).

Denote by E (respectively E(™) the set of ergodic probability measure of the
flow ¢ (respectively ¢(™). Denote by Z (respectively Z(™), the o-field generated
by the invariant sets of B(M) (resp. of B(M™)) and completed with the negligible
sets of B(M) (resp. of B(M™). Note that Z(™ may be different from Z®", the
n-product of one point invariant o-field, as is shown in the following example:

Example 4. Let V be the vector field on M := R? defined by V (z1,22) = (—22,71).
The orbits of the flow ¢ generated by V' are the concentric circles with center (0,0).
All orbits have the same period T = 2mw. In this case, I is generated by the orbits
of ¢ and when n = 2, T3 s generated by the sets A, po = {(x,y) € M? :
(z,y) = (re®, Re?®*)) with 0 € [0,27]}, where (r,R,a) € [0,00[?>x[0,27[. The
set E? consists of uniform measures on A, g.o and are not product measures. In
this example, one can take M = R, and M? = {(r,R),0<r<R}xS!'# (]W)2
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Recall that Assumption 4.8 is satisfied by V, i.e. there are 7 : M — M a
continuous mapping and p : M — E a measurable mapping such that P := por is
a conditional regular probability with respect to Z and m.

We will suppose that the following assumption is satisfied:

Assumptions 7.7. m®"(dx)-a.e., ', P(z;) is ergodic.

Remark 8. Note that the converse of this assumption is always true: for any p €
E(™) an ergodic measure, the marginal projections (pi),i =1,...,n of p defined by
pi(A) = p(M*~! x A x M%) for A € B(M) are ergodic measures. Assumption
7.7 entails that essentially all ergodic measures for ¢ are products of ergodic
measures for ¢.

A measure p is said weakly mizing for the flow (¢); if for all f, g e L?(u)

lim —J |(f 0 ber @120 — (f)(pg)| ds = 0. (7.30)

Every weakly mixing measure is ergodic. We have the following lemma.
Lemma 7.8. If P(z) is weakly mizing m(dx)-a.e., then Assumption 7.7 is satisfied.

Proof. Tt is easy to check that if y1 for a flow ¢! on M; and s for a flow ¢? on
M, are weakly mixing then pu; ® po is weakly mixing (and thus ergodic) for the
flow (¢ ® ¢7); on My x Ms. The lemma follows by repeated applications of this
property. (I
Remark 9. Note that if (¢¢(z)): is periodic then P(z) is ergodic but not weakly
mixing. For (z1,...,2,) € M™, if each (¢:(z;)): is periodic with positive minimal
period T;, then ®" 1P(z;) is ergodic if and only if the periods (T4,...,T,) are
rationally independent.

Lemma 7.9. If Assumption 7.7 is satisfied, then Assumption 4.8 is satisfied with
M = (]W)n 7™ = 781 and p™ : M™ — EM™ q measurable such that MmO (d7)-
a.e., p™ () = @1 1p(T:).-

Proof. Note first that Z®" = Z("), Indeed, if A € Z"), then 14 = E,,@n (14]Z)
P ()(14). Thus since the latter is I®" measurable, we have that 14 is I®”
measurable and A € Z®". The inclusion Z®" < Z(" is obvious.

Let N = {Z € (]\7)” : @, p(¥;) is not ergodic}. We have that (7(™)~1(N) =
{ze M™: Q" pom(z;) is not ergodic} is negligible. Thus m®*(N) = 0. Let us fix
o € E™ and define p(™ by letting p™ (%) = po for ¥ € N and p(™ (Z) = @7_,p(F;).
Then p(™) : M" — E(™ is measurable.

Let us now prove that P(™ := p(™ o 7(") is a regular conditional probability
measure with respect to Z(® and m®". Recall that Z(") = Z®"  Therefore, it
suffices to prove that

(P f,g)12(meny = {f, 9)12(men) (7.31)
for all f = @™, fi and g = ®"_,g;, where for all i, f; € L?(m) and g; € L*(m)
is Z-measurable. Since (P f, Pr2meny = [ (Pfi,gi)r2(m), We easily prove
(7.31). O

Define H™ as in (3.33) and m™ = 7 m®". Then H™ = H®" and m™ =
m®". Then it is straightforward that Assumption 4.9 is satisfied by H(™ and m(™,
by taking C™) the vector space spanned by {®F_, f; : with (fi,..., fn) € C"}.
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7.7. Application of Theorem 4.12. Let (5(”),7-7@") be the Dirichlet form on
L2(Mm®") obtained by contracting (€™, H®") on M™ using Proposition 3.12. By
Proposition 4.11, (5 (), 7—~[®”) is regular and possesses the local property. Moreover,
(EM) HO) is a contraction of (EM-* HE) for all k.

By Theorem 2.2, for all &, there is X(™:* = (X1 .. X™*) a diffusion on
M™ associated to £+ and X = (X!, ... X" a diffusion on M™ associated to
EM_ The processes 7™ (X (M) = (x(X1F), ... 7(X™*)) and X are random
variables taking their values in C'(R*, M ™) equipped with the topology of uniform
convergence on compact sets. Theorem 4.12 implies that

Theorem 7.10. Assume that
o (™) (Xé")"{) converges in law to )N(én);
e For all K, the law of Xén)"/" (resp. Xén)) has a density with respect to m®™
(resp. to m®") and this density belongs to L?(m®™) (resp. to L*(m®m")).
e sup, E [H(")(Xé")’“)] < 0.

converges in law to (Xt(n))tzo as K — 0.

Then, (77(") (Xt(n)ﬁ))tgo

7.8. Consistent and exchangeable family of Dirichlet forms. For n > 1, let
Sy, be the group of permutations on {1,2,...,n}. For o € S,, by abuse of notation,
we denote by o : M™ — M™ the mapping defined by o(x); = x,(; for all i. Denote
by II,, : M™**t — M™ the mapping defined by I, (z1,...,2n51) = (T1,...,Tn).
We will say that a family of regular Dirichlet forms (£, H() on L?(m™) is
consistent and exchangeable if (setting 7>,§Z) the set of probability measures on M™
absolutely continuous with respect to m("))
(1) Foralln =1 and 0 € S,,, oxm(™ = m( and £ (foa,goo) = EM(f,g)
for all f,ge H™.
(2) Forallm > 1 and pi,41 € P(SZH), = (IL) s pint1 € Pég) and if X (D) ig
a Hunt process associated to (€D H(+1) with X(g"H) distributed as
pni1, then X =TT, (X (®+1)) is a Hunt process associated to (£, H (™)
with Xén) distributed as .

Remark 10. If for all n > 1, the semigroup associated to (£, H (™)) can be modified
into a Feller semigroup P, then the family of regular Dirichlet forms (£, #(™)
on L?(m(™) is consistent and exchangeable if and only if the family of Feller semi-
groups (P(™),>; is consistent and exchangeable as defined in [17].

By construction, the family of regular Dirichlet forms (£, H()) on L?(m®")
defined in Section 7.5 is consistent and exchangeable. Moreover if I' is uniformly
elliptic, this family is associated to a consistent and exchangeable family of Feller
semigroups.

Theorem 7.10 implies that the family of regular Dirichlet forms (g ("),7-7(")) on
L?(m®") is also consistent and exchangeable.

7.9. Averaging of flows. Recall first the definition of a stochastic flow of kernels
on M, a locally compact metric space, as it is defined in [17]:

Definition 7.11 (Definition 2.3 in [17]). On a probability space (€2, A, P), a family
(Ks,t, s < t) measurable mappings from M x £ onto P(M) is called a (measurable)
stochastic flow of kernels on M (SFK) if for all t € R, Ky (z,w) = d, and if
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(a) Forall s <t <wand x € M, P-as. K,u(x) =§,, K¢ (z,dy) Ky o (y).

(b) For all s <t, K54 and Ko ¢—s have the same law. (stationarity)

(c) For all tg < t1 < --+ < ty, the family {K;, ,,1 < i < n} is independent.
(independent increments)

(d) For all f e Co(M), (s,t,x) — Ks1f(x) is continuous in L?(P).

(e) For all fe Co(M) and s < t, K+ f(x) converges to 0 in L*(P) as z — 0.

The mapping K, ; can be viewed as a random kernel, i.e. as a random variable
w— K, (-, w) taking its values in the space of measurable mappings from M onto
P(M).

Let us suppose in this section that for all n > 1 and s € R the Dirichlet forms
(EM# 3 M) and (™, H(™) defined in Sections 7.5 and 7.7 are associated re-
spectively with Feller semigroups we denote P(™) and P™)_ Then as is noticed in
Section 7.8, the families of Feller semigroups (P(")*),,~; and (ﬁ("))n>1 are consis-
tent and exchangeable. By Theorem 2.1 in [17], for all s, (P"™*),,>; (respectively
(P(M),51) is associated to a (unique in law) stochastic flow of kernels K* on M
(respectively K on M ) and satisfying for all n > 1

E[(K§,)®"] = Pt(n)"/" (respectively E[(IN(OJ)Q@"] = ﬁt(")). (7.32)

Proposition 5.2 in [17] shows that, for all k € R, to the SFK K*, there is W a
vector field valued white noise of covariance C' such that (K", W) is a solution of
the (A*, C)-SDE if for all f € C?>(M), z € M and s < t,

KE f(x JK (W f(du))( JK (A+ kV)f(x)du.  (7.33)

When W = Y, WkU,, the stochastic integral S Kf, (W f(du))(z) can be written

in the more usual form ;. SS KZ (U f)(x)Wy(du). S1nce there is a pure diffusion,
the SFKs K* are diffusive.

Let us suppose also that T' is elliptic and that A maps C?(M) onto C.(M).
These conditions ensures that for all n > 1, kK € R and z € M"™, the martingale
problem associated to A" and z € M" is well posed. This ensures that the
(A", C)-SDE has a unique solution and that this solution is Wiener (i.e. for all

s<t, oKy, s<usv<t)coWyu,s<u<v<i)).
Set Puc(M) the set of probability measures p on M, absolutely continuous with
respect to m with a density in L?(m) and such that uH = §, H(z)u(dx) < +oo.

Theorem 7.12. As k — o, the family of SFKs K" com}erges in distribution to
K in the sense that for allm = 1, for all {(s;, t;), wi, fi : 1 <@ < n} with s; < t;,
i € Pac(M) and f; € Cyp(M ) for all 1,

lim E [H pilK , (fiom 1 =E [H Pk, 1, ﬁ] (7.34)
1=1

i=1

where [i; = Ty ;-
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Proof. Using properties (a), (b) and (c) of a SFK, it is enough to prove (7.34) only
when (s;,t;) = (0,¢) for all 1 < n. Then,

<t
hm ElnuZKOt fzowl =’£11_r)roloElH7T* MZKOt)fl

1=1

lim E [(7T ™)k ((®i:1ﬂi)(K&t)®n) (®?:1fi)]

K—0

= lim (7r®n)* ((@?zlﬂi)Ptn)’K) (®i1 fi)

K—00

(®z 1:“1) ( = lfl)

=E ln ﬁif(o,tfil .

=1

d

Let p be a probability measure on M. Then pi = pKg, is a probability measure

on M. Set i = mup, pf = meuy and gy = ﬁf(o,t. Theorem 7.12 implies that
{if, t = 0} converges in law in the sense of the finite distributions towards {fi;, ¢ >
0}.

Suppose now that pf is absolutely continuous with respect to m and that u} =
4 ¢ 12(m). Then u* is a weak solution (in L2(m)) of the linear SPDE

duf =A"ufdt — (div,, Vo)updt + Wug (dt) — (div,,, W (dt))uy, (7.35)

where W =, U W* and div,,W = Dk div,, U Wk,

Set uf := Clli%? e L?(f) and @, := % e L*(/). With these notations, Theo-
rem 7.12 implies the convergence in law of 4" towards @ in the sense that for all
(ti, fi)lgigm Wlth ti = O and fl € Cb(M),

Kh_r}goE [H<ut 5fl>L2(m ] =E ln<atla fl>L2(%)1 . (736)

The process % may be interpreted as a weak solution (in L?(m)) of a linear SPDE
on M that will take a form similar to (7.35). We will not do this in general but
only on the examples in Section 7.11 and 7.12. Our work is related to a recent work
by Cerrai and Freidlin [7], where the authors prove the convergence in LP, p > 1,
of u” towards %, where u” and % are respectively solutions of a SPDE on R? and
on a metric graph. Note that the framework of [7] does not include our framework
since in their SPDE, there is no term of the form (Wwuf (dt)) (which corresponds to
the transport of the particles by a vector field-valued white noise).

7.10. The Dirichlet form (£, H®"). We have for (f, g) € HO" x HO,
EM(f.9) = [T (£,9) dm® — (Vi £,
with T and V™ defined by (7.19) and (7.20). Define the bilinear form £™ by

EM(f,g) = Jf(di £, dig)dm®" — J(Vo(xi), di f (2))g(x)dm®"
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Note that the form (31, & (") 24®n) is the Dirichlet form associated to n indepen-
dent Hunt processes associated to (£, H). For this reason, this form will be denoted

(E®™ HO™). Define also the bilinear form 5(") on L?(m®") by

e(f9) = Y, [ Cldifdygm® = (VE)f, ghrmon,

i#]

so that £(") = £®n 4 881).

By definition, for (f,g) € H®" x HO", EM(f,g) = EM(f o 7®" g o 7®"). We
then have that £ = £&n 4 ggl), where 8" is the Dirichlet form associated to n
independent Hunt processes associated to (5 , ﬁ) and where

ES(f,9) = ESV(f o n®, g o x®™).

Note that a case of interest would be when the covariance is m-divergent free, i.e.
when the flow directed only by the Brownian vector field is m-incompressible (the

measure m is preserved by the flow). In this case, E(C") and 5(0") are symmetric and
take a simpler form since 6;C; ; = 0.

For f,g € 7—7®", we define, for y € M™ the different averaged quantities (using
for a function F on M™, the notation p®™(y)F = §, .. F(2)p(y1,dz1) ... p(yn, dzy))

T (f,9)(y) = P2 ()T (f 0 7", g o 7",
Li(f,9) = p¥" ()0 (di(f 0 7™, di(g 0 7)),
Cis(f,9) () = P2 (W)C(di(f o 7®), d;(g 0 7)), for i # j.
Define also, for V(") a vector field on M™ and f € HE,
V) f(y) = p® () VI (f 0 7®7).
Then for f,g € 7—~[®” we have

p
p

") f7 Z J\ 17 f7 dm®n <VC fa g>L2(m®"

1#]

Also, we have

EM(f,g) = f B (1, g)dm®™ — (V™ £, g pamen)

and (™ (f, g) = Sy Ls(f, 9+ éij (f,g). Moreover, we get that the generator
A is given on D(A)®" as

AW f(y) =P A (fon®) = 3 Aif () + 3, Ciif () (7.37)

where A, f is such as ng(y) = gfl(yl) [ 1z fr(yx) when f can be written in the
form f(y) = [ ,_; fu(yr), and Ci; f(y) = p®"(y)C(did;(f o 7).

To go further, we need to explicitly compute the averaged quantities f("), C and
VO("). We express them for the two examples of Section 5 and Section 6.
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7.11. Example: random perturbations of Hamiltonian systems in R?. In
this subsection, we use the framework of Section 5. We suppose that the vector
field V satisfies Assumption 7.7 and we let C' be a continuous covariance function
on M := R? such that (7.4) is satisfied for some § > 0, i.e. there is a pure diffusion.
We assume also (7.27) and (7.28).

Recall that M is a metric graph and that to every y € M \V (with V the set
of vertices) is associated a periodic orbit of the flow generated by V and that its
period is given by T'(y).

Remark 11. Remark 9 entails that Assumption 7.7 is satisfied if T'is C! on each
edge and that the set {y € M\V,T’(y) = 0} is m-negligible (in order to avoid the
situation of Example 4).

In Section 5, we have already given the Dirichlet form (EN’ ,H). Let us now describe
the Dirichlet form (£(™, #®"). Recall that £ = £&n 4 EN(" We have (using the

notation z = (z1,...,2,) € (R?)" and 2; = (z},2?) for 1 <i <n)
0 0
O T (@), dsg(a)) = X~ (2) OV (a z,ma—%(w),
ool wf L
(5,0 @) = X, 20 (1) o O i)
I i axf axg 1y Mg

Recall that m is the Lebesgue measure and that m(dy) = T'(y)dy on each edge.

As in Section 5.5, we define the averaged quantities. For y € M , recall from
Section 5.5 that I'(y) := 50%(y) = p(y)T(H, H), c(y) = Vo(y) = p(y)(VoH). For
(yl,yg) (S M2, set,

Cly1,y2) ==(p(y1) ®p(y2))(C(H, H)),

3C (y1,2) J <Z O, H (1) (5617562)) p(y1, dz1)p(y2, dos).

Then we have

W) (f,g) Znyuygﬁf 4)0;9(y)RE" (dy)

i#]

+ZJ50yz,yﬁf )9 ()FE" (dy).
i#]

and

E™(f,g) Zj (1925 ()39 )" (dy) + 3, [ Clui 151010 w)2s9(0)" ()

i#]
+ 3 [ Towest g (ay) +3 | e wewne .

The generator AM™ of (£ H®") is given for f € D(A™) = D(A)®" by

HO
A ¢ Z )+ Z Clyi,y;)0:0; f (),

i#]
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with A, f such as /Lf(y) = /sz(yz) [ 1z fx(yr) when f can be written in the form
f) =11r_; fr(yx) and A is given in Proposition 5.8.

For all n > 1, (EN’("), 7—NL®") is associated to a Hunt semigroup P™ on the metric
graph M. Admitting that these semigroups are Fellerian, the family of Dirichlet
forms (5 (n)),, is associated to a SFK K on M. We didn’t find a simple argument
to prove this Feller property. We postpone the proof of such Feller property to a
future paper.

In Section 7.9 we have seen that that for all x € R, to the SFK K" on R?
associated to the family of Dirichlet forms (£(™)%),,, there is W a vector field valued
white noise of covariance C such that (K", W) is a solution of the (A*, C')-SDE.

Formally, the SFK K solves a SDE: There is W a vector field valued white noise
of covariance C and for all f € D(A), y € M and s < ¢,

Rof ) = f(y) + f R o (W (du)) () + j R Af@)du,  (7.39)

with W £ (y)(du) = ¥, Ur(y) f' (y)dW* (u) and where W, W2, ... are independent
white noises and Uy (y) = p(y)(UxH), i.e. W is a vector field valued white noise on
M of covariance C, since D Un(y1)Usk(y2) = C(y1, ).

In other words, the n-point motion (Y, ..., Y®) of K are n correlated diffusions
on M solution of the SDE:

Ay = 3(Y,)dBj + Y Us(Y))dWE + b(Y; )dt,
k

where BY,...,B", W', W?,... are independent Brownian motions and %3(3/)2 =
I'(y) — C(y,y), and b is given Proposition 5.8 as b(y) = ﬁ(f‘T)’(y) + Vo(y). The

particle Y being reflected at each vertex v on each edge E adjacent to this vertex,
with transmission parameters oa,J;r, k € I*. Note that & is well defined since we have
assumed the uniformly pure diffusion (Equation (7.4)).

The process # defined at the end of Section 7.9 is a weak solution (in L2()) of
the linear SPDE on M

iy = Atiydt — (divi Vo)iipdt + Wiy (dt) — (divy W (dt)) i, (7.39)
with W = Dk ﬁka, diV%W =D div,wn(ﬁk)Wk, and for a vector field U on ]\7,
dive (U)(y) = T~ (y)(TU)".

7.12. Example: on R3. In this subsection, we use the framework of Section 6.
We let C be a continuous covariance function on M = R? such that (7.4), (7.27)

and (7.28) are satisfied. Recall that M = w;C; is a gluing of four leaves along the
half-line D.

Lemma 7.13. Assumption 7.7 is satisfied.

Proof. For ie I and y € CO'Z-, the period associated to the orbit v, (see Section 6.2)
is

T(y)

e 77 ae®iy, ) L, hi(y)
= = df = .
VI~ Jo V@0 ~ 2uye

Yy
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For example, when y € é’l, T(y) = %K (Z—f) Thus, for all y € uieléi, we have
that VT'(y) # 0. This entails that Assumption 7.7 is satisfied. O

In Section 6, we have given the Dirichlet forms £ and £. We now describe the
Dirichlet form (£, #®).

We have (using the notation = (z1,...,2,) € (R*)" and @; = (2,22, 23) for
1<i<n)

ClbS @) diate)) = %, )cm,xj)@(x)
(5,0 f @) = X 22 (1) (520 ),
PR

where (620)% (21, 2) = V@) Y, % (e7W@2) Ok (11, 35)).
2
Recall that in Section 6, we have considered I'(f) = |Vf|?> and Vy = 0. For

(y1,92) € M? and r,s € {1,2}, from Section 6.5, we have f‘rs(yl) = a"(y1) =
p(y1)(T(7", 7%)) and set

C(y1,y2) : = (p(y1) @ p(y2))(C(x", 7))

0C (yr,12) : = f (Z 5k7fr($1)(52c)k($1,$2)> p(y1, dz1)p(yz, dos).
B

Note that 6C' = 0 when 02C =0, i.e. when C' is m-divergent free.
We then have:

(n rs f 89 ~®n
2 (1.0) 2[20 yz,ga%()ay;(y)m@ (dy)

i#]

+ 3 [ 250w

1#]

(y)g(y)ﬁl®”(dy)-

and

25 =3 B jyg () " dy)

K2

+ zfgcrs o) 23 0) 5050 " )

i#]

# 30 [ S0 ) S a7 ),

i#]

We obtain that the generator A of (£ H®") is given for f € D(AM) =
D(A)®" by
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with A, f such as /Lf(y) = /sz(yz) [ 1z fx(yr) when f can be written in the form
F) =T11eq felyr), A is given in Proposition 6.4, and

Cldid; f)(y) = Y. C™ (i, y;) (—aaféf S) (y)-
s Yi OY;

Assume that for all n > 1, (EN’("), 7—NL®") is associated to a Feller semigroup P
on M. Then, the family of Dirichlet forms (£(™), is associated to a SFK K on M.

This SFK K will also solve a SDE of the form given by Equation (7.38) with
W f(y)(du) = Zk(ka (y)WF(du) with Uk = p(-)(Upn") and where Wi W2 ...
are independent white noises. R

In other words, the n-point motion (Y'!,...,¥;") of the SFK K are n correlated
diffusions on M and is solution of the SDE:

AY} = 5(Y))dB; + 3 Up(Y)) AW +b(Y{)dt,
k

where BY, .-, B", W', W2, ... are independent Brownian motions and 1575 (y) =

I'(y) — C(y,y) and b is given in Equation (6.9). The particle Y being reflected at
each point y € D on each leaf C; uniformly at random. Note again that due to the
uniformly pure diffusion assumption (Equation (7.4)), & is well-defined.

The process # defined at the end of Section 7.9 is a weak solution (in L2()) of

the linear SPDE on M
dily = Attydt — (divi Vo)iipdt + Wiy (dt) — (divy W (dt) )y, (7.40)
with W = 3, UyW*, divi W = 3, d1v~(Uk)Wk and for V a C-vector field on M

(i.e. the restriction of V to a domain Cy is a C'-vector field on this domain) and
for y € UCy, we have divy (V) (y) = m(y) Y 2 (My Wr(y)).

T Oy

Remark 12. If U is a C' vector field on M, then set the “vector field” U on ]\7,
U” :=p(-)(Un"). On an open subset of M\D, we have that U is C'! and

p()(divy,U) = divU. (7.41)

This property is the key to do an integration by parts on EM to recover AM
directly. Here, we have just described A™M from AM using Equation (7.37).

To prove Equation (7.41), let f € C%(C;) and prove that §U(for)dm = (U fdin
directly using the chain rule on U(f o 7), and integrate by parts each side.

8. APPENDIX

Notation: In a topological space A € B means that A B and 4 is compact.

8.1. Weighted Sobolev spaces. For k > 1, the class of Muckenhoupt weights A5
consists all mappings w : R¥ — [0, 0], for which there is a constant C such that
for all ball B in R¥, we have

o (L) <o (], ) =

For m > 2, set By, 1 := (U%,]0,0[x{i}) U {0}, equipped with the distance dy
defined by da((z,), (5,)) = |r — 9| and if i # 7, ds((z.2), (5.3)) = @ +y, and



52 FLORENT BARRET AND OLIVIER RAIMOND

di((x,7),0) = . Let i1 : By1 — {0,...,m} be defined i1 (z,7) = ¢ and i1(0) = 0.
Then B, is a metric graph constituted of m half lines joined at 0. Set also By, 2 :=
R x Bj,1, equipped with the distance dy defined by dao((z,1), (v,7)) = |z — yl,
d2((,9), (y,)) = lle—y/| if i # j and where ¥’ = (y1, —y2), and da((,1),y) = |z —
yllif y = (y1,0), where ||-| is the Euclidean norm on R?. Then B,,, » is a metric space
constituted of m half planes joined along a line. Let also i3 : By, 2 — {0,...,m} be
defined by ia(21, 22,¢) = ¢ and i2(x1,0) = 0. To simplify the notation we will simply
denote dy and da by d. For 1 < i < m, we will use the notation (0,i) = 0 € By, 1
and for ;1 € R, (x1,0,4) = (21,0) € By, 2.

For m =1 and k € {1,2}, set By = R*.

Let w : By, i — [0, 0] be such that w € L}, (B k), i-e. such that for all A € €,
w(A) == §,w(x)dz < ©, with dr the measure on B, that coincides with the
Lebesgue measure on E; := {x € By, : ix(x) = i} for each 7. For i # j, set
E; ;= E; U E; U Ey (which is isometric to R¥, and will be thus identified to R¥).

In the following, we fix k € {1,2} and m > 1 and we let Q2 be an open subset
of By . Fori e {l,---,m}, set Q; = Qn E; and for 1 < i # j < m, set
Q;; =Qn E; ;. Then Q; and Q; ; are open subsets of R*. Denote by L?(Q,w) the
space of all measurable functions f on By, i such that {, f?(z)w(z)dz < c0. For a
function f € L?*(Q,w), weakly differentiable on €2; ; for all 1 < i # j < m, define
the norm of f by

11210 = f (P IV (o) (8.1)

Let W'(Q,w) be the completion with respect to the norm | - [y (. of the
vector space of the functions f € L?(,w), that are weakly differentiable on ©; ;
for all 1 < i # j < m and with | f|y1(qw) < . Suppose also that Lell.(Q).
Then, for all i € {1,...,k} (resp. all 1 <i # j < k), the restriction of f € W(Q,w)
to ©; (resp. to Q; ;) belongs to WL () (resp. to W1 (Qi ;).

We also define H'(Q,w) (resp. H}(Q,w)) to be the completion of C(Q) N
WH(Q,w) (resp. of Ce(Q) n WH(Q,w)), with respect to | - |w1 (). Define also
Wi (Q,w) to be the set of all f € W(Q,w) such that the function F = flqg €
WY(Bpm k,w). Equipped with the inner product

Sewia = | (Fo+ VS - Va)@o(a)ds, (5.2
WHQ,w), WH(Q,w), HY(Q,w) and H}(Q,w) are Hilbert spaces.
Lemma 8.1. Let m > 1 and O € Q) be open subsets of By, . Then there is 6 > 0

such that Ks := {& € Bp : d(z,0) < 6} is a compact set with O < K5 < Q.
Suppose that there is @ : By, — [0, 0] such that © = w on Q and such that

o when m > 2, for all i # j, the restriction w;; of w to E;; belongs to the
class As.
o when m =1, @ belongs to the class As.
Then if f € Wi (O,w), there is g € L*(O,w) such that g = 0 on O\Ks and such
that for all (z,y) € O?,

(@) = F(y)] < d(z,y)(9(=) + 9(y)).
Moreover, there is a sequence of lipschitzian functions f, € W3 (O,w) such that
limy, o0 [ f — anW1(O,w) =0.
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Proof. We only consider the case m > 2, the case m = 1 being simpler.

The existence of § and K is a standard exercise.

Let f € W§(O,w) and denote by f; ; the restriction f to E; j, and set O; ; :=
O N E; . Then fi; € Wg(O; j,@i ;). Set F:= flo and F; ; the restriction of F' on
E; ;. Then F; ; € Wl(El-ﬁj,(Dl-ﬁj). Recall that E; ; is isometric to R¥. Note that for
x€0; =0 n E;, we have for all j # i, f(z ) fij(x) = F; j ().

Since € Ay, we have (see [11]) G; j € L*(E; j,w; ;) such that for all (z,y) € E?,

|Fj(x) = Fij(y)| < d(z,y)(Gij(2) + Gij(y))-
For z € Q, define g(z) 1= 3;, Gy j(x) if z € ;. Then g € L?(,w), and we have
for all (z,y) € Q2,
f (@) = f)] < d(z,y)(9(2) + 9(»)).
Set now gs := glk, + 0~ 1|f|. Then, we have that for all (z,y) € ,

[f(@) = f(y)l < d(z,y)(gs(x) + g5(y))-
Indeed, this inequality is straightforward to check if (z,y) € K% or if (z,y)
If (z,y) € O x (Q\K5), we have d(z, y) (95(x) + gs(y)) = d(z,y)d~"|f(2)]
f(y)]- This shows the first part of the lemma.
For the second part, it suffices to follow the proof of Theorem 5 of [11] (with

the function g¢s, and since f = f) on E) and that E) > Q\Ks, we have f) = 0 sur
O\Ks). O

€ (Q\O)
> |f(z)

For an open set U < 2, define the capacity of U by
Cap(U) := inf{HhH‘Q/Vl(Qw :h>=1onU and he WHQ,w)}.

Lemma 8.2. Letm = 1, Q an open subset of By, 1, andw : Q — [0, 0] a measurable
mapping. For R > 0, set Qp := {x € Q : |z|| < R}. Suppose that, for all R > 0,
there exists a non decreasing sequence of open subsets (p.n)n>1 such that

(i) Unz1Qrn = Qr,

(1) lim, o Cap(Qr\Qg,n) =0,
(iii) for allm =1, Wt (Qgn,w) = HYX(QRrn,w).
Then we have W(Q,w) = H}(Q,w).

Proof. Let f € WY(Q,w) and € > 0. For R > 1, define fr : @ — R defined by
fr(z) = f(2) it 2] < R=1, fr(z) = (R—|z[)f(2) if [z] € [R—1, R] and fr(z) =0
if |z| > R. Then we have that fr € W} (Qr,w) and it is easy to check that there
is an Rg > 0 such that for all R > Ry, |f — frlw1.w) <€

From now on, we fix R > Ry. Applying Theorem III.2.11 in [20], conditions (%)
and (ii) ensures that there is a sequence of functions fr., € W (Qg.n,w) such that
limy, oo [ fr = fRnlW(@p,w) =0

And we conclude using (7i1). O

Let now G be a connected metric space, and fix k € {1,2}. Suppose that there
is a locally finite covering () of G, with open sets and and with £ a countable
set. Suppose also that this covering is such that for each ¢, €, is isometric to an
open subset of B, ;, for some m > 1. Suppose that there is a sequence of functions
(¢e)eec such that e : G — [0,1], pp = 0 on G\, @y restricted to QF is C', with
bounded derivatives, for each i € {1,...,my} and such that >,. . ¢; = 1.
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Let w : G — [0,00] be a measurable mapping. For each ¢, then there is m > 1
such that Qy < Bk, we let wy : By — [0,0] be such that wy = w on Q.
Suppose that wy € Lj,.(Bm,i) and Z- € Lj, ().

Define W!(G,w) to be the set of all measurable functions f : G — R such that
for each ¢ there is fy € W' (Qp,we) with f = f; on Qp with | f|w1(g,.w) < o0 where

s e = [ (72 + IVS) @hla)d
Then W!(G,w) equipped with the innner product

s 9y = L (fg + Vf - Vo) (@)w(z)dz

is a Hilbert space. Define also H{(G,w) as the completion of C.(G) n W (G,w).
Note that if f € W!(G,w), we have that for each ¢, fo, € W(Q,wp).

Lemma 8.3. Suppose that for all ¢ and all R > 0 there exists a non decreasing
sequence of open subsets (. rn)n>1 such that

(Z) Un}l QZ,R,TL = Qevlz

(1) lim,—o Cap(e,r\Qe,r,n) = 0,
(iii) for allm =1, Wi (Qu.pon,we) = HE (. gon,we).
Then we have W (G,w) = H} (G, w).

Proof. The proof of this lemma is almost identical to the one of Lemma 8.2. We
write f = >}, f¢, where fo := foy. For each € > 0 there is a finite £y < £ such
that [[f — Xsep, felwi(@w)y < € And then we can follow the proof of Lemma
8.2, for Q = Qp and f = f, and to find, for all £ € Ly, an integer n > 1 and a
function gy € Cc(QZ,R,n) N Wl(Qg,wE) such that Hfz — ngwl(G)w) < ﬁ Then

1f = 2vec, 9ellwr(cw) < 26 H

8.2. Regularity for Section 5. In this paragraph, we complete the proofs of
Proposition 5.5 and of Proposition 5.6.

Let us first recall some notation of Section 5. The space M=Vu Uies Ei is
a metric graph, with E; =]l;,r;[x{i}. There is a continuous map 7 : R2 — A
such that if z € Q;, n(z) = (H(x),i) € E;. Forve V, It = {ie I, (i) = v},
I; ={ieI,(ryi) =v}and I, = I} I, . Let d(v) be the cardinal of the set
I,, which is the degree of v in the graph M. Choose i € I, and set h, = [; if
v = (l;;i) or hy, = r; if v = (r;,i). Remark that h, does not depend on the
particular choice i € I,. For v € V, we define v(v) := {J, ;~, %i(h), the connected
level set associated to the vertex v. Then for all z € v(v), H(x) = h,,.

The space H = {f : for e H'(R%)} equipped with the inner product {, 97 =
(fom, gom (e is a Hilbert space. Let now f € H. Forie I, let f; i, ri[— R
be defined by f;(h) = f(h,i). Then (see Lemma 5.4), for all i € I, f; is weakly
differentiable and we have

I =3 [ wmPatian+ X [ Gmprian

iel iel
d
where a;(h) = ﬁ; |VH|d¢ and T;(h) = Eﬁ % For Z = (h,i) € E;, set a(T) =

Yh,i Yh,i

ai(h) and T(%) = T;(h).
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In the following lemma we recall asymptotics given in chapter 8 in [9].

Lemma 8.4. Let v € V and i € I(v). Then v = (hy,i) and as h — h,, with
(hal) € Ei;

(1) If d(v) =1,
ai(h) ~ ainlh —hy|  and  Ti(h) ~ t;,
(2) If d(v) = 2,
ai(h) ~ ajp and  Ti(h) ~t;y|log|h — hyl|
where a; ., and t;, are two finite positive constants.

Proof. By definition of v, either y(v) contains exactly one extremum of H and
d(v) = 1 or y(v) contains a saddle point of H and d(v) = 3 (d(v) # 2 since the
stationary points of H are non-degenerate).

Suppose first that d(v) = 1. Then y(v) = {z*}, with «* a local extremum of
H. If H is quadratic at z* then, the computation of a(Z) and T'(Z) can easily be
done explicitly and gives the stated asymptotics. In the general case, one can use
an asymptotic expansion or the Morse Lemma to conclude.

Suppose now that d(v) > 2. Let & = (h,i) — v. Since |VH]| is continuous
and that v(v) is compact with finite length, a(Z) converges to a constant a;, =
§7hw_ |VH|d{¢ as & — v. The main contribution for T'(h) comes when the orbit vy, ;

is near a stationary point 2* € y(v) because otherwise |V H| is bounded away from
0. Note that there could be several such stationary points, each is a saddle. If H is
quadratic in a small neighborhood V of z* then, the computation of an asymptotic
can easily be done explicitly and gives §7h,mv ﬁdﬁ ~ C*|log|h — hy|| for some
C* > 0 which only depends on the number of times the orbit comes near z* (one
or two times since z* is not degenerated) and on the Hessian matrix of H at x*.
In the general case, one can use the Morse Lemma to obtain the same asymptotics.
Since each saddle point of «v(v) gives an asymptotic term of the same order, we
obtain the stated result. (]

Proof of Proposition 5.5. Let f € H. Let v € V with d(v) = 2, and i € I,. Let
A; be an open set of |l;,7;[ such that A; <]l;,r;[U{h,}. Note that there is ¢ > 0
such that T; > a; > c on A;. Thus f; restricted to A; belongs to H?(4;) and as
a consequence f; can be extended to a continuous function on |l;, 7;[U{hy}. Set
Diow = 0Q; n H '(hy). Since fon(z) = fi o H(x), we have fir, , = fi(hs).

Let now j € I, with j # 4. Suppose first that I';, " T';, # &, then fi(h,) =
fi(hy). I T, nTj, = &, then there is (ig,i1,...,43¢) € ILT! such that ip = i,
ip=jandforall 1l <k < T; ,,nTi.# & andso fi(hy) = fi,(hy) =+ =
fio_y(hy) = f;j(hy). This proves that f is continuous on M\V;, and completes the
proof of the first implication of the Proposition 5.5.

Let now f: M — R be a measurable map such that f is continuous on M \W1, fi
is weakly differentiable for all i € I and | f|z < oo. Then, for all i, fom € H'(Q;)
and f o is continuous on M\I'y, where 'y is the set of local extrema of H. Since
'y is a finite set, f o m € H*(R?). This proves that f € H. O

Proof of Proposition 5.6. To complete this proof, it remains to check that Assump-
tion 4.9-(ii) is satisfied, i.e. that C.(M) N H is dense in H.
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Let ¢ and j in I be such that d(E;, E;) = 0. Denote by v; ; the unique vertex
in V such that Vi € 0E1 N (3EJ Set Ei,j = El U Ej U {'Ui,j} and fi,j = f\ij
Let A; ; be an open subset of E; ; such that v; ; € A, ; € E; ;. Then (since there
is ¢ > 0 such that 7'(¥) > a(¥) > ¢ in a neighborhood of v), f; ; € H'(A;; n E;)
and u; ; € H'(A;; n Ej). Since f;; is continuous, we have that f; ; is weakly
differentiable.

For each i, let k; :]l;,7;[—]0, L;[ be defined such that k;(I;) = 0 and dk;(h) =

Tf(,}z) dh. Then k; is properly defined (in particular J (h)
e Lt | ai(h)

T4 E h
L; = J Al Ehi dh < oo only for the unique i for which ; is unbounded). Define
l; Q;

a new metric graph with edges EY :=]0, L;[x{i} with the same adjacency rules

dh < o and

as for M. Denote this new metric graph by G. By abuse of notation, The set of
vertices of G will also be denoted by V.

For v € V, let I(v) be the set of all i such that ES is an edge adjacent to v. For
i€ I(v), set O} := {z € EF : d(z,v) < 2} and O, = {v} U Ujer(»nOl. When
d(v) = 1 set OY = O,\{v} and when d(v) > 2, set 0% = O,. Then 0? is on open
subset of By, 1 with m = d(v) = |[I(v)].

Let G be the metric graph obtained out of G by taking out of G the vertices
of degree 1, and denote by V0 the set of vertices of G°. Then it is easy to check
that (09),cyo0 is a covering of G° and that there are functions ¢,, v € V°, such
that ¢, : GO — [0,1], ¢, = 0 on G\O?, ¢, restricted to O is C*, with bounded
derivatives, for each i € {1,...,d(v)} and such that > 0 ¢, = 1.

For f e H, let g: G° - R be defined by g(v) = f(v) if v € V° and such that
g(ki(h),1) = f(h,i)if (h,i) € E;.

Let i # j such that d(E{, E§') = 0 and set E; := EF U E¥ U {2, ;}, we then
have that g; ; := g, ES, is weakly differentiable. This holds because f; ; is weakly

differentiable and g; ; = fi joh; j, whereh; ; : ElGJ — E,; ; is the continuous function,
differentiable on Ef and on EY, defined by h; ;(k,i) = (k7 1(k),4) if (ki) € ES,
hij(k,j) = (k' (k),j) if (k,j) € ES and h; j(xi ;) = i .

Then we have that f € H if and only if g defined above belongs to W(G°,w)
with w a measurable function on G° such that if (k,i) € EY, w(k,i) = w;(k) =
VaiT; o k; (k).

Lemma 8.5. For 7€ G° andve V. We have as T — v,
(1) If d(v) =1, w(Z) ~ ¢, d(Z,v)
(2) If d(v) = 2, w(T) ~ cp/|log(d(Z, v))| —

where ¢, > 0.

Proof. The case d(v) = 1 is straightforward. For the case d(v) = 2, we let
¥ = (k,i) € G° and assume v = (0,7), then k = d(%,v) and h := k; *(k) with
ki(h) =4/ ZZEZ; ~ Cy+/|logh| as h — 0. An integration by part yields that k(h) ~
Ch+/|log h| and thus |log(k)| ~ |log h|. Then, since w(Z) = +/a;T;(h) ~ C+/|logh|,

O

we get the result. The same result holds if v = (L;, ).

To prove that C,(M) nH is dense in 7, we will now use Lemma 8.3.
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Fix R > 0. Forve Vandn > 1, set Oy rpn = Oyr if d(v) > 2 and set
Ovrn = {z € Oyg : d(z,v) > n7t} if d(v) = 1. Then (i) of Lemma 8.3 is
satisfied.

Let us now check that (i) is satisfied. This has only to be checked for v € V
with d(v) = 1. Let EX be the unique edge adjacent to v. Without loss of generality
we will suppose that v = (0,7). We then have that O, g\Oy rn =]0,n [ x{i}.
To prove that Cap(Oy,r\Ov,r.n) — 0. In this case, fix A > 0 such that A < R

and A < 2L and take (for n > A7Y), g,(k) = 1if k < n~! and gu(k) = 0

if k > A and g,(k) = % if n71 <k < A. Then Cap(Oy,g\Ou.rn) <
2

:,1 de—ﬂ:ﬂ (lo(g](oz%;;igl(g()n%iz(k) dk which converges to 0 as n — 0.

This proves (ii)

To check (%), we shall use Lemma 8.1. for the open sets Oy rn < Bm,1, with
m = d(v). For each v, R,n, we define an extension w of w|p, , ., defined on By, ;.
By a slight abuse of notation, we set identify v as 0 in the definition of B, ; and
keep the labels of I(v) to identify the branches of B, 1.

If m = d(v) = 1 then recall that B1; = R. O, g, is an open interval ]I, [ and
we let w(k) = w(l) €]0,00[ if £ <! and @(k) = w(r) €]0,0[ if & > r. The @ is
continuous and positive, and it thus belongs to the class As.

If m = d(v) = 2, fori € I(v), Oy.pn N EF is an open interval ]0,r[ (with
r = (2L;/3) A R) and for k > r, we set w(k,1) = w(r,i) €]0,00[ and @(v) = 0. For
i€ I~ (v), Oprn N ES is an open interval ]I, L;[ (with | = L; — (2L;/3) A R) and
we set

(k) w(L; — k,i)€]0,00] forO0<k<L;—1
w 3 = .
w(g,1) €]0, 0 for k> L; —1

and @(v) = co. This defines @ on By, 1. It remains to check that for i # j in I(v),
we have that @; ; belongs to the class A;. Note that limg,_,, @; ;(x) = 00. Since
wi j(x) ~ eq/log(k) as k := d(xz,v) — 0, it is a simple exercise to show that @; ;
belongs to the class As.

Then Lemma 8.3 can be applied. This proves that W (GY,w) = H}(G%, w). Let
feHand g € W(G°,w) defined as above by g(k,i) = k1 (k),4) if (k,i) e ES
and g(v) = f(v) if v € G°. Since W(G%,w) = H}(G",w), for all € > 0 there is
ge € Ce(G®) n W (G, w) such that [g — gellw(cow) <€ Set fe(h,i) = ge(ki(h), i) if
(h,i) € E;, f.(v) = ge(v) ifve VO and f.(v) = 0if v e V\Vy. Then f. € C.(M)nH
and Hf - fe“ﬁ = Hg - geHW(GO,w) <€ [l

8.3. Regularity for Section 6. To prove the regularity we can apply directly
Lemma 8.2 since our state space will already be an open subset of Bso. Set I :=

{1,2,3,4}. Recall that M = UierC; is constituted of four cones glued along one
edge. Set My :={ye M : y1y2 > 0}.

8.3.1. The space H. Recall that for ¢ €]0, 1]
/2

E(t) = J V1 — 2sin? 0df (8.3)
0

at)(1 +t?)
212

/2 do
K(t)_fo V1—t2sin26
alt) =1- % and At)=1-—
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For y € uieICo'i, let t(y) = % Then t(y) = z—f for y € ¢y u G5 and ty) =4

<
v

for y € CO’Q U CO’4.

For i € I, set m; the measure on C; with density hi(y)e_W(HyH) with respect to
Lebesgue measure on C;, where

hi(y) = ha(y) = 4V20y2|K (t(y));  ha(y) = ha(y) = 4V2[p|K (t(y)) . (8.5)

For y € UierCy, set a(y) := v, (Vr @ V). We have that v,(z2) = 2y2a(t) for
Y€ Co’l, then,

10 ar) (12t . 2 2
aly) = 0 1 +2(tt2) ¢ 1 1fyeCluC3andt=%;
(8.6)
(L9 paw (T ) ey U6y and b= 1
aly) = 0 1 + 5 PR nyelzulyandi= 7.

The eigenvalues of a(y) are 1 and A(¢), with corresponding eigenvectors (y1, y2) and
(—y2,91). If i € I and y € C}, set a;(y) = a(y).
Let us now collect some asymptotics.

Lemma 8.6. Ast — 0T,

™ 12 4 ™ 12 4
E(t)—§<1z+0(t )), K(t)—§<1+z+0(t )), (8.7)
£ 2 3 2
alt) = 3 (1+0(7)); At) = i o(t?). (8.8)
Ast — 17,
E(t) = 1+ o(1); K(t) —% log(1—)+0(1):;  (8.9)
2 -2
Proof. Asymptotics for E and K are standard, the others are simple consequences.
O

Let f € H. Forie I, the map f; := f|c, is weakly differentiable on C; and, using
the change of variable formula (6.5), we have that

4 4
18 =35 [ 2w+ Y [ atousocsiam, (8.11)
i=1YCi i=1YCi
Set Q 2=]0, +OO[><B4)1 C B4)2, Q; == Qn E; for i f I and Q@j =0n E@j for
d
i # j € I. Let us remark from Lemma 8.6 that Z := J S +00. Set
0o (14 u?)\/Alu)
c = 57 and define ¢ : [0,1] — [0, 5] by
1
d
p(t) = cf S — (8.12)
¢ (14 u?)\/A(u)

Define z : U, C; —]0, +0[2 by
z(y) = ly| (cos p(t(y)), sine (t(y))) - (8.13)

Note that for allie I, z; = 2, is one to one.
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For g : Q — R define F(g) : My — R by F(9)(y) = g(z(y),i) if y € C; and
F(9)(y) = g(y,0) if y € D*. For f : M — R (or for f : My — R), define
G(f) : © — R such that if (z,i) € Q;, then G(f)(z,4) = fio 2 *(z) and if z > 0,
then G(f)(z,0) = f(2). Then, Go F(g) = g and we have that g € C.(Q) if and only
if F(g) € C.(My).

Define k : [0, 5[— R* U {00} by k(0) = o0 and, for ¢ €]0, 5[ and t = ¢~ '(¢),

AWK (/A1)
k(¢) = e (8.14)
For z = r(cos ¢, sin ¢) with (r, ¢) €]0,0[x[0, Z[, set w(z, ) := re~V " k(¢) and
N [cos?p+c2sin®p (1 —c?)singcosd) 1 0
b(z,1) := ((1 — )sinpcosp  sin? ¢ + ¢ cos? ¢) = R <0 c2> R

where Ry is the matrix associated to the rotation of angle ¢,
R, cos¢ —sing
?~ \sing cos¢p )
Let feH and g = G(f). The change of variable z = z;(y) on each C; yields

HfH2 = Zf (z,0)w(z,1)dz + ZJ (2,8)0k9(2,1)00g(2,1)w(z,i)dz. (8.15)

Recall that the norm on W(Q,w) is given by

B@e = X, [ @0+ oGP (510)
i=1v¢%

We thus get that
(1A A9l w < IF1% < @ v Algli - (8.17)
Lemma 8.7. f € H if and only if G(f) e WHQ,w).

Proof. In this proof, we fix f : M — R and we set g:=G(f). U fe H, then for each
i, f; is weakly differentiable on C; and g|q, is weakly differentiable on ;. And (8.17)
show that g; := g|q, € WL (Q;,w;), where w; = w|o,. Moreover, if O be a bounded
open set in €; ;, then g0, € H'(0;), gjo, € H'(O;) and coincide on O n Ey. Since
w is bounded from below on O, this implies that g0 € H*(0) > W(O,w; ;). We
thus have that g, , € W' (2 j,w; ;), which proves that g € W' (Q,w).

On the converse, if g € W(Q,w), then using that f o = F(g) o7 and (8.17),
wehavefoweHl(m)andsofefNI. O

Lemma 8.8. H}(Q,w) = W(Q,w)

We use Lemma 8.2 to prove this lemma.

This lemma shows the density of C.(M) ~H in H. Indeed, F : H — W(Q,w)
and G : Wl(Q w) are continuous mappings and if g € C. (Q) N WHQ,w) then
F(g) € Co(M )m H. Therefore, if f € H and g = G(f), there is a sequence
gn € Ce(Q2) N Wl(Q w) approximating g in Wl(Q w) and so f, := F(g,) is a
sequence in C.(M ) ~H approximating f in H.
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Proof of Lemma 8.8. For R > 0, recall that Qp = {z € Q: HzH < R} and define, for
n=1,Qpy = {(rcos¢,rsing,i): (r,¢,i) €]0, R[x[0,Z — L[xI}.

In order to apply Lemma 8.2, we have to check that (z), (i) and (iii) are satisfied.
Ttem (7) is clearly satisfied.

To prove (ii), we construct a sequence of non negative functions (g, ) on £, such
that gn(2) = 1 in Qr,\Qr and lim, s [9nly1 () = 0- Let us first obtain
asymptotics for w.

Lemma 8.9. We have, as ¢ — 37, k(¢) ~ 25(5 — ¢).

8c?
Proof. Using Lemma 8.6 and Equation (8.12), we have that T — go(t) ~ 2—\/0—1% as
t — 0%. Thus, since ¢ = ¢(t), we have t ~ %(% —¢) as > Z~. From Lemma
8.6 and Equation (8.14), we obtain k(¢) ~ =3¢ ~ 31(T — ¢) as ¢ - O

Using this Lemma, we can fix 0 < ¢9 < 5 and c¢p > 0 such that

at 0
co(g — ¢) for all ¢ € [¢o, g] Then we define f; :]0, +0[— R, fa., : [0, %[H R by

1 forr< R
filr)=42—% for R<r<2R, (8.18)
0 for 2R < r
0 for 0 < ¢ < ¢
In(5—¢)—In(5—¢ T
1 for T —L <o

For i € I and z = 7(cos(¢),sin(¢)) €]0, +0[?, set gn(z,i) = fi(r)f2.n(p). We
then have

I 4L (92(2) + [Vgn(2)[)w(z)dz. (820)
Since [Vga(2)l* = (F)2(r)f30(6) + & F20)(f5,0)%(6), we have
2R z
||, stz = [ om0 | g5 oo, s21
Q
OQR
| WmePe@ = | e O j 7 1(@)k(0)ds
Q 0
2R z
A NN OT D
The integrals involving f; are finite and does not depend on n. For fs ,, we have
" Bao@)s <co [ F3(0) (5~ 0) do (8.23)
do %o

~ ¢ (f_ 2.0 (5 d“”L_L T qu) (524

= (f <ln§§<%>¢ ) 2 9) i) |

(8.25)
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Thus, lim,— 4 Sfo [0 (@)k(d)dp = 0. We also have

x _
2

3=

| a@rr@o <o [~ 7,000 (5 - 0) do (5.26)
_ Co %7% d(b

"~ (In(n=1) —In(% — ¢0))? JO o (8.27)

1 (8.28)

< )
[In(n~') = In(5 — ¢o)|

Thus, limy, 400 §5 (f5,,(6))2k(#)dé = 0 and then lim, ;o5 [gn |31 g,y = 0. Ttem
(44) is proven.

To prove (iii), we apply Lemma 8.1. Let us first define an extension @, r to
By 2 of w which coincide with w on Qg . We define ky, : [-m, 7] - R™ U {0} by

E() = {IZM for e [-5 + 5,5~ 7]

8.29
(3 — 1) elsewhere, (8.29)

and define the weight @, g : Bs2 — RT by @, r(z,i) := re”WIrABE (¢) where
z = (rcos¢,rsing) with (r,¢,i) € RT x [—m, 7| x I. Then, @, g coincide with
w on Qg,. Note that for ¢ # j, the restriction of @, r to E;; (identified with
R?) does not depend on i and j. Denote this common measure w, r and set
wy, : R?2 > RT U {+00}, defined by w,,(2) = 7k, (¢) where 2z = 7(cos ¢,sin ¢) € R?.
Since, 0 < inf,~ge " WrrR) < Sup,.~g eW(rnR) wn, r belongs to the class Ay if and
only if w,, belongs to the class A,.
Define for p > 0, z € R2,

1 1
C(z,p)z—f wnf —.
20t JBep)  JB(zp) wWn

where B(z, p) is the ball at center z and radius p.
Let us first obtain asymptotics for w,,.

Lemma 8.10. We have, as ¢ — 0+, k(¢) ~ & |log (¢)["/*.

Proof. For ¢ > 0 close to 0 and t = ¢~ !(¢), set § := 1 —t. We have
! d 0 d
omef S . (8:30)
1—5 (1 + u?)/A(u) o (1+ (1 —uw?2)y/A1—u)

As u — 0", using Lemma 8.6, we get 4/A\(1 —u) ~ “f(u)l, and thus as ¢ — 07,

by integration by parts

¢ [° c
¢~ 2—\/§L v/ | log(u)|du ~ 2—\/55«/|1og(6)|. (8.31)

This entails that log(d) ~ log(¢). It is straightforward, using Lemma 8.6 again,

that K(t)A/A(t) ~ %4/|10g(5)|. Then we obtain that k(¢) ~ 5=+/]log(d)] ~
52V [og(9)]. D

Let us now prove the condition A2 for w,.

Lemma 8.11. w, satisfies the Az-Muckenhoupt condition: sup, ,C(z,p) < +o0.
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Proof of Lemma 8.11. Note that ky, is a continuous positive function on [—m, 7]\{0}.
Lemma 8.10 shows that k;,(¢) ~ 5+/|log |¢[|(1+0(1)) as ¢ — 0. Thus the integrals
§" _kn(¢)dp and §"_ky(¢)~'d¢ are finite and w,, and w;;* are locally integrable on
R2. Therefore (z, p) — C(z,p) is a continuous function. Note also that for A > 0
and z € R?, w,(\z) = Aw,(2), then C(A\z,\p) = C(z,p). This leaves two cases to
investigate: z=0,p=1or |z|=1, p> 0.

For z =0, p = 1, we have

1
C(0,1) = —J wnf — f f 8.32
©.1) us B(0,1) B(0,1) 3772 —r kn ( )

Obviously, C(0,p) = C(0,1) = C,, < +00 does not depend on p.

For the second case, fix p > 0 and z = (cos ¢, sin (b) with ¢ € [-m,7]. If p > £
since B(z,p) < B(0,p + 1), we get C(z,p) < png Cn < 31C,. If p < 3, we set
6 = arcsin(p) €]0, %[. We have B(z,p) < T(z,p) := {z = r(cos,sine)); (r,¢) €
[1—p,14p] x[¢0— 6,0+ 6]}. We obtain

1+p d+0 9 b+0
J wp < J Wp = J T2dTJ kn==3p+ pg)f kn, (8.33)
B(2,p) T(z,p) 1-p 6—0 3 $—0

1 1 ¢+0
f wn gf o 2/’J I (8.34)
B(z,p) Wn T(z,p) Wn 6—0 kn
Then we get (setting c¢o = 31%)

A3+ p?) [°T0 (M0 1 o [P0 (o g
C(z,p) € =55~ En D($,0) == ——— k, 1
3mip® Joo om0 Fn sin(0)2 Jy_g ot Fn

(8.35)

The function (¢, #) — D(¢,0) is continuous on [—m, 7] x]0, £]. Let us now show
that D is bounded in a neighborhood of § = 0+. Note that

deg® SUPLy_gpra1n _ o SUDy-g.p401 Fn

D(¢,0) < <
(¢, ) 5111(9)2 1nf[¢,97¢+9] kn 0 inf[¢,91¢+9] kn

(8.36)

since 9( Ok <2forall 6 €0, %]
le 90 €]0, 5[ We have sup(y g)e[—xx]x[05,2] D(#,0) < 00. From Lemma 8.10,
we get that there are 0 < ¢; < C7 and 0 < ¢3 < C5 such that

c1 <kn(¢) < (Cq, for g e [—7T, W]\[—eo, 90] (837)

c2v/|1og([o])| <kn(9) = k() < Can/|log(|o])|, for ¢ € [-300,300].  (8.38)
Let 0 < 69. Without loss of generality, we assume that ¢ € [0,7]. If ¢ — 6 = 0y,
we get [0 — 0,6 + 0] < [0y, ™ + 0p] and we get, using (8.37), D(¢,0) < %.
If $—0 < Oy, then [¢—0, ¢+ 6] = [—00, 30p], and we consider again two subcases.
First subcase: ¢ > 20, let u:=¢ + 6 = 30,

D(6,0) < 20 <1°g(“ 29)>% < BoCs (1 | el = %) ﬁ)> (8.39)

ca log(u) ca log(u)

1 1
< 8coCy 1+ log(1 — %) 2 < 8coCy 14 1og(%) 2 .
log(u) 2 log(36p)

(8.40)

C2
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In the second subcase we have ¢ < 26. We start back from (8.35):

) e b+6 6+0 1 oo 36 36 1
< o n = .
D(¢.9) sin(@)QJO K J;J kn 2(0) : sin(6 f J (8.41)

(5 is a continuous function on ]0, 6] and as # — 0%, we get (using Lemma 8.10

36 30
f k(@) ~ 22/~ Tog(30) (8.42)
0 2c
kn(¢)  do ~ 60— 8.43
[ atortae ) (3.43)
Thus limg_,q+ Co(6) = 18. Finally, this gives us the result. O

With Lemma 8.11, conditions of Lemma 8.1 are satisfied and condition (iiz) of
Lemma 8.2 holds. Therefore, W1(Q,w) = H(Q,w). O
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