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Tree-Based Model Predictive Control for Jamming Attacks

T. Pierron1, T. Arauz2, J. M. Maestre2, A. Cetinkaya3, C. Stoica Maniu4

Abstract— Under the networked control paradigm, con-
trollers, sensors, and actuators are different devices that com-
municate via a communication network. This might represent
a source of vulnerability because the loss of data packets may
endanger both system performance and stability. Therefore, this
is a major concern in cybersecurity. For example, jamming
attacks can be performed by malicious entities with the goal
of disrupting the system. To deal with this issue, this paper
proposes a model predictive control (MPC) scheme in which the
controller computes a tree of control actions tailored to different
packet loss patterns so that additional robustness can be gained
in these situations. This work uses a case study to illustrate its
advantages with respect to standard MPC alternatives.

I. INTRODUCTION

Communication between different devices requires the use
of a secure network. While using wireless communication
has major advantages, it is also a source of significant
weakness because some data packets can be lost due to
communication problems or by the intervention of malicious
agents, as in the case of jamming attacks. Numerous studies
have already been done to counter these phenomena and
make the system more robust to these potential cyber-
aggressions. A review of the state of the art of cyber-physical
systems security and a comparison of different works, from
both industry and academia, explaining how security is
addressed is given in [6], where the context of malicious
entities trying to disrupt the system is particularly stressed.
Furthermore, potential attack models and defense strategies
in the context of Network Control System (NCS) theory are
explored in in [14].

In this work, we are interested in the use model predictive
control (MPC) to deal with packets losses due to jamming
attacks. MPC is a computer-based control approach that deals
explicitly with issues such as multiple inputs and outputs,
several control goals, constraints, and delays, to name a few
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of the features that have made MPC a very successful method
in the industry [13]. In MPC, a model of the system is used to
predict its evolution as a function of the sequence of provided
inputs. In this way, it is possible to compute an optimal
sequence that steers the system along a prediction horizon
according to a given cost function. Hence, what the controller
provides is not a single value for each actuator, but a se-
quence of values for the considered prediction horizon. There
are also implementations of MPC for distributed systems [7]
and concerns regarding cybersecurity in this context have
been addressed in the literature. For example, works as [2],
[16], [17] study different mechanisms to provide resilience in
distributed MPC schemes with respect to malicious agents.

All MPC features are very appealing in the context of
unreliable networks and cybersecurity measures to deal with
jamming attacks. For example, in [12], two different types
of controllers are presented to counter the potential packet
dropout problems associated with wireless communication.
The first one consists in a deterministic controller that uses
a buffer to record an input sequence for the system over a
finite horizon in order to access the desired input even if it
was lost during the communication. The second one, more
efficient, comprises a stochastic MPC (SMPC) formulation
taking into account in the cost function the probability
of a packet loss during the communication between the
controller and the system. Moreover, [10] explores the use
of acknowledgements in SMPC over a network. A SMPC
method is also described in [8], where the probabilistic nature
of the dynamics of the system is taken into account through
Borel-measurable functions. A major challenge in SMPC is
to handle state and control input constraints. In this line
of research, stochastic receding horizon control is studied
with bounded control inputs in [3]. The control problem
becomes even harder if only a part of the input can be
sent to the plant at each time step. The work [11] explores
this problem and presents the implementation of a control
scheme for a real laboratory-scale system. In the literature,
some researchers (see [4]) have also studied the problem
of receding horizon control for stochastic discrete-time sys-
tems including bounded control inputs and incomplete state
information. Another related work is [9], which presents a
stable stochastic predictive control assuming that the control
channel has independent and identically distributed (i.i.d.)
packet dropouts.

In this work, we propose to use a Tree-Based MPC
(TBMPC) to deal with probabilistic packet losses caused by
jamming attacks. The key idea is to consider all the possible
scenarios that can occur during the prediction horizon at each
time step, which leads to a binary tree comprising all the



Fig. 1. Communication between the plant and the controller.

possibilities. Since each scenario has a certain probability of
occurrence, we can calculate the input sequence along the
prediction horizon considering a cost function weighted by
these probabilities.

The outline of the rest of the paper is as follows. In
Section II, we introduce the problem formulation. Section
III provides the basics of the TBMPC formulation. Section
IV presents the application of this control model to a case
study. Finally, concluding remarks are given in Section V.

II. PROBLEM FORMULATION

In this work, we consider a system whose communication
with its controller is done via a network. Therefore, it is
potentially vulnerable to packet losses, e.g., due to jamming
attacks, as shown in Fig. 1. The controller and the plant
exchange data packets over the network every time step. At
some random time steps, the data transmission between the
controller and the plant can fail, forcing the input to become
zero. This phenomenon can have important impacts on the
system and affects its performance in terms of stability,
speed, and accuracy. Anticipating these losses allows us
to reinforce the robustness of the system and to mitigate
performance drops.

It is assumed that the system can be modeled by the
discrete-time state-space model

x(k + 1) = Ax(k) +Bu(k) +Dw(k), (1)

where x(k) ∈ Rn, u(k) ∈ Rp, and w(k) ∈ Rm represent
respectively the state, the inputs, and the disturbances of the
plant. For simplicity, we assume that the state is measurable.

We also assume that states and inputs are bounded by their
physical limits. In particular, the constraints are given by{

xmin ≤ x(k) ≤ xmax,
umin ≤ u(k) ≤ umax.

(2)

Scenarios are determined by packet loss patterns that
might occur when the controller sends data to the plant. In
particular, at each time instant, there are two possibilities
once the actions have been transmitted, which depend on
whether they are lost. This means that in an horizon of
length N , there are Ns = 2N−1 possible scenarios leading
to different input sequences.

For simplicity, we assume that losses occur with prob-
ability pPL ∈ [0, 1] (hence, information is successfully
transmitted with probability 1− pPL. Strictly speaking, this
assumption corresponds to a Bernoulli packet losses setup,
which is often used for random packet dropouts but not

attacks. Nevertheless, it is straight forward to generalize
the problem formulation for more sophisticated assumptions
regarding the probability of packet loss. Specifically, in
wireless channel models, packet loss occurrence probability
is determined as a function of the Signal to Interference plus
Noise Ratio (SINR), which is the ratio of the power of the
transmitted signal to the sum of the jamming interference
signal power and the channel noise power (see, e.g., [5],
[15]). In the setup of the present work, we assume that SINR
is time-invariant, and hence the probability of failure pPL is a
fixed scalar. The strength of jamming attacks affects the value
of pPL, which can become close to 1 under strong jamming
attacks. In Section IV, we illustrate the performance of our
proposed control approach under different attack levels.

Finally, the controller goal is to minimize the cost

V (k) =
∞∑
l=1

[
xi(k + l + 1)TQx(k + l + 1)

+u(k + l)TRu(k + l)
]
,

(3)

while respecting the constraints (2), where Q ∈ Rn×n and
R ∈ Rp×p are positive-definite weighting matrices.

III. TREE-BASED MODEL PREDICTIVE CONTROL

Tree-based MPC is a type of predictive controller that can
adapt the sequence of inputs calculated to several possible
scenarios along the prediction horizon. As in a classic MPC,
the input sequence calculation relies on a model to predict
the system evolution. However, the controller is allowed to
let the input sequence follow different trajectories along the
prediction horizon to provide the best response for each of
the scenarios as new information becomes available. In our
case, input trajectories bifurcate in time depending whenever
packet losses are registered. Nevertheless, a common control
action is required at the first time step of the horizon. Also,
a probability is assigned to each scenario so they can be
weighted accordingly in the optimization.

A. System dynamics

In order to predict the evolution of the system for all
scenarios, we need a model for each one of them. The state
trajectory corresponding to each scenario i ∈ [1, Ns] stems
from (1) and is determined by

xi(k + 1) = Axi(k) +Bi(k)ui(k) +Dwi(k),

where xi ∈ Rn, ui ∈ Rp, wi ∈ Rm represent respectively
the state, the inputs, and the disturbances of the plant for each
scenario. Also, note the time dependence of Bi(k), which is
introduced to the packets loss pattern of scenario i. As it
can be seen, the model proposed is rather general because
we allow each scenario to face different disturbances.

For convenience, we define aggregate vectors of length Ns

xt(k) = [xT1 (k), x
T
2 (k), . . . , x

T
Ns

(k)]T,
ut(k) = [uT1 (k), u

T
2 (k), . . . , u

T
Ns

(k)]T,

and
wt(k) = [wT

1 (k), w
T
2 (k), . . . , w

T
Ns

(k)]T,
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Fig. 2. Possible scenarios along the prediction horizon.

which allow us to describe jointly the dynamics of all
scenarios as

xt(k + 1) = Âxt(k) + B̂(k)ut(k) + D̂wt(k), (4)

where

Â = diag(A,A, . . . , A) ∈ RnNs×nNs ,

B̂(k) = diag(B1(k), B2(k), . . . , BNs(k)) ∈ RnNs×pNs ,

D̂ = diag(D,D, . . . ,D) ∈ RnNs×mNs .

B. Non-anticipativity constraints

The outcome of the TBMPC controller is an optimal
sequence of control actions along a prediction horizon of
length N , i.e.

UTBMPC = {u∗t (k), u∗t (k + 1), . . . , u∗t (k +N − 1)}.

Nevertheless, the Ns input sequences contained in UTBMPC

must be adapted to the problem structure. For example, Fig. 2
illustrates possible input trajectories adapted to the different
scenarios along the prediction horizon, which bifurcate in
time as a full binary tree. In particular, we have N = 3,
leading to Ns = 22 = 4 possible trajectories. In this figure,
each subscript denotes a different input sequence. As it can
be seen, some inputs appear in different sequences, a fact
that has been stressed using the corresponding trajectory
subscripts.

Hence, to implement the structure represented in Fig. 2,
all the scenario inputs for the first time step of the horizon
need to be equal. In the second time step, half of them are
equal and the other half too, and so on. More generally, we
have

ui2N−1−l+1(k + l) = ui2N−1−l+2(k + l) = . . .
= u(i+1)2N−1−l(k + l).

(5)

for all l ∈ [0, N − 1] and i ∈ [0, 2l−1]. These equalities cor-
respond to the so-called non-anticipativity constraints, which
impose limits on the controller proactivity. In particular,
these constraints guarantee that the TBMPC controller cannot
anticipate to the bifurcations due to the system scenarios until
they actually happen.

Non-anticipativity constraints can be exploited to reduce
the number of variables contained in the vector of all optimal
sequences of control actions for all scenarios, Ut. Indeed,
for the first time step of the example, only one variable is
enough since all the inputs are equal. At the second time

step, two variables are enough, etc. This means that we can
use a mapping matrix to have an optimization problem with
less optimization variables. For the example of Fig. 2, we
have

u1(0)
u2(0)
u3(0)
u4(0)
u1(1)
u2(1)
u3(1)
u4(1)
u1(2)
u2(2)
u3(2)
u4(2)


︸ ︷︷ ︸

Ut

=



1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


︸ ︷︷ ︸

M



u1234(0)
u12(1)
u34(1)
u1(2)
u2(2)
u3(2)
u4(2)


︸ ︷︷ ︸

Ured

In general, the transformation can be expressed as

Ut =MUred, (6)

with M ∈ RN2N−1p×p(2N−1). Here, Ured is the reduced
vector of decision variables, which contains the information
necessary to build the input sequences tree Ut .

C. Cost function

The objective in TBMPC is to minimize, at each time step,
the expected value of the cost along the horizon, which is
uncertain due to the different scenarios. In particular, the cost
to minimize at time step k is

Vt(k) =
Ns∑
i=1

piVi(k)

=
Ns∑
i=1

pi
N−1∑
l=0

[
xi(k + l + 1)TQxi(k + l + 1)

+u(k + l)TRu(k + l)
]
,

(7)
where the scalar pi ∈ [0, 1] represents the probability of sce-
nario i. The scenario probabilities are calculated accordingly
to the probability of packet loss.

D. Optimization problem

The key idea is to predict the evolution of xt(k), which
gathers the trajectories corresponding to all possible sce-
narios along the prediction horizon, as a function of the
initial state value (which is the same for all trajectories), the
input sequences (considering the non-anticipativity and the
physical constraints), and the disturbances along the horizon.
Regarding the latter, and for simplicity, it is assumed that
a forecast is available, e.g., the expected value in case of
uncertain disturbances.

Hence, the optimization problem solved at each time step
is

U∗TBMPC = arg min
UTBMPC

Vt(k) (8)

subject to (2), (4), (5), xt = x̂t, where x̂t corresponds to the
measurement of the state, which is common for all scenarios,
and di(k + l) = d̂i(k + l), with d̂i(k + l) the forecast of



Fig. 3. Inverted pendulum system.

scenario i. Here, UTBMPC denotes the vector of optimization
variables.

Remark: Since the packet loss is probabilistic, there is a
chance (with non-zero probability) that the packet transmis-
sions fail during an arbitrary large number of time steps.
If the original system is unstable, the state can become very
large. To avoid feasibility issues in the optimization problem,
soft constraints are a preferable choice in this problem setup.

E. TBMPC control law

The finite horizon optimization problem (8) leads to a
quadratic program. If there is no packet loss, then the
plant applies only the first component of the input sequence
UTBMPC(k). If there are packet losses, it might happen
that the actuator is configured to apply a zero input. Also,
we consider the case where the last received sequence can
be used to apply the actions corresponding to the current
scenario. Finally, if there are more than N−1 packet losses in
a row, it is necessary to use some predefined strategies, e.g.,
repeat the last input value, use the corresponding element of
the last input sequence received, or simply set the inputs to
zero.

IV. CASE STUDY

To illustrate the efficiency of the proposed Tree-based
Model Predictive Control method, we are going to use a
discrete-time version of a cart-pendulum system [1], which
is represented in Fig. 3.

A. Control model

It is well known that the cart-pendulum is a nonlinear
system. Since we are using linear MPC controllers, the
system dynamics need to be linearized, leading to the state-
space model

ẋ
ẍ

θ̇

θ̈

 =


0 1 0 0
0 0 −mg

M 0
0 0 0 1

0 0 (M+m)g
(Ml) 0



x
ẋ
θ

θ̇

+


0
1
M
0
−1
Ml

u.
Here, the input u represents the force applied to the cart, θ
the tilt angle of the rod with respect to the vertical line, x

the position of the cart, M its mass, m the mass at the end
of the rod, l the length of the rod, and g the gravity.

Discretizing the state equation above and considering the
following parameters Te = 0.001s, M = 0.5kg, m = 0.1kg,
and l = 0.5m, we obtain the discrete-time linear model

x(k + 1) = Ax(k) +Bu(k),

with

A =


1 0.001 0 0
0 1 −0.002 0
0 0 1 0.001
0 0 0.0235 1

 , B =


0

0.002
0

−0.004

 .
The initial state is set to
x0 =

[
0.2 −0.01 −0.3 −0.1

]T
.

B. Controller setup

To test the MPC based strategies, we have to tune Q and
R, which are the weight matrices of the cost function (7).
For the inverted pendulum, it is desired that the tilt angle
reaches zero regardless of the angular velocity, the linear
speed of the cart, and its position. Therefore, we set the
diagonal elements corresponding to these variables to zero
and set as 1 the coefficient corresponding to the tilt angle,
i.e., Q = diag(0, 0, 1, 0). As for the control effort, R =
2 · 10−9 was chosen. In this way, the controller prioritizes
the stabilization of the tilt angle over any other variable.

Also, we choose a prediction horizon N = 6 and consider
that the magnitude of the force applied cannot be higher than
50N, i.e., |u| ≤ 50.

Finally, we consider different cases for the probability of
packet loss and the presence of disturbances in the next
subsections.

C. No packet loss case

If we set the probability of packet loss to zero and there
are no disturbances, the standard MPC and the TBMPC
are equivalent and will give exactly the same response, as
illustrated in Fig. 4. As can be checked, the magnitude of the
applied force does not exceed 50N in both cases. Notice that
the aggressive setup of the controller generates significant
oscillations but makes the tilt angle reach zero very rapidly
(tr95% ' 0.35s).

D. Packet losses case

To assess the effect of packet losses, we assume now that
statistically 40% of the transmissions between the controller
and the plant are lost, i.e., pPL = 0.4.

First, we consider that both MPC approaches are imple-
mented in such a way that if the plant does not receive any
input sequence due to a packet loss, it applies zero to the
system. With these parameters, we test TBMPC and Standard
MPC and we obtain the following results for the tilt angle
and force (Fig. 5). The accumulated cost corresponding to
each method for this simulation is TBMPC = 61.23 and MPC
= 100.60.

Next, we consider that both MPC approaches are imple-
mented in such a way that if the plant does not receive



Fig. 4. Tilt angle and force over time for Standard MPC and TBMPC with
packet loss probability pPL = 0 (state trajectories are overlapping).

any input sequence due to a packet loss, it applies the
corresponding element of the last input sequence that the
plant successfully received. Also, if the number of consec-
utive drops exceeds the length of the sequence, the last
element of the sequence is applied. In this case, the situation
improves for MPC, but not enough to outperform TBMPC,
as happens in Fig. 6. The accumulated cost corresponding
to each method for this simulation is TBMPC = 50.47 and
MPC = 51.48.

E. Noise case

Here, we consider that each state is subject to disturbances
in the state update equation, which follow a normal distri-
bution with zero mean and variance given by σ2 = 0.002.
Moreover, the probability of packet losses in this example
is set to pPL = 0.6. We obtain the results shown in Fig. 7,
which were computed using the same disturbance sequence
for both methods. Also, controllers only had information
regarding the mean of the noise to perform their calcula-
tions. As for the accumulated cost of both methods in this
simulation, it was TBMPC = 39.96 and MPC = 43.46.

Fig. 5. Tilt angle and force applied over time for Standard MPC and
TBMPC with packet loss probability pPL = 0.4 when zero input is applied
to the plant in case of packet loss.

V. CONCLUSION

In this paper, we proposed a TBMPC method designed for
random packet loss scenarios, which can be used in cyber-
security problems, e.g., to mitigate jamming attacks. As
shown by the simulations, the method proposed outperforms
standard MPC in this type of problems, very particularly if
the policy followed by the actuator is to set the input to zero
when there are packet losses. Also, this method is suitable
to deal with uncertain disturbances due to the stochastic
formulation of the controller.

Future work will deal with the extension of the method
to obtain probability bounded stability guarantees. Also, the
effect of the saturation will be analysed in depth.
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