Effects of ionizing radiation on learning and spatial memory after postnatal mouse brain exposure at low to moderate doses

Celine Serrano, Morgane dos Santos, Dimitri Kereselidze, Louison Beugnies, Philippe Lestaevel, Roseline Poirier, Christelle Durand

To cite this version:
Celine Serrano, Morgane dos Santos, Dimitri Kereselidze, Louison Beugnies, Philippe Lestaevel, et al.. Effects of ionizing radiation on learning and spatial memory after postnatal mouse brain exposure at low to moderate doses. Radiation Research Society, RRS, Nov 2019, SAN DIEGO, United States. 2019. hal-02507247

HAL Id: hal-02507247
https://hal.archives-ouvertes.fr/hal-02507247
Submitted on 12 Mar 2020
Effects of ionizing radiation on learning and spatial memory after postnatal mouse brain exposure at low to moderate doses

C. Serrano¹, M. Dos Santos², D. Kereselidze¹, L. Beugnies¹, P. Lestaeven¹, R. Poirier³, C. Durand⁴

1. Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on the Biological and Health Effects of Ionising Radiation (SEBARI), Laboratory of experimental Radiobiology and Radiation Biology (LARRB), Fontenay aux Rosiers, France
2. Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on Radiobiology and regenerative MEDicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAC), Fontenay-aux-Roses, France
3. Institute of Neurosciences Paris-Saclay, CNRS UMR 9197, University of Paris-Saclay, Orsay, France

celine.serrano@irsn.fr / christelle.durand@irsn.fr

Introduction

Computed tomography scan is a medical imaging technique using low doses of X-rays. It is commonly used for head and neck exploration of children. Repeated use of computed tomography scan can lead to a relatively high cumulative dose. Long-term effects of brain exposure, at low to moderate doses (≤ 2 Gy) of ionizing radiation on cognitive functions, such as learning and memory processes, are not well established and is a important scientific issue.

Among brain structures potentially impacted by irradiation, hippocampus is a structure of interest because of its involvement in spatial learning and memory processes. In the hippocampus, new neurons are continuously generated in the subgranular zone of the dentate gyrus during postnatal and adult life which makes it a potentially sensitive structure to X-rays.

Objectives

To study the impact of postnatal irradiation at low-to moderate doses thanks to two models of exposure
- Whole Brain vs Dorsal Dentate Gyrus → on spatial learning and memory
- on hippocampal adult neurogenesis

Experimental strategy

1. Irradiation procedure: Two models of exposure

 The irradiations are performed on the SARRP (Small Animal Radiation Research Platform, Xstrahl, Ltd., UK). (technical characteristics: high tension: 220V, intensity: 30 Gy)

 Control mice underwent scanner imaging like the other mice.

 Treatment plan:
 - Effective energy = 69 keV
 - Dose rate = 0.3 Gy/min
 - Dose applied: 0.25, 0.5, 1 or 2 Gy

 Whole Brain
 - Scanner image
 - MRI image

 Dorsal Dentate Gyrus
 - Scanner image
 - MRI image

 Superposition

 BrdU injections (2 x 150 mg/kg or 5 x 30 mg/kg)

2. Behavioral test

3. Immunofluorescence

 t₀ + 24 hours
 - BrdU + DCX / NeuN

 t₀ + 38 days
 - Density of immature neurons (BrdU/NeuN), 38 days after injection in the DGG (x̄ ± SD, n = 4, p < 0.05)
 - Density of mature neurons (BrdU/NeuN), 38 days after injection in the DGG (x̄ ± SD, n = 4, p < 0.05)

 t₀ + 10 days
 - Massed learning
 - Long-term spatial memory

 No impairment
 - No impairment
 - Impairment 1 Gy

Results

Spatial learning and memory

2. Massed learning

 10 days
 - 2 trials of 5 min / trial
 - Submerged Platform

Long-term spatial memory

 Total distance in the target quadrant (%)

 Control
 - 0.25 Gy
 - 0.5 Gy
 - 1 Gy
 - 2 Gy

 No impairment
 - Impairment

3. Adult neurogenesis processes: Focus on the dose of 1 Gy

 BrdU injections
 - 1 Gy
 - 10 days old
 - t₀

 Immunofluorescence
 - BrdU + DCX / NeuN

 t₀ + 24 hours
 - Density of immature neurons (BrdU/NeuN), 24 hours after injection in the DGG (x̄ ± SD, n = 4, p < 0.05)

 t₀ + 38 days
 - Density of mature neurons (BrdU/NeuN), 38 days after injection in the DGG (x̄ ± SD, n = 4, p < 0.05)

Discussion and perspectives

An exposure at the postnatal stage can induce detrimental consequences 3 months later.

The effects of X-rays at low-to moderate doses (0.25 to 2 Gy) on spatial memory are not linear after targeted exposure. Spatial memory impairment observed between our two mouse models, exposed at the dose of 1 Gy, could partially be explained by selective alterations in hippocampal adult neurogenesis.

However, it will be necessary to explore the different steps of adult neurogenesis more precisely. The inflammatory response will also be evaluated in parallel.