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The KM3NeT collaboration has started the construction of the ARCA and ORCA neutrino
telescopes in the Mediterranean Sea. With the most recent data from the deployed lines, the
detection technique for Core-Collapse Supernova neutrino bursts has been refined. The real time
trigger was implemented and verified to be robust and effective. The study of the resolution to
fast-time variation in the neutrino light-curve is also presented exploiting two different methods,
with estimates from real data and state-of-the-art Core-Collapse Supernova simulations. Finally,
the mean energy of the incoming neutrinos can be estimated through the correlation between the
number of photo-multipliers detecting light in coincidence and the mean energy of the incoming
neutrinos.
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1. Introduction

The KM3NeT neutrino detectors ORCA and ARCA (Oscillation & Astroparticle Research
with Cosmics in the Abyss) are under construction at two underwater sites in the Mediterranean sea.
ORCA is located off the French coast (Toulon), and ARCA off the Italian coast (Capo Passero).
ORCA is aimed at the determination of the neutrino mass ordering, exploiting a densely instru-
mented detector with sensitivity at the GeV scale. ARCA is dedicated to the search for high energy
(TeV-PeV) astrophysical neutrino sources, using a large km3-scale instrumented volume [1].

The core element of the KM3NeT detectors is the digital optical module (DOM) featuring 31
directional photomultiplier tubes (PMTs) in a spherical glass sphere [2]. DOMs are connected in
groups of 18 to form a vertical line called detection unit (DU). ORCA will have 115 lines and
ARCA will consist of an array of 230 strings. With the multi-PMT optical module technology and
a large instrumented volume, KM3NeT will be able to detect the prompt MeV neutrino emission
from a Galactic Core-Collapse Supernova CCSN as an overall increase on the DOM counting rate.

The main interaction channel of MeV neutrinos in water is the Inverse Beta Decay (IBD). Elas-
tic Scattering and interactions of neutrinos with oxygen atoms also provide a small contribution.
The outgoing electron or positron induces the production of Cherenkov light that can be detected
by the PMTs.

Two different techniques are assessed. First, the multi-PMT DOMs are exploited to obtain the
best sensitivity to the signal detection and to the resolution of the mean energy neutrino spectrum.
Second, the large event statistics provided by the large instrumented volume is exploited to study
the time-dependence of the neutrino emission (light-curve).

2. Detector response to Core-Collapse Supernova neutrinos: models and simulation

Three state-of-the art 3D simulations from the MPA Garching group have been considered in
this work [3, 4]. Each of them simulates the accretion phase of the CCSN for a CCSN stellar pro-
genitor of 27 M�, 20 M� and 11 M� respectively. These simulations provide the time dependent
CCSN neutrino spectrum, which follows a quasi-thermal distribution that depends on the average
neutrino energy 〈Eν〉(t), the neutrino luminosity Lν(t) and the spectral pinching shape parameter
α(t). They are limited to the accretion phase, with corresponding duration of 550 ms (27 M�)
and 350 ms (20 M� and 11 M�). The CCSN neutrino interaction rate in sea water are computed
from the spectrum and are then used to estimate the expected detection rate through a Monte Carlo
simulation implemented in GEANT4.

3. Background measurements and rejection

Three relevant sources of background are of interest for this study: bioluminescence, radioac-
tive decays in sea water (mostly 40K) and atmospheric muons. Background rates have been esti-
mated from the data of the first ORCA and ARCA detection lines deployed in the sea. Coinci-
dences at the few nanosecond-scale between the different PMTs of a DOM are a signature of a
multi-photon emission typical of Cherenkov radiation. The number of PMTs in a DOM detecting
a photon within a time window of 10 ns is later on referred to as multiplicity (M).
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Radioactive decays in sea water and atmospheric muons are the dominant contributions to the
multiplicity spectrum in the ranges M ≤ 5 and M ≥ 8, respectively. The contribution of coinci-
dences from uncorrelated photons produced by bioluminescence or radioactive decays becomes
negligible above M = 3.

CCSN neutrino interactions in the instrumented volume result in an increase of the counting
rates of individual PMTs as well as at the various multiplicity levels. Simulations are used to opti-
mise the multiplicity selection in order to discriminate the CCSN neutrino signal from background.
The coincidence rates measured for the first two ARCA DUs (ARCA2) and the first ORCA DU
(ORCA1) [5] are shown in Fig. 1 (left). Selecting events satisfying the criterion 6 ≤M ≤ 10 pro-
vides the best signal-to-noise ratio.

In the chosen multiplicity region, the contributions from radioactive decays and atmospheric
muons are comparable. Simultaneous detection of M ≥ 4 events by several DOMs at the microsec-
ond scale can be used to discriminate atmospheric muons since simulations show that low energy
CCSN neutrinos are mostly detected on a single DOM. This muon vetoing technique is particularly
efficient for the ORCA geometry for which the background can be almost reduced to the residual
40K contribution. This compensates for the originally higher muon rate given by the shallower
depth of ORCA. Typical background rates after the muon filtering are shown in in Fig. 1 (right).
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Figure 1: On the left, DOM coincidence rates as a function of the multiplicity measured for the
ORCA1 and ARCA2 detectors [5]. On the right, estimated DOM background rates after muon
rejection for ARCA and ORCA compared with the signal expectation at 10 kpc for the 27 M� (550
ms window) and the 11 M� (350 ms duration) progenitors.

4. Sensitivity estimation

In the following, an event is defined as a coincidence satisfying 6 ≤ M ≤ 10 and surviving
the muon veto. The number of signal and background events over the duration of the simulated
accretion phase is used to compute the significance as a function of the distance to the source (d).
Given the background rate ρB and the time window of duration τ , the significance of an observation
Xd is estimated from the p-value:

P(X ≥ Xd) =
∞

∑
X=Xd

P(X ,ρB · τ) (4.1)
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with P being the Poisson probability of observing Xd events when expecting ρB · τ and Xd

being the signal plus background expectation for a CCSN neutrino emission at distance d, for a
given model.

The expected sensitivities for the two extreme mass progenitor assumptions (11 and 27 M�)
is shown in Fig. 2 (left) for ORCA, ARCA and the combination of the two detectors. The results
for 6 ORCA DUs and 2 ARCA DUs, expected operational by the end of the year, are displayed on
Fig. 2 (right).

Combining the two complete KM3NeT detectors, a significance of 5 σ is achieved for a CCSN
at 25 kpc with a mass of 27 M�, ensuring the coverage of the full Galaxy. In the case of the 11
M� progenitor, a significance of 5 σ is reached beyond the Galactic Centre with the full ORCA
detector alone. With 6 ORCA and 2 ARCA detection strings, the expected performance is a 5 σ

discovery at 9 and 4 kpc respectively for the more massive progenitor and the lowest mass one. In
addition, the muon filter is expected to be more efficient when using inter-line data. As such, the
estimated significance should be on the conservative side for the provided models.

The most relevant systematic uncertainties, mainly originating from the loose constraints on
the models (flavor conversion [4], different simulation codes [6], neutrino opacities [6], observer
direction [8]), have been taken into account, together with the uncertainty on the detector the overall
detection efficiency.

KM3NeT preliminary KM3NeT preliminary

Figure 2: Detection significance of a CCSN neutrino signal as a function of the distance to the
source. On the left for ORCA, ARCA and the combination of the two detectors. On the right for
the configuration expected late 2019 (6 ORCA DUs and 2 ARCA DUs).

5. Real-time processing and CCSN alerts

An online infrastructre is being developed to handle the triggering of real-time alerts and the
participation in the SNEWS network [7].

KM3NeT implements an all-data-to-shore DAQ design. All hit information is sent to shore,
where the data streams are assembled in a computer farm. A dedicated data stream containing all
coincidences above multiplicity M ≥ 4 is continuously acquired for online monitoring and perma-
nent storage. The same data stream is simultaneously analysed in real time for the purpose of alert
generation. A buffer for the lower multiplicity coincidence data is foreseen in order to store the
maximum amount of useful raw data in case an alert is either received or self-generated.

3
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The structure of the processing chain is outlined in Fig. 3. The SN processing pipeline shares
a common infrastructure with the online event reconstruction for high-energy neutrino events.

Figure 3: Functional diagram of the KM3NeT DAQ system and online framework outlining the
information exchange between the two shore stations and the central farm dedicated to the real-
time processing applications.

ARCA 2 DU + ORCA 6 DU

Threshold 11 M� 27 M�
1 / 8 days 4.5 kpc 8.5 kpc

ARCA 230 DU + ORCA 115 DU

Threshold 11 M� 27 M�
1 / 14 days 12.5 kpc 23 kpc

Table 1: Online triggering capabilities for the KM3NeT detectors in the expected near-future (left)
and full (right) configurations for the two progenitors considered. False alert thresholds have been
chosen according respectively to the current and possible future SNEWS requirements.

The offline analysis approach is adapted to perform a real-time search. The trigger level X ,
defined as the number of DOMs detecting a coincidence passing the selection, is evaluated over a
time window of duration τ = 400ms. The time window is sliding with an update frequency fs =

10Hz. The p-value in equation 4.1 can be therefore converted into a false trigger rate. Considering
fs as a trial rate:

RB = fs ·P(X ≥ Xd) (5.1)

For a fixed RB threshold, this relation allows to estimate the maximum progenitor distance d
for which the detector is able to trigger on the CCSN signal. For the purpose of triggering, ARCA
and ORCA will act as a single entity. The trigger level is evaluated synchronously for the two
detectors, and a combined test statistic is produced. The KM3NeT alert capabilities for end-of-
2019 and complete KM3NeT configurations, respectively for the current and future hypothetical
SNEWS requirements are summarised in table 1.

The use of the number of DOMs (instead of the number of selected coincidences) grants
additional robustness to the trigger algorithm. For a sufficiently large detector, the background
behaviour is well approximated by the Poisson distribution. For smaller detector configurations,
the background assumes a binomial distribution.

Preliminary evaluations have been done with regards to the required time to generate a trigger.
The current configuration allows for an alert to be produced within 20 seconds from the genera-
tion of the corresponding data off-shore, a fast response compared to the current SNEWS latency.
Further optimization can be foreseen if beneficial for the network.

4
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6. Sensitivity to fast-time variations on the neutrino light-curve

Latest 3D simulations predict anisotropic hydrodynamical instabilities during the CCSN ac-
cretion phase, which may play an important role in enhancing the neutrino heating [8, 9]. This
analysis focuses on the Standing Accretion Shock Instability (SASI), which could favor the final
explosion, explain the observed neutron star kick and could be potentially correlated with gravi-
tational waves emission [11]. This model leaves as a footprint fast time variations in the neutrino
light-curve around 200 ms after the core bounce, with a characteristic oscillation frequency [4].

The detected CCSN neutrino light-curve has been computed using a dedicated Monte Carlo
simulation. The 27 M� and 20 M� progenitor models from the Garching group have been consid-
ered for the neutrino flux, for an observation along the privileged direction of the SASI sloshing.

A dedicated technique is used for a realistic background estimate from the first KM3NeT data,
which are upscaled to the full detector size. Coincidences of at least two hits on different PMTs
of the same DOM within 5 ns are selected. This allows to reduce the contribution of uncorrelated
background (bioluminescence and 40K decays) while keeping a sufficiently large signal statistics
to allow for a time-dependent study. Following [10], a Fourier analysis has been used to recover
the SASI frequency, expected at ∼ 80Hz for the models considered here.

Two different approaches for the significance estimation are proposed. The first method
searches for a peak in the power spectrum at any frequency ( f ). This approach would be sensitive
to any periodic pattern in the neutrino light curve. The second method uses the a priori knowledge
of the SASI frequency, which allows to increase the significance. In this case, an energy excess is
searched for, integrating the power spectrum over the range f ∈ [60, 100] Hz.

KM3NeT preliminary KM3NeT preliminary
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Figure 4: The detected light-curve at the full ARCA detector for the 20M� progenitor (right) and
the 27 M� progenitor (left), for a CCSN exploding at 5 kpc.

In Fig. 4, the simulated light-curves including background and signal at 5 kpc for two different
progenitors are shown. Fig. 5 shows the simulated power spectrum obtained for each stellar pro-
genitor after applying a Fourier transform to the expected light-curves for the full ARCA detector
assuming a distance to the progenitor of 5 kpc. In Fig. 5, the power spectrum in ARCA obtained
for each stellar progenitor at 5 kpc after applying the Fourier transform for the light-curves.
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Progenitor Model independent Model dependent
27 M� 1 σ 2 σ

20 M� 2.5 σ 3.5 σ

face

Table 2: Sensitivity to the SASI peak with ARCA at 5 kpc using the two approaches described above.

KM3NeT preliminary KM3NeT preliminary

Figure 5: Power spectrum after applying the Fourier Transform to the expected ARCA light-curve,
assuming a 27M� progenitor (left) and a 20 M� progenitor (right).

The SASI peak can be seen at the expected frequency (∼ 80Hz). The probability of obtaining
such a peak in the power spectrum for the background-only case is evaluated through pseudo-
experiments using the two methods described above. Sensitivity results are summarized in Table 2.

7. Constraints on the mean CCSN neutrino energy

KM3NeT preliminary

Figure 6: The 90% and 68% CL contours as a
function of α and < Eν >, computed for the full
ORCA detector assuming a CCSN signal at 10
kpc with a total luminosity comparable to the 11
M� progenitor (3 ·1053 erg/s, from [13]).

In order to evaluate the capability of
KM3NeT to resolve the CCSN neutrino mean
energy, the simplified model previously used
in [12] is considered. The parameter space
is investigated, considering a fixed luminos-
ity and assuming equipartition among the 3
flavours and ν/ν . The expected ranges for
the pinching shape parameter (2≤ α ≤ 4) and
the mean neutrino energy (11MeV ≤ 〈Eν〉 ≤
15MeV) are scanned. The 3 parameters are
defined in 2. A neutrino emission over 100 ms
is considered.

The multiplicity distribution is exploited
to this aim, since higher mean neutrino energy
will result in a higher contribution of high mul-
tiplicities compared to low multiplicities. The
optimized range 3≤M≤ 10 is considered into
a 2D χ2 which is used to fit α and 〈Eν〉.
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The 2D 90% and 68% confidence level (CL) contours are shown in Fig. 6 for ORCA, con-
sidering a signal equivalent to the 11 M� luminosity at 10 kpc (3 · 1053 erg/s, generally accepted
as benchmark value). It shows the potential of the detector to constrain the properties of the time-
integrated ν spectrum. A clear degeneracy between α and 〈Eν〉 is observed. Assuming a prior
knowledge of α , the uncertainty on the mean energy is between 2 and 3%.

8. Conclusions and outlooks

The expected response of the KM3NeT neutrino detectors to core-collapse supernova neu-
trinos has been studied by means of a complete Monte Carlo simulation and an exhaustive study
of the background from the first KM3NeT datasets. The performance for a significant detection
and triggering real-time alerts has been evaluated as well as the capabilities to resolve the neutrino
spectrum and the light-curve, showing that KM3NeT will contribute to the network of neutrino
detectors observing the next Galactic CCSN. Room for improvement using multi-line data analysis
allowing for new background reduction strategies should be considered, with new results from 6
ORCA and 2 ARCA lines expected to be deployed on the sea by the end of the year.
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