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Abstract

The Nonlinear Noisy Leaky Integrate and Fire (NNLIF) model is widely used to describe the dynamics of

neural networks after a diffusive approximation of the mean-field limit of a stochastic differential equation.

In previous works, many qualitative results were obtained: global existence in the inhibitory case, finite-time

blow-up in the excitatory case, convergence towards stationary states in the weak connectivity regime. In

this article, we refine some of these results in order to foster the understanding of the model. We prove with

deterministic tools that blow-up is systematic in highly connected excitatory networks. Then, we show that

a relatively weak control on the firing rate suffices to obtain global-in-time existence of classical solutions.
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1 Introduction

Since the biologically plausible mathematical models in neuroscience tend to be far too complex to be tackled

numerically or analytically, researchers in computational neurosciences proposed simpler models aimed at en-

compassing the qualitative complexity of neural networks in a tractable framework. A popular approach is to

study mean field differential models arising from stochastic differential equations. Over the last decade, many

partial differential models were studied: Fokker-Planck equations with Poisson discharges [29]; population den-

sity models of integrate and fire neurons with jumps [18] and Fokker-Planck equations including conductance

variables [33, 32], which are formal mean-field limits of integrate and fire networks assuming Poisson approxi-

mations [34, 15, 16]; time elapsed models [30, 31, 26], recently derived as mean-field limits of Hawkes processes

[13, 12]; the mean-field McKean-Vlasov equations [25] related to the behaviour of Fitzhugh-Nagumo neurons

[19], etc.

We focus here on the so-called Nonlinear Noisy Leaky Integrate & Fire model, NNLIF model in short,

proposed in the late 90s by Brunel and Hakim in [2, 3]. In this model, neurons are described via their membrane

potential v. If they reach a critical or threshold value VF , the neurons emit an action potential and their voltage

values return to the reset value VR (VR < VF ). Let the function p(·, t) represent the probability density of the

electric potential of a randomly chosen neuron at time t. We consider the following PDE model (see [1, 2, 3]

for its derivation):

∂p

∂t
(v, t) +

∂

∂v
[(−v + bN(t))p(v, t)]− a∂

2p

∂v2
(v, t) = N(t)δ(v − VR), v ≤ VF , (1.1)

where we denote by δ the Dirac mass at point 0. For the sake of clearness, we will often write δVR = δ(v− VR).

The firing rate N of the network is given by

N(t) = −a∂p
∂v

(VF , t) ≥ 0. (1.2)

The parameter a > 0 is the diffusion coefficient and b is the connectivity parameter. If b is positive, the neural

network is average-excitatory; if b is negative, the network is average-inhibitory.

The PDE (1.1) is completed with initial and boundary conditions

p(v, 0) = p0(v) ≥ 0,

∫ VF

−∞
p0(v)dv = 1 and p(VF , t) = p(−∞, t) = 0. (1.3)

The deterministic NNLIF model arises as the probability density of the following non-linear stochastic

mean-field equation:

Xt = X0 +

∫ t

0

f(Xs)ds+ αE[Mt] + σBt −Mt, (1.4)

where σ > 0, α ∈ R are parameters, (Bt)t>0 is a standard Brownian motion in R, f : R → R is a Lipschitz
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continuous function and X0 < 1 almost surely. The process Mt counts the number of times Xt hits the threshold

VF = 1 before time t and E[Mt] represents the expected number of times the threshold is reached before t. This

stochastic process was at first studied by Delarue, Inglis, Rubenthaler and Tanré in [15, 16]; the process Xt was

meant to describe the potential of a typical neuron in an infinite mean-field network. As we further explain

below this type of equation was investigated in a very similar mathematical setting in [20, 21, 28, 27] with the

aim of modelling large portfolio credit problems or systems of banks with mutual exposures in mathematical

finance.

When f(x) = −x, according to [15][Lemma 4.2, (iii)], the density p(v, t)dv = P(Xt ∈ dv) is a solution

in the sense of distributions to (1.1)-(1.2)-(1.3) with b = α, a = σ2

2 , VF = 1, VR = 0, N(t) = d
dtE[Mt],

p0(v)dv = P(X0 ∈ dv). The connection between problems (1.1)-(1.2)-(1.3) and (1.4) has been the subject of

recent studies: [24, 7].

The aim of this article is to investigate two aspects of the system (1.1)-(1.2)-(1.3).

The first one concerns finite-time blow-up. More precisely, our goal is to better understand which combina-

tions of the initial condition p0 and the connectivity strength b give rise to blow-up events. A first result was

obtained by Cáceres, Carrillo and Perthame in [4][Theorem 2.2] with deterministic techniques. They proved

that in the excitatory case b > 0, finite-time blow-up occurs in at least two cases: if the initial condition is

concentrated enough around the firing potential VF depending on the value of b > 0 or if b is large enough

depending on the initial condition p0.

We prove here that if we choose b large enough, then blow-up occurs independently of the initial condition

p0. Note that finite-time blow-up was also studied in the stochastic system (1.4). Hambly, Ledger and Søjmark

proved in [21][Theorem 1.1] that for all initial condition X0 there exists a large enough connectivity α such that

the solution blows-up in finite time; their bound on α depends only on the first moment of the law of X0.

There is another interesting question, which we are not addressing in this article: is it possible to extend the

solutions after a blow-up event? Carrillo, González, Gualdani and Schonbek proved in [11][Theorem 1.1] that

a classical solution blows-up in finite time if and only if the firing rate N(t) diverges in finite time. Delarue,

Inglis, Rubenthaler and Tanré proved in [16] that it is possible in some cases to continue solutions of the

stochastic problem (1.4) after a blow-up event: they define a notion of physical solution which is weaker than

the notion of solutions the same authors proposed before in [15]. They view blow-up as a synchronisation

of some macroscopic part of the network. To sum up their idea: in case of blow-up, the particle defined by

(1.4) feels a kick after being reset at VR and makes a corresponding instantaneous jump towards VF . If the

jump doesn’t send it back to VF the solution is said to be physical and can continue; the jump is proportional
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to the size of the part of the network which synchronises during the blow-up event. When viewed through

the mathematical finance viewpoint, the jumps in physical solutions are even more important since they may

represent, for example, systematic crises in a system of banks with mutual exposures. Hence, many recent

articles focused on the parameter range which yields blowing-up solutions. Nadtochiy and Shkolnikov proved in

[27][Theorem 2.6] the uniqueness of physical solutions as long as ‖N(·)‖L2 < +∞. Hambly, Ledger and Søjmark

proved in [21][Theorem 1.2] that these physical solutions of (1.4) have minimal jumps after blow-up and they

made progresses towards a proof of unicity and blow-up rate for the physical solutions in the space of càdlàg

functions ([21][Theorem 1.8] and the discussion therein). This last result resolved previous ambiguity about the

validity of the propagation of chaos for the underlying particle system studied, e.g., in [16, 27]. Recently, more

methods have been developed to extend solutions of similar stochastic equations in spite of the presence of blow-

up ([17], [23]). In particular, Delarue, Nadtochiy and Shkolnikov proved in [17][Theorem 1.4] the uniqueness

of global-in-time physical solutions for the supercooled Stefan problem (which is similar to the NNLIF model

after rescaling, [11]) under mild hypotheses; the authors also proved that blow-up points are at most countable

and they characterised the smoothness of the firing rate after blow-up events (however, they didn’t rule out the

possibility of their accumulation).

Secondly, we investigate global-in-time existence of classical solutions for system (2.1) in the excitatory case

(b > 0). As we said above, given b > 0 there are blowing-up solutions for initial conditions p0b(·) concentrated

enough around VF ([4][Theorem 2.2]). Hence, we cannot hope to find a criterion for global-in-time existence

independently of the initial condition. In this article, we prove that given an initial condition p0, we can find

a value b∗(p0) such that if 0 < b < b∗, then the classical solution is global-in-time (see Theorem 4.5). Such a

result was obtained for the associated stochastic equation (1.4) in [15][Theorem 2.4]: for any initial condition

X0 = x0 < 1, there exists α∗(x0) ∈ ]0, 1[ such that for all α ∈ ]0, α∗[ , there exists a global-in-time solution of

(1.4) such that t 7→ E[Mt] is C1 on R+ (i.e. the firing rate is continuous). Note that in [27, 21], the firing

rate N(t) is in L2
loc until the first time of explosion (E[Mt] is in H1). However, up until now there did not

exist any deterministic method to obtain a global-in-time existence result for problem (1.1)-(1.2)-(1.3) in the

excitatory case. Indeed, local-in-time classical solutions were constructed by Carrillo, Gonzales, Gualdani and

Schonbeck in [11][Theorem 1.1] but global-in-time existence was only proved in the inhibitory case (b < 0). Let

us mention that this result for the inhibitory case was obtained with another method (universal super-solutions)

in [10][Corollary 4.5].

The main difficulty in the proof of Theorem 4.5 is proving that

T ∗ := sup{t > 0 | N(t) < +∞} = +∞

4



in order to apply the result of [11][Theorem 1.1] which states that T ∗ is the maximal time of existence. To do

this, we proceed in two steps. First, we prove uniform a priori estimates on the firing rate N(t) in Lq, q > 2.

The strategy is to construct new entropy estimates inspired from the method the authors of [10][Theorem 3.1]

used to prove uniform L2 estimates on N(t). Second, we recast the problem (1.1)-(1.2)-(1.3) into a Stefan-like

free boundary problem via a change of variables as proposed in [11], which allows us to obtain an implicit

Duhamel formula on N(t); we use this formula to lift our Lq estimates (q > 2) to L∞ estimates. Let us mention

that q > 2 is necessary to conduct our proof (see Remark 4.8).

To complete the state of the art on this type of equations, note that other variants of the classical NNLIF

system were proposed and studied. In [6], Cáceres and Perthame considered the NNLIF system with a refractory

period. In [9], Cáceres and Schneider proposed a general system with excitatory-inhibitory coupling, a refractory

state and a synaptic delay (the transmission of pulses in not instantaneous any more). Numerical simulations

are provided that show stable periodic solutions in the delayed case. Cáceres, Roux, Salort and Schneider

([8]) proved some results on the NNLIF equation with synaptic delay: global-in-time existence for all smooth

enough initial data for both positive and negative values of b, convergence towards stationary states for small

connectivities b, L2 estimates on the firing rate. Some papers proposed suitable numerical methods for NNLIF

type systems: [5], [35], [22], [36].

This article is organised as follows. In Section 2, we introduce the definitions of solution we will use

throughout the article. Section 3 focuses on finite-time blow-up: we prove that for b large enough, there is no

global-in-time solution to (2.1) – even in the weak sense – independently of the initial datum. Section 4 is about

global-in-time existence of the solutions of (2.1); we first derive, in Subsection 4.1, uniform Lq estimates on the

firing rate N for small enough connectivities; then, in Subsection 4.2, we use the previous estimates to prove

global-in-time existence in the excitatory case for sufficiently small connectivity parameters 0 < b < b∗(p0).

2 Notions of solution

We are interested in the classical NNLIF system which writes as follows. Let VR, VF ∈ R such that VR < VF .

Let b ∈ R, a ∈ R∗+. We study the system

∂p

∂t
+

∂

∂v

[
(−v + bN(t))p

]
− a∂

2p

∂v2
= δVRN(t),

N(t) = −a∂p
∂v

(VF , t), p(VF , t) = 0, p(−∞, t) = 0,

p(v, 0) = p0(v) > 0,
∫ VF
−∞ p0(v)dv = 1.

(2.1)
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We define both classical and weak solutions for this system, following [11] and [4]:

Definition 2.1 We say that (p,N) is a classical (fast-decreasing) solution, of system (2.1) on [0, T ∗[ , T ∗ ∈

R∗+ ∪ {+∞} if

• p ∈ C 0( ]−∞, VF ]× [0, T ∗[ )∩C 2,1
((

]−∞, VR[∪ ]VR, VF ]
)
× [0, T ∗[

)
∩L∞

(
[0, T ∗[ , L1

+( ]−∞, VF ])
)

and

N ∈ C 0([0, T ∗[ );

• Functions p and N satisfy (2.1) in the classical sense on ]−∞, VR[∪ ]VR, VF ] and in the sense of distri-

butions in ]−∞, VF ];

• ∀t ∈ [0, T ∗[ ,∀Q ∈ R[X], limv→−∞Q(v)p(v, t) = 0 and limv→−∞Q(v)
∂p

∂v
(v, t) = 0 (fast-decreasing).

And, for weak solutions:

Definition 2.2 Let T ∗ ∈ R∗+ ∪ {+∞}. Let p ∈ L∞([0, T ∗[ , L1
+( ]−∞, VF [ )) and N ∈ L1

loc,+([0, T ∗[ ). The pair

(p,N) is said to be a weak solution of (2.1) if for every test function φ ∈ C∞( ]−∞, VF ]) such that for almost

every t ∈ [0, T ∗[ , (
φ(·)p(·, t) , ∂

2φ

∂v2
(·)p(·, t) , (|v|+ 1)

∂φ

∂v
(·, t)p(·, t)

)
∈
(
L1( ]−∞, VF [ )

)3
, (2.2)

we have

d

dt

∫ VF

−∞
p(v, t)φ(v)dv =

∫ VF

−∞

[(
− v + bN(t)

)∂φ
∂v

+ a
∂2φ

∂v2

]
p(v, t)dv +N(t)

(
φ(VR) − φ(VF )

)
, (2.3)

where the time derivative is to be taken in the sense of distributions and where limt→0

∥∥p(·, t)− p0(·)
∥∥
L1 = 0.

A weak solution is said to be fast-decreasing if for all polynomial function Q ∈ R[X], for almost every t ∈ [0, T ∗[ ,

we have limv→−∞Q(v)p(v, t) = 0.

Remark 2.3 If we apply the definition of weak solution with the test function φ = 1, we obtain for t ∈ R+,∫ VF

−∞
p(v, t)dv =

∫ VF

−∞
p0(v)dv = 1.

For the sake of brevity in our results, we will refer to the following regularity assumptions on initial data.

Assumptions 2.4 (Initial data for classical solutions) p0 ∈ C 0( ]−∞, VF ])∩C 1( ]−∞, VR[∪ ]VR, VF ])∩

L1( ]−∞, VF ]) is non-negative, fast decreasing at −∞ and p0(VF ) = 0.
dp0

dv
admits finite left and right limits

at VR and is fast decreasing at −∞.

To sum up, the following is known ([11], [4],[10]) on the solutions of the deterministic problem (2.1):

• For any initial datum satisfying Assumptions (2.4), there exists a unique local-in-time classical solution

of (2.1) and its maximal time of existence satisfies T ∗ = sup{t > 0 | N(t) < +∞}.
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• The shape of stationary states is known (see (4.3) below).

• In the inhibitory or in the linear case (b 6 0), T ∗ = +∞, there exists a unique stationary state and the

solutions are uniformly bounded; the firing rate N is also uniformly bounded. There exists a constant

C > 0 such that if −C < b 6 0, the solution converges exponentially fast towards the stationary state

(p∞, N∞).

• In the excitatory case (b > 0), there exists p0 such that no weak solution can be global-in-time. If b is

large enough, there is no stationary state. If b is small enough, there is a unique stationary state; if b is

small enough regarding p0, the solution converges (up to it’s time of existence) exponentially fast towards

the unique stationary state. For intermediate values of b, two or more stationary states can coexist.

3 Blow-up for all initial conditions when b is large enough

We extend here the result of [4] on finite-time blow-up in the NNLIF system which states that for every positive

b there exist blowing-up solutions from initial data p0b(·) concentrated enough around VF . We prove that for

large enough positive values of b all solutions blow-up in finite time regardless of the initial repartition of their

mass.

The main idea is to use an evolution equation for the linear moment in order to control the quantity of

mass that stays near VF : we prove that if we wait for a long enough time t0, some quantity of the initial

mass (
∥∥p0∥∥

1
= 1 by hypothesis) will stay between VR and VF and this quantity is independent from the initial

condition p0. Then, we use the method of [4] and we prove, thanks to our control on the mass between VR and

VF , that the exponential moment is unbounded, thus reaching a contradiction with mass conservation.

Theorem 3.1 We have

• If VF 6 0, then if b > VF − VR, no fast-decreasing weak solution of (2.1) can be global in time.

• If VF > 0, then if

b > max

(
VF − VR ,

VF
4

inf
y∈ ]1,
√

1+ a
4 [

(1 + y)2
(

1− e−4
VF−VR
VF

1
y2−1

)
e

2
y−1

)
,

no fast-decreasing weak solution of (2.1) can be global in time.

Proof. Assume (p,N) is a global in time fast-decreasing weak solution. We denote

Mφ(t) =

∫ VF

−∞
(VF − v)p(v, t)dv
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and we use the definition of weak solution with the test function φ(v) = VF − v ; it yields

d

dt
Mφ(t) = VF −Mφ(t) +N(t)(VF − VR − b).

If b > VF − VR,
d

dt
Mφ(t) 6 VF −Mφ(t), that is to say

d

dt

(
Mφ(t)− VF

)
6 −

(
Mφ(t)− VF

)
.

Using Grönwall’s lemma, we deduce

Mφ(t)− VF 6
(
Mφ(0)− VF

)
e−t.

If Mφ(0) 6 VF , then Mφ(t) 6 VF for all t ∈ R∗+ and otherwise we have the exponential convergence of Mφ(t)

towards VF . Thus, we have

∀ε ∈ R∗+,∃t0 ∈ R∗+ such that ∀t ∈ [t0,+∞[ , Mφ(t) 6 VF + ε.

• Assume VF < 0:

There exists ε ∈ R∗+ small enough such that VF + ε < 0 and then the quantity Mφ(t) becomes negative after

the time t0, which is a contradiction. Therefore, no weak solution can be global in time in this case.

• Assume VF > 0:

We have, for all η ∈ R∗+,

∀t ∈ [t0,+∞],

η

∫ VF−η

−∞
p(v, t)dv 6

∫ VF−η

−∞
(VF − v)p(v, t)dv 6Mφ(t) 6 VF + ε,

and by choosing η = (VF + ε)ξ, where ξ ∈ ]1,+∞[ is a yet unchosen value, we obtain

∀t ∈ [t0,+∞],

∫ VF−η

−∞
p(v, t)dv 6

VF + ε

η
<

1

ξ
.

Since p is a probability density on ]−∞, VF [ we have,∫ VF

VF−η
p(v, t)dv >

ξ − 1

ξ
.

Let’s take now the test function defined by ψ(v) = eµv. We denote

Mµ(t) =

∫ VF

−∞
p(v, t)eµvdv.

The previous computations yield,

∀t ∈ [t0,+∞], Mµ(t) >
∫ VF

VF−η
eµvp(v, t)dv > eµ(VF−η)

∫ VF

VF−η
p(v, t)dv ≥ ξ − 1

ξ
eµ(VF−η).

We write the weak solution definition for ψ:

d

dt
Mµ(t) = µ

∫ VF

−∞
(−v + bN(t))eµvp(v, t)dv + aµ2Mµ(t) +N(t)(eµVR − eµVF ),
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which gives the following bound, for t > t0:

d

dt
Mµ(t) > −VFµMµ(t) + µbN(t)Mµ(t) + aµ2Mµ(t) +N(t)(eµVR − eµVF ).

The later writes

d

dt
Mµ(t) > N(t)

(
bµMµ(t) + eµVR − eµVF

)
+ µ(aµ− VF )Mµ(t).

Thus, we have,

d

dt
Mµ(t) > N(t)

(
µb
ξ − 1

ξ
eµ(VF−η) + eµVR − eµVF

)
+ µ(aµ− VF )Mµ(t).

If b satisfies

b >
ξ

ξ − 1

eµVF − eµVR
µeµ(VF−η)

=
ξ

ξ − 1

eµVF − eµVR
µeµVF

eµVF ξeµεξ, (3.1)

we then have

∀t ∈ [t0,+∞[ ,
d

dt
Mµ(t) > µ(aµ− VF )Mµ(t).

If we also assume that µ >
VF
a

, by Grönwall’s lemma and since Mµ(t0) > 0, we obtain

lim
t→+∞

Mµ(t) = +∞,

which is a contradiction with the inequality

∀t ∈ R∗+, Mµ(t) < eµVF
∫ VF

−∞
p(v, t)dv = eµVF .

Therefore, if b satisfies condition (3.1) for some ε > 0, the solution cannot be global in time. As ε ∈ R∗+ can be

arbitrarily small, if

b >
ξ

ξ − 1

eµVF − eµVR
µeµVF

eµVF ξ, (3.2)

then there is no global-in-time fast-decreasing weak solution.

Taking the infimum on ξ ∈ ]1,+∞[ and µ ∈ ]VFa ,+∞[ in the right-hand side of (3.2) and applying Lemma A.1

of the appendix, we get the final result.

Remark 3.2 When VF ≤ 0 the bound is optimal; indeed, for b < VF − VR there exists at least one stationary

state, which constitutes a global in time fast-decreasing solution. In the case VF > 0, the optimal bound can

be strictly above VF − VR because for some parameters there exist stationary states in the case b > VF − VR

(see [4][Theorem 3.1]). Yet, we probably have a sub-optimal lower bound for b because of the limitations of our

method. Finding the optimal bound and linking it to the existence of stationary states is an interesting open

question.

Remark 3.3 In the article [4], the authors study the number of stationary states depending on the parameters.
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They find that there is no stationary state under the condition

b > max

(
2(VF − VR) , 2VF

∫ +∞

0

(
e
sVF√
a − e

sVR√
a

) e−s2
s

ds

)
. (3.3)

We did a numerical quantitative comparison (see Figure 1) between (3.3) and the lower bound for b we provide in

Theorem 3.1. Indeed, if every solution blows-up in finite time, there can be no stationary state. The numerical

simulations indicate that our bound is better when a or VF − VR are large.

Figure 1: Comparison between the lower bound (3.3) in [4] and the lower bound in Theorem 3.1 for non-existence
of stationary states, for different values of a. The new bound is always better when VF − VR is large enough.
We set VR = −1 for convenience but it does not impact the results.

4 Global-in-time existence in excitatory networks

In this section, we prove global-in-time existence in an excitatory network for a wide class of initial data. To do

so, we first improve the L2 estimates on the firing rate in [10][Theorem 3.1] into Lq estimates. Then, we take

advantage of the Lq estimates (we choose q = 3 for clarity), q > 2, and we obtain global-in-time existence for

appropriate parameters and initial data by following ideas of [11].
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4.1 A priori Lq estimates for the firing rate

For the sake of clarity, we assume in all this section that

0 < VR < VF . (4.1)

This can be done without loss of generality by using the rescaling p̄(v, t) = αp(βv + γt, t), N̄(t) = α
βN(t), with

α, β > 0, γ ∈ R.

The authors of [10][Theorem 3.1] proved uniform L2 estimates on the firing rate: for all b ∈ ]−∞, η],∫ T

0

N(t)2dt 6 C(1 + T ).

In the excitatory case b > 0, η = η(p0) > 0 depends on the initial datum p0. Making more smallness hypotheses

on b, they used these L2 estimates in order to prove convergence to the unique (unique because b is then small

enough) stationary state via an entropy method and a Poincaré-like inequality. As explained in Remark 4.8

bellow, these L2 estimates are not sufficient to prove global-in-time existence; the convergence to stationary

state result in [10] is only valid up to an unknown time of existence. Thus we extend the result to Lq estimates

under similar hypotheses. More precisely, we prove:

Theorem 4.1 Let b1 ∈ R∗+ be such that there exists a stationary state (p1∞, N
1
∞). Let VM ∈ ]VR, VF [ ; denote

Sq(b1, VM ) =

∫ VF

VM

p0(v)q

p1∞(v)q−1
dv.

For every exponent q ∈ N, q > 2, for every initial condition p0 such that Sq(b1, VM ) < +∞, for every fast-

decreasing classical solution of (2.1) from p0,

• There exists a constant Cq ∈ R∗+ depending only on VF , q, b1 and a (thus independent from Sq(b1, VM ))

and a constant T ∈ R+ which depends only on VM and Sq(b1, VM ) such that for every interval I ⊂ ]T,+∞[

and for all b ∈ ]−∞, 0], ∫
I

N(t)qdt 6 Cq(1 + |I|).

• Let b ∈ R∗+. If b is small enough regarding Sq(b1, VM ) and VM , there exists a constant Cq ∈ R∗+ depending

only on VF , q, a, b1, VM and Sq(b1, VM ) such that for every interval I ⊂ R+,∫
I

N(t)qdt 6 Cq(1 + |I|).

Let us first make some comments on the term

Sq(b1, VM ) =

∫ VF

VM

p0(v)q

p1∞(v)q−1
dv

and the technical hypothesis Sq(b1, VM ) < +∞.
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• The main idea is that these uniform estimates on the firing rate N(t) depend only upon the initial

repartition of mass in a neighbourhood of VF : if we choose any parameter VM such that VR < VM < VF ,

the proof of Theorem 4.1 only uses the equations on [VM , VF ] and the shape of the initial condition p0 in

] −∞, VM [ doesn’t have any impact on the results. Hence, if b < 0 or if b > 0 is small enough regarding

Sq(b1, VM ) and VM , we can control uniformly the Lq norm of the firing rate.

• The technical hypothesis Sq(b1, VM ) < +∞ is necessary to apply our method because we study at some

point an ODE whose initial condition is close to Sq(b1, VM ). Thus, we need this initial quantity to be finite

because otherwise the computations don’t make sense. It is not a restrictive hypothesis as a sufficient

condition to have it is simply (see computation (4.27) below): p0 ∈ L∞( ]VR, VF [ ) and

lim sup
v→VF

p0(v)

VF − v
< +∞.

Note that the rate of decay at the boundary is an important matter for this type of equation (see remark

4.10 below).

Then, let us recall from [4][Section 3.] that the stationary states (p∞, N∞) satisfy

∂

∂v

[
(−v + bN∞)p∞

]
− a∂

2p∞
∂v2

= δVRN∞,

N∞ = −a∂p∞
∂v

(VF ), p∞(VF ) = p∞(−∞) = 0,
(4.2)

and are of the form

p∞(v) =
N∞
a

e−
(v−bN∞)2

2a

∫ VF

max(v,VR)

e
(w−bN∞)2

2a dw. (4.3)

where N∞ is a solution of a fixed-point equation defined and studied in [4].

Let (p1∞, N
1
∞) be a stationary state associated to a parameter b1 > 0. Let (p,N) be the unique classical

solution associated with the parameter b and the suitable initial condition p0. We denote

H(v, t) =
p(v, t)

p1∞(v)
and W (v, t) = p1∞(v)H(v, t)q =

p(v, t)q

p1∞(v)q−1
.

We will also use the following cutoff function

∀v ∈ ]−∞, VF ], γ(v) = e
−1

β−(VF−v)2 if v > α, γ(v) = 0 otherwise, (4.4)

where β = (VF − α)2 and α ∈ ]VR, VF [. Function γ has some handy properties one can find in [10][Lemma 3.4]:

Lemma 4.2 (Carrillo, Perthame, Salort, Smets) Let 0 < VR < VF and let α ∈ ]VR, VF [. Then γ defined

in (4.4) is a positive increasing function on ]α, VF [ and the following properties hold:

1. limv→VF
γ′(v)
γ(v) = 0;

2. There exists a constant C > 0 such that γ′2 + γ′′2 + γ′′′2 6 Cγ;
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3. There exists a constant η ∈ ]α, VF [ such that γ”(η) = 0 and for all v ∈ ]η, VF [ , γ′′(v) 6 0.

The following technical lemma is proved in the appendix. The proof is purely computational.

Lemma 4.3 Let (p,N) a fast-decreasing classical solution of (2.1) for a parameter b ∈ R and let b1 ∈ R∗+ such

that there exists at least one stationary state (p1∞, N
1
∞) for equation (2.1). Then, with the notations above,

d

dt

∫ VF

−∞
W (v, t)γ(v)dv 6

∫ VF

−∞

(
− v + bN(t)

)
W (v, t)γ′(v)dv + a

∂W

∂v
(VF , t)γ(VF )− aW (VF , t)γ

′(VF )

− aq(q − 1)

∫ VF

−∞
p1∞(v)H(v, t)q−2

(
∂H

∂v
(v, t)

)2

γ(v)dv + a

∫ VF

−∞
W (v, t)γ′′(v)dv

− (q − 1)(bN(t)− b1N1
∞)

∫ VF

−∞

∂p1∞
∂v

(v)H(v, t)qγ(v)dv. (4.5)

We now prove another technical lemma, this proof is inspired from the proof of Theorem 3.1 in [10].

Lemma 4.4 Let α ∈ ]VR, VF [ . If α is close enough to VF ,

• If b 6 0, there exist constants C1, C2 ∈ R∗+ depending only on α, VF , q, b1 and a such that

d

dt

∫ VF

−∞
W (v, t)γ(v)dv 6 − γ(VF )

N1
∞
q−1N(t)q

+ (q − 1)(bN(t)− C1)

∫ VF

−∞
W (v, t)γ(v)dv + C2

∫ VF

α

H(v, t)q−2p1∞(v)dv. (4.6)

• If b > 0, there exist constants C3, C4, C5, C6, C7 ∈ R∗+ depending only on α, VF , q, b1 and a such that

d

dt

∫ VF

−∞
W (v, t)γ(v)dv 6 − γ(VF )

N1
∞
q−1N(t)q

+ bqN(t)q
(
C3 + C4

∫ VF

−∞
W (v, t)γ(v)dv + C5

∫ VF

α

H(v, t)q−2p1∞(v)dv
)

+ C6

∫ VF

α

H(v, t)q−2p1∞(v)dv − C7

∫ VF

−∞
W (v, t)γ(v)dv. (4.7)

Proof.

• Inhibitory case:

Looking at the expression of p1∞ in formula (4.3), we can see that if α is close enough to VF , p1∞ is of class C∞

on [α, VF ] and we have

∀v ∈ [α, VF ],
∂p1∞
∂v

(v) 6 −p1∞(v).

Since b 6 0, we have

− (bN(t)− b1N1
∞)

∫ VF

−∞

∂p1∞
∂v

(v)H(v, t)qγ(v)dv 6 (bN(t)− b1N1
∞)

∫ VF

−∞
W (v, t)γ(v)dv. (4.8)
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Moreover, since γ is increasing, b is non-positive and α is positive, we have∫ VF

−∞

(
− v + bN(t)

)
W (v, t)γ′(v)dv 6 0. (4.9)

Using boundary conditions and the facts that ∂vp(VF , t) = limv→VF
−p(v,t)
VF−v and ∂vp

1
∞(VF ) = limv→VF

−p1∞(v)
VF−v >

0, we compute

W (VF , t) = lim
v→VF

(
p(v, t)q−1

p1∞(v)q−1
p(v, t)

)
= lim
v→VF

( −p(v,t)VF−v
−p1∞(v)
VF−v

)q−1
p(v, t)

 =

(
∂p
∂v (VF , t)
∂p1∞
∂v (VF )

)q−1
p(VF , t) = 0. (4.10)

and

− a∂W
∂v

(VF , t) = −a lim
v→VF

q ∂p∂v (v, t)p(v, t)q−1p1∞(v)q−1 − (q − 1)
∂p1∞
∂v (v)p1∞(v)q−2p(v, t)q

p1∞(v)2(q−1)

= lim
v→VF

q
(
−a∂p∂v (v, t)

)(
a p(v,t)VF−v

)q−1 (
a
p1∞(v)
VF−v

)q−1
− (q − 1)

(
−a∂p

1
∞
∂v (v)

)(
a
p1∞(v)
VF−v

)q−2 (
a p(v,t)VF−v

)q
(
a
p1∞(v)
VF−v

)2(q−1)
=
qN(t)qN1

∞
q−1 − (q − 1)N(t)qN1

∞
q−1

N1
∞

2(q−1) =
N(t)q

N1
∞
q−1 . (4.11)

The function γ being non-negative and its second order derivative being non-positive on an interval [η, VF ] for

some η ∈ ]α, VF [ (see Lemma 4.2), we deduce from (4.5), (4.8), (4.9), (4.10) and (4.11) the inequality

d

dt

∫ VF

−∞
W (v, t)γ(v)dv 6 − N(t)q

N1
∞
q−1 γ(VF )− aq(q − 1)

∫ VF

−∞
H(v, t)q−2p1∞(v)

(
∂H

∂v
(v, t)

)2

γ(v)dv

+a

∫ η

−∞
W (v, t)γ′′(v)dv + (q − 1)(bN(t)− b1N1

∞)

∫ VF

−∞
W (v, t)γ(v)dv.

(4.12)

Now, let’s control the term containing γ′′. We compute, using integration by parts and γ(η) = 0 (Lemma 4.2),∫ η

−∞
W (v, t)γ′′(v)dv =

∫ η

−∞
Hq−1 ∂

∂v

(∫ v

−∞
p(w, t)dw

)
γ′′dv

= −
∫ η

−∞

∂Hq−1

∂v

(∫ v

−∞
p(w, t)dw

)
γ′′dv −

∫ η

−∞
Hq−1

(∫ v

−∞
p(w, t)dw

)
γ′′′dv

= −(q − 1)

∫ η

−∞

∂H

∂v
Hq−2

(∫ v

−∞
p(w, t)dw

)
γ′′dv −

∫ η

−∞
Hq−1

(∫ v

−∞
p(w, t)dw

)
γ′′′dv.

Moreover, since p is a probability density,∣∣∣∣∫ η

−∞
W (v, t)γ′′(v)dv

∣∣∣∣ 6 (q − 1)

∫ η

−∞

∣∣∣∣∂H∂v
∣∣∣∣Hq−2 |γ′′(v)| dv +

∫ η

−∞
Hq−1 |γ′′′(v)| dv.

If α is close enough to VF , there exists C̃ ∈ R∗+ such that p1∞ > C̃ on [α, η], and with Peter and Paul inequality,∣∣∣∣∫ η

−∞
W (v, t)γ′′(v)dv

∣∣∣∣ 6 εC̃(q − 1)

∫ η

−∞
Hq−2

(
∂H

∂v

)2

p1∞ |γ′′|
2
dv +

C̃(q − 1)

ε

∫ η

α

Hq−2p1∞dv

+ εC̃

∫ η

−∞
Hqp1∞ |γ′′′|

2
dv +

C̃(q − 1)

ε

∫ η

α

Hq−2p1∞dv.
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There exists C ∈ R∗+ such that γ′′2 6 Cγ and γ′′′2 6 Cγ (Lemma 4.2); thus there exists C̄ ∈ R∗+ such that∣∣∣∣∫ η

−∞
W (v, t)γ′′(v)dv

∣∣∣∣ 6 εC̄(q − 1)

∫ η

−∞
Hq−2(v, t)p1∞(v)

(
∂H

∂v
(v, t)

)2

γ(v)dv

+ εC̄

∫ η

−∞
W (v, t)γ(v)dv +

2C̄(q − 1)

ε

∫ η

α

Hq−2(v, t)p1∞(v)dv.

We have eventually∣∣∣∣∫ η

−∞
W (v, t)γ′′(v)dv

∣∣∣∣ 6 εC̄(q − 1)

∫ VF

−∞
Hq−2(v, t)p1∞(v)

(
∂H

∂v
(v, t)

)2

γ(v)dv

+ εC̄

∫ VF

−∞
W (v, t)γ(v)dv +

2C̄(q − 1)

ε

∫ VF

α

Hq−2(v, t)p1∞(v)dv.

(4.13)

Combining (4.12) and (4.13), and choosing ε small enough, there exist constants C1, C2 ∈ R∗+ depending only

on γ, q, a and b1 such that

d

dt

∫ VF

−∞
W (v, t)γ(v)dv 6 − γ(VF )

N1
∞
q−1N(t)q + (q − 1)(bN(t)− C1)

∫ VF

−∞
W (v, t)γ(v)dv

+ C2

∫ VF

α

H(v, t)q−2p1∞(v)dv. (4.14)

• Excitatory case:

Like in the previous case, we have ∫ VF

−∞
−vW (v, t)γ′(v)dv 6 0

and, for α close enough to VF ,

b1N
1
∞

∫ VF

−∞

∂p1∞
∂v

(v)H(v, t)qγ(v)dv 6 −b1N1
∞

∫ VF

−∞
W (v, t)γ(v)dv.

The term containing γ′′ can be handled the same way as before. There remain the terms

J1(t) = bN(t)

∫ VF

−∞
W (v, t)γ′(v)dv and J2(t) = −bN(t)

∫ VF

−∞

∂p1∞
∂v

(v)H(v, t)qγ(v)dv.

In order to obtain a bound for J1, we use a partition of unity: by properties of γ (Lemma 4.2), there exists

ω ∈ ]α, VF [ such that γ′ 6 γ on ]ω, VF ]; we choose two functions γ1, γ2 ∈ C∞( ]−∞, VF ]) and a value ε1 ∈ R∗+

small enough such that γ1 + γ2 = 1 and

• γ1 is non-increasing on ]−∞, VF ] and γ1 ≡ 0 on [ω + ε1, VF ];

• γ2 is non-decreasing on ]−∞, VF ] and γ2 ≡ 0 on ]−∞, ω].

Then, ∫ VF

−∞
W (v, t)γ′(v)dv =

∫ VF

−∞
W (v, t)γ′(v)γ1(v)dv +

∫ VF

−∞
W (v, t)γ′(v)γ2(v)dv.

Since γ2 = 0 on ]−∞, ω], γ2(v) 6 1 for all v ∈ ]−∞, VF ] and γ′ 6 γ on ]ω, VF ],∫ VF

−∞
W (v, t)γ′(v)γ2(v)dv =

∫ VF

ω

W (v, t)γ′(v)γ2(v)dv 6
∫ VF

ω

W (v, t)γ(v)dv 6
∫ VF

−∞
W (v, t)γ(v)dv.
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Using the inequality jk 6 ε
q j
q + q−1

qε
q
q−1

k
q
q−1 , we obtain for all ε ∈ R∗+,

bN(t)

∫ VF

−∞
W (v, t)γ′(v)γ2(v)dv 6

( (q − 1)ε
1
q−1

q
+
bqN(t)q

qε

)∫ VF

−∞
W (v, t)γ(v)dv.

We do for the term γ1 what we did previously unto the term γ′′, which yields∫ VF

−∞
W (v, t)γ′(v)γ1(v)dv =

∫ VF

−∞
Hq−1 ∂

∂v

(∫ v

−∞
p(w, t)dw

)
γ′(v)γ1(v)dv

= −
∫ VF

−∞

(∫ v

−∞
p(w, t)dw

)(
∂Hq−1

∂v
γ′γ1 +Hq−1 (γ′γ1)

′
)
dv

= −
∫ VF

−∞

(∫ v

−∞
p(w, t)dw

)(
(q − 1)

∂H

∂v
Hq−2γ′γ1 +Hq−1 (γ′γ1)

′
)
dv.

Moreover, since p is a probability density,∣∣∣∣∣
∫ VF

−∞
W (v, t)γ′(v)γ1(v)dv

∣∣∣∣∣ 6 (q − 1)

∫ VF

−∞

∣∣∣∣∂H∂v
∣∣∣∣Hq−2 |γ′(v)γ1(v)| dv +

∫ VF

−∞
Hq−1

∣∣∣(γ′γ1)
′
(v)
∣∣∣ dv.

If α is close enough to VF , there exists like before Cω such that p1∞ > Cω on [α, ω + ε1], and γ′(v)2 6 Cγ(v).

Then, there exists C̄2 ∈ R∗+ such that, by Peter and Paul inequality,

bN(t)

∫ VF

−∞

∣∣∣∣∂H∂v
∣∣∣∣Hq−2 |γ′γ1| dv 6 C̄2ε

∫ VF

−∞
Hq−2p1∞

(
∂H

∂v

)2

γdv +
C̄2

ε
b2N(t)2

∫ ω+ε1

α

Hq−2p1∞dv. (4.15)

Hence, using again jk 6 ε
q j
q + q−1

qε
q
q−1

k
q
q−1 , there exists C̄3, s ∈ R∗+ such that

bN(t)

∫ VF

−∞

∣∣∣∣∂H∂v
∣∣∣∣Hq−2 |γ′γ1| dv 6 C̄2ε

∫ VF

−∞
Hq−2p1∞

(
∂H

∂v

)2

γdv

+
C̄2

ε
(C̄3ε

s +
2

q
bqN(t)q)

∫ VF

α

Hq−2p1∞dv. (4.16)

Besides, using the properties of γ and γ1, we have

|(γ′γ1)′(v)|2 6 (|γ′′(v)γ1(v)|+ |γ′(v)γ′1(v)|)2

6 γ′′(v)2γ21 + 2|γ′′(v)|γ1(v)γ′(v)|γ′1(v)|+ γ′(v)2γ′1(v)2

6 γ′′(v)2γ21 +
(
γ′′(v)2 + γ′(v)2

)
‖γ′1‖∞ + γ′(v)2

∥∥γ′21 ∥∥∞
6 C(1 + 2 ‖γ′1‖∞ +

∥∥γ′21 ∥∥∞)γ(v).

(4.17)

The method used to prove (4.16) combined with (4.17) gives that there exist C̄4, C̄5, C̄6, s3, s4 ∈ R∗+ such that

bN(t)

∫ VF

−∞
Hq−1 |(γ′γ1)′(v)| dv 6 C̄4ε

∫ VF

−∞
Wγdv +

(
C̄5ε

s3 +
C̄6

εs4
bqN(t)q

)∫ ω+ε1

α

Hq−2p1∞dv. (4.18)

Collecting the previous results, we get the following bound for J1: there exist C̄7, C̄8, C̄9, s5, s6 ∈ R∗+ such that

J1(t) 6 εC̄7

(∫ VF

−∞
Hq−2p1∞

(
∂H

∂v

)2

γdv +

∫ VF

−∞
Wγdv

)
+
C̄8b

qN(t)q

εs5

∫ VF

−∞
Wγdv

+
C̄9(1 + bqN(t)q)

εs6

∫ VF

α

Hq−2p1∞dv. (4.19)
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Let’s now bound J2. Integration by parts yields∫ VF

−∞

∂p1∞
∂v

(v)H(v, t)qγ(v)dv = −
∫ VF

−∞
W (v, t)γ′(v)dv − q

∫ VF

−∞

∂H

∂v
Hq−1p1∞γdv.

The term

bN(t)

∫ VF

−∞
W (v, t)γ′(v)dv

can be controlled by inequality (4.19). The term

bN(t)q

∫ VF

−∞

∂H

∂v
Hq−1p1∞γdv

can be bounded, thanks to inequality Peter and Paul, which gives

bN(t)q

∫ VF

−∞

∣∣∣∣∂H∂v
∣∣∣∣Hq−1p1∞γdv 6 εC̄10

∫ VF

−∞
Hq−1

(
∂H

∂v

)2

p1∞γdv +
C̄11b

2N(t)2

ε

∫ VF

−∞
Wγdv,

where C10, C11 ∈ R∗+. The previous method yields the following bound for J2: there exist C̄12, C̄13, C̄14, s7, s8 ∈

R∗+ such that

J1(t) 6 εC̄12

(∫ VF

−∞
Hq−2p1∞

(
∂H

∂v

)2

γdv +

∫ VF

−∞
Wγdv

)
+
C̄13b

qN(t)q

εs7

∫ VF

−∞
Wγdv

+
C̄14(1 + bqN(t)q)

εs8

∫ VF

α

Hq−2p1∞dv. (4.20)

Combining (4.5), (4.19) and (4.20), and choosing ε small enough, we obtain that there exist C3, C4, C5, C6, C7 ∈

R∗+ depending only on γ, q, b1, a and N1
∞ such that

d

dt

∫ VF

−∞
W (v, t)γ(v)dv 6 − γ(VF )

N1
∞
q−1N(t)q+bqN(t)q

(
C3+C4

∫ VF

−∞
W (v, t)γ(v)dv+C5

∫ VF

α

H(v, t)q−2p1∞(v)dv
)

+ C6

∫ VF

α

H(v, t)q−2p1∞(v)dv − C7

∫ VF

−∞
W (v, t)γ(v)dv. (4.21)

We are now able to prove the main theorem of this subsection. We proceed by a kind of bootstrap method.

Proof of Theorem 4.1. We are going to use Lemma (4.4). Let’s denote for clarity

H(v, t) =
p(v, t)

p1∞(v)
, W (q; v, t) = p1∞(v)H(v, t)q =

p(v, t)q

p1∞(v)q−1
,

γ(α; v) = 1[α,VF ](v)e
−1

β−(VF−v)2 and Iq,α(t) =

∫ VF

−∞
W (q; v, t)γ(α; v)dv.

Assume that for a natural number q > 2 and a real number αq−2 ∈ ]VR, VF [ close enough to VF to apply Lemma

4.4 we have a constant Kq−2 such that∫ VF

αq−2

H(v, t)q−2p1∞(v)dv 6 Kq−2. (4.22)
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Then, Lemma (4.4) reduces in the inhibitory case to

d

dt
Iq,αq−2(t) 6 −γ(αq−2;VF )

N1
∞
q−1 N(t)q + (q − 1)(bN(t)− C1)Iq,αq−2(t) + C2Kq−2. (4.23)

Let us proceed as in the proof of [10][Theorem 3.1]. By assumptions we have Iq,αq−2
(0) < +∞. Since b 6 0,

(4.23) implies I ′q,αq−2
(t) 6 C2Kq−2 − (q − 1)C1I

′
q,αq−2

(t). Thus, assuming t is large enough depending on

Iq,αq−2
(0), we have

Iq,αq−2(t) 6 2
C2Kq−2

(q − 1)C1
.

Hence, integrating (4.23) in time, we get ∫
J

N(t)qdt 6 Cq(1 + |J |),

with Cq ∈ R∗+ a constant and for all interval J ⊂ [T0,+∞[ with T0 depending upon Iq,αq−2(0).

In the excitatory case, Lemma (4.4) and (4.22) yield

d

dt
Iq,αq−2(t) 6 N(t)q

(
bq (C3 + C5Kq−2) + bqC4Iq,αq−2(t)− γ(αq−2;VF )

N1
∞
q−1

)
+ C6Kq−2 − C7Iq,αq−2(t). (4.24)

Define

L = max

(
Iq,αq−2

(0),
C6Kq−2

C7

)
.

If b is small enough to have

bq (C3 + C5Kq−2) + bqC4L−
γ(αq−2;VF )

N1
∞
q−1 < 0,

then for all t > 0, Iq,αq−2
(t) 6 L and integrating (4.24) between 0 and t we get∫ t

0

N(t)qdt 6 C(1 + t),

with Cq ∈ R∗+ a constant. As a by-product, we have uniform boundedness of Iq,αq−2(t) in both inhibitory and

excitatory cases and hence there exists a constant K̄q > 0 such that∫ VF

αq−2

W (q; v, t)γ(αq−2; v)dv =

∫ VF

αq−2

H(v, t)qp1∞(v)γ(αq−2; v)dv 6 K̄q. (4.25)

By choosing a new value αq ∈ ]VR, VF [ such that αq−2 < αq, we have the property (4.22) for this new αq because

there exists a constant C such that∫ VF

αq

H(v, t)qp1∞(v)dv 6 C

∫ VF

αq−2

H(v, t)qp1∞(v)γ(αq−2; v)dv 6 CK̄q =: Kq.

Therefore, we can easily prove (4.22) by induction: for q = 2, the result is obvious because∫ VF

α0

Hq−2(v, t)p1∞(v)dv =

∫ VF

α0

p1∞(v)dv 6
∫ VF

−∞
p1∞(v)dv = 1;
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for q = 3, the result holds because of mass conservation of p:∫ VF

α1

Hq−2(v, t)p1∞(v)dv =

∫ VF

α1

p(v, t)

p1∞(v)
p1∞(v)dv =

∫ VF

α1

p(v, t)dv 6
∫ VF

−∞
p(v, t)dv = 1.

Then, induction works if we choose an increasing sequence of numbers αq < VF , q ∈ N.

4.2 Global-in-time existence

We now use uniform L3 estimates in order to prove global-in-time existence for small enough excitatory con-

nectivities. More precisely, we prove:

Theorem 4.5 Let b1 ∈ R∗+ be such that there exists a stationary state (p1∞, N
1
∞). Let VM ∈ ]VR, VF [ ; denote

S3(b1, VM ) =

∫ VF

VM

p0(v)3

p1∞(v)2
dv.

If p0 satisfies Assumptions 2.4, there exists b∗ ∈ R∗+ depending only upon S3(b1, VM ) and VM such that for all

b ∈ [0, b∗[ , there exists a unique global-in-time classical solution (p,N) of (2.1).

In [11][Proposition 4.3], the authors use an L∞ bound on N to obtain global-in-time existence of classical

solutions in the inhibitory case b < 0. We are going to adapt their method in the excitatory case b > 0.

When constructing local-in-time solutions to (2.1), the authors of [11] introduce the change of variables

y = etv, τ =
1

2
(e2t − 1) or equivalently v =

y√
2τ + 1

t =
1

2
log(2τ + 1).

It allows us to write (2.1) as an equivalent free-boundary Stefan-like problem on the time-dependent domain

]−∞, s(τ)] where the free boundary s(τ) evolves depending on the solution up to time τ (see it’s expression in

(4.26)). As in [11], we assume without loss of generality (using the same rescaling as in hypothesis (4.1)) that

VF = 0, a = 1 and −v + bN(t) is replaced by −v + b0 + bN(t), b0 ∈ R. We denote

w(y, τ) = α(τ)p
(
yα(τ),−ln(α(τ))

)
, α(τ) =

1√
2τ + 1

, M(τ) = α(τ)2N(t) = −dw
dy

(0, τ),

or equivalently

p(v, t) = etw

(
etv,

1

2
(e2t − 1)

)
.

We then make the change of variable

x = y − b0(
√

1 + 2τ − 1)− b
∫ τ

0

M(s)

α(s)
ds.
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with the associated new unknown u(x, τ) = w(y, τ). The pair (u,M) is then a solution to

∂u

∂τ
(x, τ) =

∂2u

∂y2
(x, τ) +M(τ)δ

s(τ)+
VR
α(τ)

(x) x ∈ ]−∞, s(τ)], τ ∈ R+

M(τ) = −∂u
∂x

(s(τ), τ) τ ∈ R+

s(τ) = s(0)− b0(
√

1 + 2τ − 1)− b
∫ τ

0

M(s)

α(s)
ds τ ∈ R+

u(−∞, τ) = u(s(τ), τ) = 0 τ ∈ R+

u(x, 0) = u0(x) x ∈ ]−∞, s(0)].

(4.26)

For this system, we recall the notion of classical solution introduced in [11].

Definition 4.6 (Classical solutions for the Stefan-like problem) Assume u0 satisfies Assumptions 2.4.

We say that u is a classical solution of (4.26) with initial datum u0 on the interval J = [0, T [ or J = [0, T ], for

a given T > 0 if

1. M is a continuous function on J , u is continuous in the region {(x, τ) : −∞ < x ≤ s(τ), τ ∈ J} and for

all τ ∈ J , u(·, τ) ∈ L1( ]−∞, s(τ)[ ).

2. If we denote s1(τ) := s(τ) + VR
α(τ) , then ∂xxu and ∂τu are continuous in the region {(x, τ) : x ∈ ] −

∞, s(τ)[ \{s1(τ)}, τ ∈ J\{0}}.

3. ∂xu(s1(τ)−, τ), ∂xu(s1(τ)+, τ), ∂xu(s(τ)−, t) are well defined and ∂xu vanishes at −∞.

4. Equations (4.26) are satisfied in the sense of distributions in the region {(x, τ) : −∞ < x ≤ s(τ), τ ∈ J}

and pointwise (in the classical sense of a function’s derivative) in {(x, τ) : x ∈ ] −∞, s(τ)[ \{s1(τ)}, τ ∈

J\{0}}.

The article [11][Theorem 4.2] provides a criterium for global-in-time existence:

Theorem 4.7 (Carrillo, Gonzales, Gualdani, Schonbeck) Assume u0 satisfies Assumptions 2.4. There

exists a unique maximal classical solution of (4.26) in the sense of Definition 4.6 and it’s maximal time of

existence T ∗ satisfies

T ∗ = sup{τ ∈ R+ | M(τ) < +∞}.

We are now able to prove our main theorem:

Proof of Theorem 4.5. First, note that by Assumptions 2.4, p0 has a derivative on the left of VF , and thus

lim
v→V −F

p0(v)3

p1∞(v)2
= lim
v→V −F

 p0(v)
VF−v
p1∞(v)
VF−v

2

p0(v) =

(
dp0

dv (V −F )

N1
∞

)2

p0(VF ) = 0. (4.27)

20



Hence, since p0 is C1 on ]VR, VF [ and p1∞ > 0 on ]VR, VF [, we have S3(b1, VM ) < +∞, which is a technical

hypothesis of Theorem 4.1.

We follow the ideas of the proof of global-in-time existence in the inhibitory case in the article [11][Proposition

4.3 and Theorem 4.4]. We derive the equivalent free boundary Stefan-like problem as we recall above and we

assume the local-in-time solution of (4.26) from initial datum u0 exists on the maximal time interval [0, τ0[.

There exists a value ε ∈ R∗+, chosen small enough for what follows, such that,

Uτ0−ε = sup
x∈ ]−∞,s(τ0−ε)]

∣∣∣∣dudx (x, τ0 − ε)
∣∣∣∣ < +∞.

We are going to prove that there exists K∞ ∈ R∗+ such that

sup
τ∈[τ0−ε,τ0]

M(τ) < K∞.

Then, Theorem 4.7 gives the existence of the solution on [0, τ0 + ε]. If ε does not depend on Uτ0−ε, we can

repeat the argument and we have global-in-time existence for the solution.

For the sake of clarity, we assume without loss of generality that τ0 − ε = 0. We are thus going to find a

bound for M on [0, τ0[ with respect to τ0, for τ0 small enough. We recall first the expression of the heat kernel:

G(x, τ, ξ, η) =
1√

4π(τ − η)
e−

(x−ξ)2
4(τ−η) .

It is proved in [11], sections 2 and 3 that, recalling that t = 1
2 log(2τ + 1), the continuous function M satisfies

M(τ) = α(τ)2N(t) = e−2tN(t)

and for all τ ∈ [0, τ0[ ,

M(τ) = −2

∫ s(0)

−∞
G(s(τ), τ, ξ, 0)

du0

dx
(ξ)dξ + 2

∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η), η)dη

− 2

∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η) +

VR
α(η)

, η)dη. (4.28)

We denote,

Φ(τ) = sup
s∈[0,τ ]

M(s).

• Firstly, by properties of G, ∣∣∣∣∣2
∫ s(0)

−∞
G(s(τ), τ, ξ, 0)

du0

dx
(ξ)dξ

∣∣∣∣∣ 6 2

∥∥∥∥du0dx
∥∥∥∥
∞
. (4.29)

Applying Hölder inequality, we obtain

2

∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η), η)dη 6 2

(∫ τ

0

M(η)3dη

) 1
3

(∫ τ

0

∣∣∣∣ ∂∂xG(s(τ), τ, s(η), η)

∣∣∣∣ 32 dη
) 2

3

, (4.30)
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and

2

∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η) +

VR
α(η)

, η)dη

6 2

(∫ τ

0

M(η)3dη

) 1
3

(∫ τ

0

∣∣∣∣ ∂∂xG(s(τ), τ, s(η) +
VR
α(η)

, η)

∣∣∣∣ 32 dη
) 2

3

. (4.31)

• Then, by Theorem 4.1, there exists a constant C ∈ R∗+ such that∫ τ

0

M(η)3dη =

∫ 1
2 (e

2t−1)

0

e−6sN(s)3ds

6 C(1 +
1

2
(e2t − 1)) = C(1 + τ),

(4.32)

which yields (∫ τ

0

M(η)3dη

) 1
3

6 C
1
3 (1 + τ0)

1
3 . (4.33)

• We come back to the bound (4.30). We have

s(τ) = s(0)− b0(
√

2τ + 1− 1)− b
∫ τ

0

M(s)

α(s)
ds.

Since α−1 is 1-Lipschitz,

|s(τ)− s(η)| 6 |b0|(
√

2τ + 1−
√

2η + 1) + b

∫ τ

η

M(s)
√

2s+ 1ds

6 |b0||τ − η|+ b
√

2τ0 + 1Φ(τ)|τ − η|

6
(
|b0|+ b

√
2τ0 + 1Φ(τ)

)
|τ − η|.

Moreover, we compute

∂

∂x
G(x, τ, ξ, η) = − 1

2
√

4π

(x− ξ)
(τ − η)

3
2

e−
(x−ξ)2
4(τ−η) ,

and with the previous bound, we have∫ τ

0

∣∣∣∣ ∂∂xG(s(τ), τ, s(η), η)

∣∣∣∣ 32 dη =
1

8π
3
4

∫ τ

0

(s(τ)− s(η))
3
2

(τ − η)
9
4

e−
3(s(τ)−s(η))2

8(τ−η) dη

6
|b0|+ b

√
2τ0 + 1Φ(τ)

8π
3
4

∫ τ

0

1

|τ − η| 34
dη

=
|b0|+ b

√
2τ0 + 1Φ(τ)

6π
3
4

τ
1
4 .

(4.34)

Hence,

∣∣∣∣2 ∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η), η)dη

∣∣∣∣ 6 2C
1
3 (1 + τ0)

1
3

(
|b0|+ b

√
2τ0 + 1Φ(τ)

) 2
3

6
2
3π

1
2

τ
1
6
0 .

and applying the inequality (a1 + a2)
2
3 6 2

1
3 |a1|

2
3 + 2

1
3 |a2|

2
3 , we come to∣∣∣∣2∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η), η)dη

∣∣∣∣ 6
2

2
3 |b0|

2
3C

1
3 (1 + τ0)

1
3

3
2
3π

1
2

τ
1
6
0 +

2
2
3 b

2
3 (2τ0 + 1)

1
3C

1
3 (1 + τ0)

1
3

3
2
3π

1
2

τ
1
6
0 Φ(τ)

2
3 . (4.35)
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• We now come back to the bound (4.31). Using (4.33) and Hölder’s inequality, we have

|s(τ)− s(η)− VR
α(τ) | > | |VR|α(τ) − |s(τ)− s(η)||

> |VR| − b0τ0 − b
∫ τ
η
M(s)
α(s) ds

> |VR| − b0τ0 − bC
1
3 (1 + τ0)

1
3 (2τ0 + 1)

1
3 τ

2
3
0 .

(4.36)

If τ0 is small enough regarding b0 and C, we have |VR| − b0τ0 − bC
1
3 (1 + τ0)

1
3 (2τ0 + 1)

1
3 τ

2
3
0 > 0. We denote

K(τ0) = |VR| − b0τ0 − bC
1
3 (1 + τ0)

1
3 (2τ0 + 1)

1
3 τ

2
3
0 . We use inequality ye−y

2

6 e−
y2

2 in order to obtain∣∣∣∣ ∂∂xG(x, τ, ξ, η)

∣∣∣∣ 6 1√
4π(τ − η)

e−
|x−ξ|2
8(τ−η) . (4.37)

Using the change of variable z =
√
3K(ε)

4
√
τ−η , we compute:∫ τ

0

∣∣∣∣ ∂∂xG(s(τ), τ, s(η) +
VR
α(η)

, η)

∣∣∣∣ 32 dη 6
1

(4π)
3
4

∫ τ

0

1

(τ − η)
3
2

e−
3|s(τ)−s(η)− VR

α(τ)
|2

16(τ−η) dη

6
1

(4π)
3
4

∫ τ

0

1

(τ − η)
3
2

e−
3K(τ0)2

16(τ−η) dη

=

√
2√

3(π)
3
4K(τ0)

∫ +∞

√
3K(τ0)

4
√
τ

e−z
2

dz.

Hence,

2

∫ τ

0

M(η)
∂

∂x
G(s(τ), τ, s(η) +

VR
α(η)

, η)dη 6 C
1
3 (1 + τ0)

1
3

2
1
3

3
1
3
√
πK(τ0)

2
3

(∫ +∞

√
3K(τ0)

4
√
τ

e−z
2

dz

) 2
3

. (4.38)

• Collecting inequalities (4.29), (4.35) and (4.38), we derive the following bound for M on [0, τ0[ ,

M(τ) 6 2

∥∥∥∥du0dx
∥∥∥∥
∞

+
2

2
3 |b0|

2
3C

1
3 (1 + τ0)

1
3

3
2
3π

1
2

τ
1
6
0 +

2
2
3 b

2
3 (2τ0 + 1)

1
3C

1
3 (1 + τ0)

1
3

3
2
3π

1
2

τ
1
6
0 Φ(τ)

2
3

+
2

1
3C

1
3 (1 + τ0)

1
3

3
1
3
√
πK(τ0)

2
3

(∫ +∞

√
3K(τ0)

4
√
τ

e−z
2

dz

) 2
3

. (4.39)

As a consequence, there exists Λ ∈ R∗+ depending only on b0, b, d
dxu

0 and VR such that, if τ0 is chosen small

enough with respect to b,

M(τ) 6 Λ +
1

2
Φ(τ)

2
3 .

Denote Ψ(τ) = max(Φ(τ), 1); we have Φ(τ)
2
3 6 Ψ(τ)

2
3 6 Ψ(τ). Taking the supremum on both sides of the

inequality and the maximum with 1, we obtain Ψ(τ) 6 2Λ, which in turn implies

M(τ) 6 2Λ. (4.40)

Remark 4.8 In order to prove this result, we needed a bound on N in L3; the L2 estimate proved in article [10]

was not enough. Indeed, in bounds (4.30) and (4.31), we have L3 norms of M in the right-hand side. Applying
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Hölder inegality with exponent 2 instead of 3 would lead to the integral∫ τ

0

(s(τ)− s(η))2

(τ − η)3
e−

(s(τ)−s(η))2
4(τ−η) dη,

in computation (4.34), and then the following diverging integral would appear:∫ τ

0

1

|τ − η|
dη.

However, with the L3 estimate of M , we have instead in (4.34) the converging integral∫ τ

0

1

|τ − η| 34
dη.

Remark 4.9 The convergence to stationary state proved in [10][Theorem 3.5] with the help of L2 bounds on

N is a priori and thus only valid up to an unknown time of existence; global-in-time existence is not granted.

Moreover, this result demands severe restrictions on the size of b: the non-linearity has to be weak enough in

order to apply the Entropy method and the Poincaré-like inequality. In our result, we only demand b to be small

with respect to S3(b1, VM ) and VM . Although we have no proof of it, we may have proved global-in-time existence

for parameters where two or more stationary states coexist, which is impossible in a priori convergence results

of [10][Theorem 2.1 and Theorem 3.5].

Remark 4.10 The assumptions on the initial datum p0 are similar to what can be found in the early probabilistic

literature. Namely, in the articles [15, 16] and in the note [14][Lemma 2.1], the authors use the working

assumption that law ν of X0 is differentiable at VF and satisfies

∀x ∈ ]VF − ε, VF ], ν(dx) 6 β(VF − x)dx, (4.41)

for some β, ε > 0. Assumptions (2.4) could be weakened merely to (4.41) with technical work, since more

regularity is granted after any non-zero period of time (see [21][Proposition 2.1]).

However, note that the question of the decay of p0 near VF is a subtle and important one, since the short-time

regularity of the solutions depends upon the boundary decay of the initial condition. In [24], the authors assume

the initial density to be 0 in a vicinity of VF ; in [27], the result is proved under the hypothesis that the initial

density decays like o(x
1
2 ) near the origin (VF = 0 in this work). The general results of [21] which allowed to

fully prove propagation of chaos for the underlying particle system rely on the assumption that the initial density

decays like O(xβ) for some 0 < β < 1. It can be seen in [21][Theorem 1.7] that the exponent β has an effect

upon the behaviour of solutions in short time.
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5 Conclusion

In this article, we covered two aspects of the NNLIF model in the excitatory case: finite-time blow-up and

global-in-time existence.

First, we proved systematic blow-up in the high connectivity case, hence upgrading previous results about

blow-up and stationary states non-existence ([4]). Our bound for b doesn’t seem to be optimal though, and

the obtention of an optimal bound is an open problem. It is reasonable to think that as soon as there is no

stationary state, every solution blows-up in finite time. In the case VF 6 0 our bound is optimal. Note that

our bound in the case VF > 0 converges to the bound for VF = 0 when VF goes to 0.

Then, we upgraded previously obtained uniform L2 estimates on the firing rate into uniform Lq estimates at

a fairly reasonable price in terms of hypotheses. Using L3 estimates, we proved global-in-time existence when

b > 0 is small enough regarding p0. Previous deterministic results were a priori convergence to stationary states

in cases when the stationary state is unique (b > 0 very small). Although we do make smallness hypotheses

on b, we don’t demand existence of a unique stationary state in our global existence theorem. The result had

been obtained for the stochastic counterpart (1.4) in [15] and other works ([20, 21, 28, 27]) focused on global

solvability for problem (1.4) in the broader setting of physical solutions were solutions can continue after a

blow-up event.

We didn’t address two difficult questions: non-existence of periodic solutions for the non-delayed NNLIF

model and convergence to stationary states for large and negative values of b. These two questions are linked,

since there is numerical evidence for periodic solutions in the NNLIF model with synaptic delay when b < 0 and

|b| is large. All attempts to find periodic solutions in the non-delayed NNLIF model failed, which may be an

indicator of unconditional convergence towards stationary states in the inhibitory case. Yet, there is no efficient

tool to prove such a conjecture, because general entropy methods break in the high connectivity regime. More

broadly, there is a need for the development of new methods in order to tackle the remaining questions around

NNLIF-type models, as they still contain complexity we can scarcely fathom with numerical exploration (see

[22] for the most recent numerical insights).

A Technical results

We first prove the following technical result which is used at the end of the proof of Theorem 3.1.
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Lemma A.1 Let VF , a > 0 and VR < VF . Then,

inf
ξ,µ∈ ]1,+∞[× ]

VF
a ,+∞[

ξ

ξ − 1

eµVF − eµVR
µeµVF

eµVF ξ =
VF
4

inf
y∈ ]1,
√

1+ a
4 [

(1 + y)2
(

1− e−4
VF−VR
VF

1
y2−1

)
e

2
y−1 . (A.1)

Proof. We study the auxiliary function f : ]1,+∞[→ R∗+ defined by

f(ξ) =
ξ

ξ − 1

eµVF − eµVR
µeµVF

eµVF ξ.

If VF = 0 and VR = 0, its minimum is 1
µ (1− eµVR), and this quantity goes to 0 when µ goes to infinity and the

right-hand side of (A.1) is also 0; hence the result. Otherwise, we compute

f ′(ξ) =
eµVF ξ

ξ − 1

[
VF ξ −

1

µ(ξ − 1)

]eµVF − eµVR
eµVF

.

This derivative is negative on ]1, ξ̄[ and positive on ]ξ̄,+∞[ , where

ξ̄ =
1

2

(
1 +

√
1 +

4

µVF

)
,

and f reaches its global minimum for ξ = ξ̄, and that minimum is

J(µ) =

1
2

(
1 +

√
1 + 4

µVF

)
1
2

(
1 +

√
1 + 4

µVF

)
− 1

eµVF − eµVR
µeµVF

e
µVF

1
2

(
1+
√

1+ 4
µVF

)

=
µVF

4

(
1 +

√
1 + 4

µVF

)2 1

µ

(
1− eµ(VR−VF )

)
e
µVF

2

(
1+
√

1+ 4
µVF

)

=
VF
4

(
1 +

√
1 + 4

µVF

)2(
1− eVFµ

VR−VF
VF

)
e
µVF

2

(
1+
√

1+ 4
µVF

)
.

With the change of variable x =
VFµ

4
, it’s equivalent to finding, for x in [

4

a
,+∞[ , the minimum of

K(x) =
VF
4

(
1 +

√
1 +

1

x

)2(
1− e−4

VF−VR
VF

x

)
e
2x
(
1+
√

1+ 1
x

)
.

With the change of variable y =
√

1 + 1
x , it’s equivalent to finding, for y in [1,

√
1 +

a

4
], the minimum of

L(y) =
VF
4

(1 + y)2
(

1− e−4
VF−VR
VF

1
y2−1

)
e

2
y−1 .

Then we prove the technical lemma 4.3 stated above.

Proof of Lemma 4.3. We first compute the partial derivatives of W :

∂W

∂t
= qHq−1 ∂p

∂t
= −qHq−1 ∂

∂v
[
(
− v + bN(t)

)
p] + aqHq−1 ∂

2p

∂v2
+ qHq−1N(t)δVR , (A.2)
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and

∂H

∂v
=

1

p1∞
(
∂p

∂v
−H∂p1∞

∂v
),

∂W

∂v
= qHq−1 ∂p

∂v
− (q − 1)Hq ∂p

1
∞

∂v
,

∂2W

∂v2
= q(q − 1)

∂H

∂v
Hq−2 ∂p

∂v
+ qHq−1 ∂

2p

∂v2
− q(q − 1)Hq−1 ∂H

∂v

∂p1∞
∂v
− (q − 1)Hq ∂

2p1∞
∂v2

.

Thus, using the equation (4.2) for p1∞,

aqHq−1 ∂
2p

∂v2
= a

∂2W

∂v2
− aq(q − 1)p1∞H

q−2
(
∂H

∂v

)2

+ (q − 1)Hq
(

(−v + b1N
1
∞)

∂p1∞
∂v
− p1∞ −N1

∞δVR

)
. (A.3)

Moreover,

∂

∂v

[(
− v + bN(t)

)
W
]

=
∂

∂v

[(
− v + bN

)
pHq−1

]
= Hq−1 ∂

∂v

[(
− v + bN(t)

)
p
]

+
(
− v + bN(t)

)
pHq−2 ∂H

∂v

= Hq−1 ∂

∂v

[(
− v + bN(t)

)
p
]

+ (q − 1)Hq−1(− v + bN(t)
)∂p
∂v

−(q − 1)Hq
(
− v + bN(t)

)∂p1∞
∂v

.

Hence,

− qHq−1 ∂

∂v

[(
− v + bN(t)

)
p
]

= − ∂

∂v

[(
− v + bN(t)

)
W
]
− (q − 1)Hq

((
− v + bN(t)

)∂p1∞
∂v
− p1∞

)
. (A.4)

Putting (A.3) and (A.4) into (A.2), we obtain

∂W

∂t
+

∂

∂v

[(
− v + bN(t)

)
W
]
− a∂

2W

∂v2
+ aq(q − 1)p1∞H

q−2
(
∂H

∂v

)2

+ (q − 1)(bN(t)− b1N1
∞)Hq ∂p

1
∞

∂v
= N1

∞

(
q
N(t)

N1
∞
− (q − 1)H

)
Hq−1δVR . (A.5)

We then multiply this identity by γ and we integrate; since the support of γ is included in [α, VF ], with

α > VR > 0 by hypothesis (4.1) made without loss of generality, we have the result by integration by parts.
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