Effects of ionizing radiation on learning and spatial memory after postnatal mouse brain exposure at low to moderate doses
Celine Serrano, Morgane dos Santos, Dimitri Kereselidze, Louison Beugnies, Philippe Lestaevel, Roseline Poirier, Christelle Durand

To cite this version:
Celine Serrano, Morgane dos Santos, Dimitri Kereselidze, Louison Beugnies, Philippe Lestaevel, et al.. Effects of ionizing radiation on learning and spatial memory after postnatal mouse brain exposure at low to moderate doses. Radiation Research Society, RRS, Nov 2019, SAN DIEGO, United States. 2019. hal-02507247

HAL Id: hal-02507247
https://hal.archives-ouvertes.fr/hal-02507247
Submitted on 12 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Effects of ionizing radiation on learning and spatial memory after postnatal mouse brain exposure at low to moderate doses

C. Serrano, M. Dos Santos, D Kereselidze, L Beugnies, P. Lestaue, R. Poirier, C. Durand

Introduction

Computed tomography scan is a medical imaging technique using low doses of X-rays. It is commonly used for head and neck exploration of children. Repeated use of computed tomography scan can lead to a relatively high cumulative dose. Long-term effects of brain exposure, at low to moderate doses (≤ 2 Gy) of ionizing radiation on cognitive functions, such as learning and memory processes, are not well established and is a important scientific issue.

Among brain structures potentially impacted by irradiation, hippocampus is a structure of interest because of its involvement in spatial learning and memory processes. In the hippocampus, new neurons are continuously generated in the subgranular zone of the dentate gyrus during postnatal and adult life which makes it a potentially sensitive structure to X-rays.

Objectives

To study the impact of postnatal irradiation at low-to-moderate doses thanks to two models of exposure
- Whole Brain vs Dorsal Dentate Gyrus
- on spatial learning and memory
- on hippocampal adult neurogenesis

Experimental strategy

1. Irradiation procedure: Two models of exposure

M. Dos Santos et al., 2018

The irradiations are performed on the SARRP (Small Animal Radiation Research Platform, Xstrahl, Ltd., UK).

- Control mice underwent scanner imaging like the other mice.
- Treatment plan:
 - Effective energy = 69 keV
 - Dose rate = 0.5 Gy/min
 - Dose applied: 0.25, 0.5, 1 or 2 Gy

2. Behavioral test

3. Immunofluorescence

Discussion and perspectives

An exposure at the postnatal stage can induce detrimental consequences 3 months later.

The effects of X-rays at low-to-moderate doses (0.25 to 2 Gy) on spatial memory are not linear after targeted exposure. Spatial memory impairment observed between our two mouse models, exposed at the dose of 1 Gy, could partially be explained by selective alterations in hippocampal adult neurogenesis.

However, it will be necessary to explore the different steps of adult neurogenesis more precisely. The inflammatory response will also be evaluated in parallel.

Results

2. Spatial learning and memory

3. Adult neurogenesis processes: Focus on the dose of 1 Gy

Targeted exposure impacts on the process of hippocampal adult neurogenesis contrary to whole brain exposure