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Abstract

The intrinsic electrophysiological properties of single neurons can be
described by a broad spectrum of models, from the most realistic Hodgkin-
Huxley type models with numerous detailed mechanisms to the phe-
nomenological models. The Adaptive Exponential integrate-and-fire (AdEx)
model has emerged as a convenient ”middle-ground” model. With a low
computational cost, but keeping biophysical interpretation of the param-
eters it has been extensively used for simulation of large neural networks.
However, because of its current-based adaptation, it can generate unre-
alistic behaviors. We show the limitations of the AdEx model, and to
avoid them, we introduce the Conductance-based Adaptive Exponential
integrate-and-fire model (CAdEx). We give an analysis of the dynamic of
the CAdEx model and we show the variety of firing patterns that it can
produce. We propose the CAdEx model as a richer alternative to perform
network simulations with simplified models reproducing neuronal intrinsic
properties.

1 Introduction

Computational modeling of large scale networks requires to compromise between
biophysical realism and computational cost. This requirement might be satis-
fied by many two-variable models (Morris & Lecar, 1981; Krinskii & Kokoz,
1973; Fitzhugh, 1961; Izhikevich, 2003; Brette & Gerstner, 2005). In partic-
ular, two-variable models are largely used and studied, the Izhikevich model
(Izhikevich, 2003) and the Adaptive Exponential Integrate and Fire (AdEx)
model (Brette & Gerstner, 2005; Naud, Marcille, Clopath, & Gerstner, 2008).
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The first variable of these models corresponds to membrane voltage, the second,
usually slower changing variable, corresponds to neural adaptation and allows
achieving more complex dynamics and firing patterns, which can be observed
in neural recordings. In both models the second variable has a form of addi-
tional current flowing into a neuron, which may lead to unrealistic changes of
membrane voltage, especially in the case of long and intense neuronal firings
such as observed during seizures (McCormick & Contreras, 2001). Here, we de-
scribe this limitation, and to avoid it, we propose a modification of the second
variable dynamics. The adaptation variable in our model has the form of a con-
ductance, introducing the Conductance-based Adaptive Exponential Integrate
and Fire model or CAdEx model. Previous work has used conductance-based
adaptation, but these models used were either more simplified (Treves, 1993)
or much more detailed Hodgkin-Huxley type models with complex channel gat-
ing dynamics (Connor & Stevens, 1971). Our model kept the advantage of
the simplified two-variables models, while extending the repertoire of possible
subthreshold and superthreshold dynamics.

2 Conductance-based Adaptive Exponential model

The Adaptive Exponential integrate and fire model can reproduce many types of
firing patterns: tonic spiking cells, regular spiking adaptive cells, bursting cells,
etc (Naud et al., 2008; Clopath, Jolivet, Rauch, Lüscher, & Gerstner, 2007).
However, because the adaptation in AdEx model is a current, a strong and
unrealistic hyperpolarization of cell can appear after a period of prolonged firing
(Fig. 1). Moreover, subthreshold adaptation in this model is linear which means
that in the periods of strong hyperpolarization the adaptation current does not
deactivate and can remain unrealistically strong. For instance, modelling M-
current mediated adaptation in this model poses a problem because M-channels
are mostly closed when membrane voltage remains below −60 mV (Brown &
Adams, 1980). A similar problem happens for strong depolarization due to lack
of saturation of the adaptation current.

To overcome these problems, we propose here a model with conductance
based adaptation gA and with a sigmoid dependence of subthreshold adapta-
tion on voltage. We named it Conductance based Adaptive Exponential model
CAdEx. The equations of the model are as follows:

C
dV

dt
= gL(EL − V ) + gL∆T exp

(
V − VT

∆T

)
+ gA(EA − V ) + Is (1)

τA
dgA
dt

=
ḡA

1 + exp
(
VA−V

∆A

) − gA
with after-spike reset mechanism:

if V ≥ VD then

{
V → VR

gA → gA + δgA
(2)
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where C is the membrane capacitance, gL and EL are the leak conductance
and reversal potential. VT is a spike threshold and ∆T is a slope of the spike
initiation, EA is the reversal potential of the adaptation conductance and Is is
an input current. In the second equation, τA is the time constant of adaptation,
ḡA is the maximal subthreshold adaptation conductance, VA is the subthreshold
adaptation activation voltage, and ∆A is the slope of subthreshold adaptation.

Spike is initiated when V approaches VT and exponential term escalates.
After reaching a detection limit VD, the voltage is reset to the reset potential
VR and it remains at this value during a refractory period ∆tref . After each
spike, gA is incremented by a quantal conductance δgA.

The sigmoidal subthreshold adaptation function is always positive, i.e. ḡA ≥
0, and it can be monotonically increasing, ∆A > 0, or decreasing, ∆A < 0,
function of membrane voltage. In the simulations, the value of the detection
limit has been set to VD = −40 mV and the value of the refractory period to
∆tref = 5 ms.

3 Dynamical analysis of the model

3.1 Fixed points and bifurcations

The CAdEx is a nonlinear dynamical system with discontinuous post-spike reset
mechanism. The V and gA nullclines are as follows (Fig.2):

gA = gL
EL − V
V − EA

+
gL∆T

V − EA
exp

(
V − VT

∆T

)
+

Is
V − EA

(3)

gA =
ḡA

1 + exp
(
VA−V

∆A

)
The intersections of nullclines give fixed points of the system

Is = −gL(EL − V )− gL∆T exp

(
V − VT

∆T

)
− ḡA

1 + exp
(
VA−V

∆A

) (EA − V ) (4)

The analysis of the above equation, which we can write in a simpler form
defining new function S(V ) as Is = S(V ), gives us the number of fixed points
for a given input current Fig.2. Function S(V) tends to −∞ for V → ±∞ and
it can have:

1. One global maximum Vmax, which corresponds to a maximum of two
possible intersections between nullclines. Let IR = S(Vmax), IR is then
rheobase current above which the system starts to spike spontaneously.
For current input Is < IR there are therefore 2 fixed points V −(Is) and
V +(Is), For Is = IR there is one fixed point and for Is > IR there are no
fixed points.

3
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Figure 1: The comparison between AdEx and CAdEx models. Both cells were
injected with the same current pulse. Their firing rates f and adaptation pa-
rameters A were the same during pulse, f = 30 Hz and A = 0.03. However
after pulse AdEx cell hyperpolarizes below −150 mV while CAdEx cell hypor-
polarizes to proximity of the adaptation reversal potential, EA = −70 mV. The
mathematical definition of the adaptation parameter, A, is given in Section 7.
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2. Two local maxima V 1,2
max, and one local minimum Vmin, which corresponds

to maximally four possible fixed points. For input current Is < S(Vmin)
there are two fixed points, one stable and one unstable. For S(Vmin) <
Is < min

{
S
(
V 1,2
max

)}
there are four fixed points, from which two can be

stable. For min
{
S
(
V 1,2
max

)}
< Is < max

{
S
(
V 1,2
max

)}
there are two fixed

points, and for Is > max
{
S
(
V 1,2
max

)}
there are no fixed points and neuron

fires spontaneously.

To analyze the bifurcations of the system we need to consider the behavior
of Jacobian matrix at fixed points i as a function of the input current, Li(Is),
see Appendix.

The trajectories in the phase space of trace τ(Is) = tr(Li(Is)) and determi-
nant ∆i(Is) = det(Li(Is)) of Jacobian give us the type of bifurcation, Fig.3.

In the case (1), i.e. when there are maximally two possible fixed points, the
stable fixed point undergoes Saddle-Node bifurcation if for rheobase current IR

1

τA
> − ḡA(EA − V −(IR))

C∆A

exp
(
VA−V −(IR)

∆A

)
(

1 + exp
(
VA−V −(IR)

∆A

))2 (5)

Otherwise the bifurcation is of Andronov-Hopf type, see Fig.3. Since EA <
V −(IR), then if ∆A < 0 bifurcation is always of Saddle-Node type. If ∆A > 0,
both types are possible depending on the condition (5).

3.2 Subthreshold oscillations

The system can oscillate around equilibrium if (a) the equilibrium is stable, i.e.
τ(Is) < 0 and ∆(Is) > 0 and (b) eigenvalues of Jacobian at fixed point have
imaginary part, i.e. τ2 − 4∆ < 0. In that case, the frequency of oscillations is
given by ν = 1

4π

√
4∆− τ2, see Fig.4 and Appendix.

Sustained subthreshold oscillations due to the emergence of a limit cycle can
be also observed. Some examples in the case of multi-stability are given in the
next section.

4 Multi-stability

In this section, we present a list of examples of multi-stability. Such behaviors
can be observed due to two properties of the model.

Subthreshold multi-stability. Due to the non-linear form of the subthreshold
adaptation, the system may exhibit two or four fixed points. The case of two
fixed points has been described in the previous section. With four fixed points,
various configurations are possible: with a positive or negative slope (∆A) of
the adaptation nullcline. The stability of these fixed points, depending on the
input current, are shown in Fig.2.

Superthreshold stability. The model has a discontinuity which occur after
spike and corresponds to the reset of membrane voltage and to the increment of

5
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Figure 2: (a) Nullclines of CAdEx system for two parametrizations, left for
∆A > 0, right for ∆A < 0. The blue line is a V-nullcline, red line - gA-
nullcline. The red filled circle indicates stable fixed point, white the filled circle
- unstable fixed point. Arrows indicate the direction of the vector field. Increase
of input current moves the V-nullcline up. (b) Corresponding S(V ) functions.
Intersections with lines of constant input current Is indicate positions of the
fixed points.
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Figure 3: Bifurcations of the CAdEx system. (a) Trajectories of the fixed points
on the Poincaré diagram for increasing input current Is. For positive ∆A, blue
lines, the stable fixed point loses stability with an Andronov-Hopf bifurcation,
ḡA = 10 and 20 nS. For negative ∆A, red lines, the stable fixed point merges
with the saddle point in a Saddle-Node bifuraction, ḡA = 5 and 10 nS. Without
subthreshold adaptation, ḡA = 0 nS, black line, the system undergoes a Saddle-
Node bifurcation. (b, c) Response of the cell to a brief current pulse, (b) near
the Andronov-Hopf bifurcation, (c) near the Saddle-Node bifurcation.
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Figure 4: (a) Subthreshold oscillations of the membrane voltage around the
stable equilibrium for different constant input currents. (b) Frequency of sub-
threshold membrane voltage oscillations in the CAdEx model as a function of a
constant input current. Crosses signify numerical results, dashed line theoret-
ical prediction, ν = 1

4π

√
4∆− τ2. The membrane voltage was perturbed from

the stable equilibrium for a given constant input current, by a short (10 ms)
pulse of added current (10 pA).
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adaptation conductance. It can lead to steady-state firing behavior, which can
be treated as an attractor of the model. The reset discontinuity has, in many
aspects, the same effect as a third variable. It allows chaotic behaviors (as de-
scribed in the next section) normally impossible in a continuous two dimensional
system.

Here, we give three examples of multi-stability: (a) with four fixed points
and negative slope of adaptation, (b) with four fixed points and positive slope
of adaptation and (c) with two fixed points and positive slope of adaptation.

(a) With a negative and small enough value of ∆A, the nullclines can have
four crossings. In this case, the system has two stable fixed points with
different values of the membrane potential. In this situation, three stable
steady-states are observed, Fig.5a: Two possible resting state of membrane
potential and a self-sustained spiking. Small perturbations permit switch
between these steady-states, as shown in Fig. 5b. By applying synaptic
noise through conductance-based inhibitory and excitatory synapses (see
Appendix), oscillations between these stable states can be observed, Fig.
5c.

(b) With a positive and small enough value of ∆A, the system can also have
four fixed points. In this case, the emergence of a stable limit cycle is
observed. It leads to three possible stable behavior: resting state, sub-
threshold oscillations, and regular spiking as show in Fig.6a. As in the
previous condition, oscillations between stable states can be observed un-
der synaptic bombardment, Fig.6b.

(c) In a situation with two fixed points, the emergence of an unstable limit
cycle is observed, leading to bi-stability near the threshold between spiking
and, non-spiking damped oscillations, as shown in Fig.7c.

5 Firing patterns

The CAdEx model is able to reproduce a large repertoire of intrinsic electrophys-
iological firing patterns. In this section, the dynamics of chosen firing patterns
in CAdEx will be detailed. The initialization values of the two variables in sim-
ulation were V (0) = −60 mV for the membrane potential and gA(0) = 0 nS for
the adaptation; except when ∆A < 0 when gA is initialized at g∞A (−60 mV). For
sets of parameters used in this section, the system does not have fixed points.
Therefore, independently of the starting point location, the system converges
to the same steady state firing. However behaviors in the transient regime may
change, which is crucial for spike frequency adaptation. Parameters for each
pattern of Fig. 8 are in Table 1.

Adaptive spiking. The adaptation can cause a decrease of spiking frequency
as seen in Fig. 8a. Correspondingly the value of gA increases until it reaches
a steady state. The spike frequency adaptation is mainly affected by spike
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Figure 5: Multi-stability observed with a negative slope of ga: (a) the dynamics
for single neuron with two stable fixed-points and a stable limit cycle due to
the reset, (b) transitions between possible steady-states due to excitatory or
inhibitory short-time perturbations, (c) transition between up and down state
of single neuron receiving input through conductance-based synapses.
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Figure 6: Multi-stability observed with a positive slope of ga: (a) the dynamics
for single neuron with a stable fixed-point: a stable limit cycle due to the
subthreshold dynamics and a limit cycle due to the reset, (b) transitions between
up and down state of single neuron receiving input through conductance-based
synapses.
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Figure 7: Multi-stability observed with two fixed points, (a) damped subthresh-
old oscillations are observed near the spiking behavior. (b) Enlarged concerned
region (blue square). Two simulations initiated: inside (red) and outside (dark
grey) the unstable limit cycle
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triggering parameters (VT and ∆T ), membrane properties: C and gL, as well as
the adaptation parameters, gA and strongly by ∆gA.

Tonic spiking. In the absence of adaptation, i.e. ḡA = 0, the model ex-
hibits tonic spiking. However, tonic spiking can also be observed with non-zero
adaptation, as in Fig. 8b, if the steady state firing can be reached after the
first spike. The steady state spiking frequency is be influenced by membrane
capacitance, C, the leak conductance, gL, and the slope of spike initiation ∆T ,
and also by the adaptation time constant τA. The hyperpolarization rebound
after spiking depends on both: reset value VR and adaptation time constant τA.

Bursting. To obtain bursting behaviors, Fig.8c, the reset value, VR, has to
be higher than the voltage of the minimum of the V nullcline. The system spikes
until it crosses the V nullcline, ending the burst. Then, above the V nullcline,
the system is driven to lower values of adaptation and membrane potential.
After a second crossing of the V nullcline, the system spikes again, starting
a new bursting cycle. Bursts can be characterized by intra- and inter-bursts
activities. The inter-burst activity is affected by adaptation, ḡA and τA strongly
determine the inter-burst time interval and after burst hyperpolarization.

Delayed spiking. All firing patterns can occur with a time delay. Example
is given for bursting, Fig. 8d, and low frequency spiking Fig.8b. The distance
between V and gA nullclines which is determined by Is. By changing this
distance and the time constant τA it is possible to obtain a region of slow flow
(small dV

dt ) and so increase the delay and the inter-event interval. The reset
VR and δgA also affects the time required for the system to go around the V
nullcline, and then, to the next event.

Accelerated spiking. A negative slope of gA (∆A < 0) associated with δgA =
0, leads to firing rate acceleration as shown in Fig8e.

Chaotic-like spiking. As the CAdEx model is not continuous due to the after
spike reset of voltage and incrementation of adaptation, chaotic-like spiking
behavior can be observed as shown in Fig.8f. These phenomena occur when
the reset is close to the right branch of the V nullcline. To verify that this
irregularity is not due to numerical error, we used various integration methods
and various time steps in Brian2 simulator (Stimberg, Brette, & Goodman,
2019).

6 Adaptation and irregularity

A convenient way to measure spike frequency adaptation is given by the adap-
tation index:

A =
1

N − 1

N−1∑
i=1

ISIi+1 − ISIi
ISIi+1 + ISIi

(6)

where N is the number of subsequent interspike intervals, ISIi. Note that A ∈
(−1, 1) and is positive for decelerating spike trains and negative for accelerating
spike trains.
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a. b.

c. d.

e. f.

Figure 8: Firing patterns of the CAdEx model: (a) adaptation, (b) delay low-
frequency tonic spiking, (c) burst, (d) delayed burst, (e) acceleration, (f) irreg-
ular chaotic-like
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Cm [pF] EA [mV] EL [mV] Is [pA] VA [mV] ∆A [mV]
Adaptive spiking 200 -70 -60 200 -50 5
Tonic spiking 200 -70 -70 192 -45 5
Bursting 200 -60 -58 150 -45 1
Delayed burst 200 -70 -60 100 -45 2
Accelerated spiking 200 -70 -60 130 -60 -5
Chaotic-like spiking 200 -70 -58 90 -40 5

VR [mV] VT [mV] δgA [nS] ḡA [nS] gL [nS] τA [ms]
Adaptive spiking -55 -50 1 10 10 200
Tonic spiking -56 -50 0 2 10 40
Bursting -46 -50 1 10 10 200
Delayed burst -46 -50 1 1 12 100
Accelerated spiking -58 -48 0 6 10 300
Chaotic-like spiking -47 -50 1 10 10 25

Table 1: The parameters of CAdEx model for firing patterns shown in Fig.8

To measure irregularity of spiking we used the coefficient of variance of ISI:

Ir =
σISI

〈ISI〉
(7)

where 〈ISI〉 and σISI are the mean and the standard deviation of ISIs respectively.
According to this definition, Ir ∈ [0,∞), where Ir = 0 for regular tonic spiking.

Both subthreshold ḡA and post-spike δgA adaptation parameters affect adap-
tation index, see Fig.9a. This allows the model to reproduce wide range of A
index values observed in neurons.

The irregular spiking (like chaotic-like spiking and bursting) is especially
pronounced in the transition zone between slow and fast regular spiking regions,
see Fig.9b. On the phase diagram slow regular spiking corresponds to post-
spike reset occurring on the left side of the right branch of the V-nullcline,
and, consequently, leading to longer interspike intervals, while fast tonic spiking
corresponds to reset occurring on the right side, leading to fast subsequent spike.
In the transition zone alternations between resets on the left and right side of V-
nullcline can lead to highly irregular spiking (cf.chaotic-like Fig.8f) and bursting
Fig.8c and d).

7 Discussion

In this paper, we proposed a new integrate-and-fire model with two variables,
and which can produce a large repertoire of electrophysiological patterns while
still allowing for clear mathematical insights and for large scale simulations. This
CAdEx model is completely specified with twelve biophysical parameters, and
reproduces qualitatively similar pattern as the AdEx model (Naud et al., 2008),
because the gA nullcline may be considered as locally linear and approximates
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Figure 9: Spike frequency adaptation and spiking irregularity in CAdEx model.
(a) Adaptation index A and corresponding firing rate as a function of maximal
subthreshold adaptation ḡA and post-spike adaptation δgA. (b) Irregularity
index Ir and corresponding firing rate as function of reset potential VR and
post-spike adaptation δgA.
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that of the AdEx model. While the dynamics of the CAdEx model is compara-
ble to the AdEx model for moderate input and firing, the CAdEx model does
not suffer from un-naturally strong hyperpolarization after prolonged periods
of strong firing. This can be very advantageous for modelling of highly syn-
chronized rhythms and firings, like slow-wave oscillations or epileptic seizures.
Moreover, the sigmoidal subthreshold adaptation function allows one to model
the dynamics of voltage dependent ion channels in more detail, while retain-
ing the overall computational simplicity. The sigmoidal form of the adaptation
function enriches the dynamics, allowing a wider repertoire of multi-stabilities.

However, our model has some limitations. First, the adaptation has the
form of a non-inactivating current (such as IM potassium current) which limits
the description of a class of inactivating ionic channels. It also includes only
one type of subthreshold adaptation. In comparison to AdEx model, the com-
putational cost of our model may be slightly higher due to the form of the
adaptation variable, and more specifically the introduction of an exponential
function. Also, as more parameters are introduced, more thorough dynamical
studies and explorations of the parameter space are needed.
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Appendix

Bifurcations analysis

Rheobase current

The derivative of function S(V ) is given by

S′(V ) = gL − gL exp

(
V − VT

∆T

)
+

ḡA

1 + exp
(
VA−V

∆A

) (8)

− 1

∆A

ḡAexp
(
VA−V

∆A

)
(

1 + exp
(
VA−V

∆A

))2 (EA − V )

The solution of the transcendental equation S′(V ) = 0 gives a location V ∗ of
a maximum of S(V ) function, and consequently a rheobase current IR = S(V ∗).

Local linearized dynamics around equilibria

The Jacobian of CAdEx system around equilibrium i, located at (V (i), g
(i)
A ), for

an input current Is has a form:

Li(Is) =


− gLC + gL

C exp
(
V (i)(Is)−VT

∆T

)
− g

(i)
A (Is)

C
EA−V (i)(Is)

C

ḡA
τA∆A

exp

(
VA−V (i)(Is)

∆A

)
(

1+exp

(
VA−V (i)(Is)

∆A

))2 − 1
τA

 (9)

The trace τi(Is) and the determinant ∆i(Is) of Jacobian are as follows:

τi(Is) = −gL
C

+
gL
C

exp

(
V (i)(Is)− VT

∆T

)
+
g

(i)
A (Is)

C
− 1

τA
(10)

∆i(Is) =
gL
τAC

− gL
τAC

exp

(
V (i)(Is)− VT

∆T

)
+
g

(i)
A (Is)

τAC
(11)

− ḡA(EA − V (i)(Is))

τAC∆A

exp
(
VA−V (i)(Is)

∆A

)
(

1 + exp
(
VA−V (i)(Is)

∆A

))2

From above equations:

∆i = − 1

τA
τi −

1

τ2
A

− ḡA(EA − V (i)(Is))

τAC∆A

exp
(
VA−V (i)(Is)

∆A

)
(

1 + exp
(
VA−V (i)(Is)

∆A

))2 (12)
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The eigenvalues of Jacobian matrix at fixed points are then given by:

λ12 =
τ ±
√
τ2 − 4∆

2
(13)

If eigenvalues are complex, i.e. τ2 − 4∆ < 0, then system oscillates around
equilibrium. The imaginary part of an eigenvalue is equal to angular frequency
of oscillation, i.e. Im(λ) = ω = 2πν. Consequently the frequency of oscillations
is given by:

ν =
1

4π

√
4∆− τ2 (14)

Conductance-based synapses

To describe the behavior of the system receiving synaptic input, as in Section
4 concerning Multi-stability, we used a conductance-based model of synaptic
inputs.

The synaptic input current to our model is given by the following equation:

Isyn = gE(EE − V )− gI(EI − V ) (15)

Where EE = 0 mV is the reversal potential of excitatory synapses and EI =
−80 mV is the reversal potential of inhibitory synapses. gE and gI , are re-
spectively excitatory and inhibitory conductances, which increase by quantity
QE = 4 nS and QI = 1.5 nS on each incoming spikes. The increment of con-
ductance is followed by exponential decrease according to equation:

dgE/I

dt
= −

gE/I

τsyn
(16)

where τsyn = 5 ms. The spikes trains are generated by Poissonian process with
firing rate modulated by Ornstein-Ulhenbeck stochastic process (Fourcaud &
Brunel, 2002).
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