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Abstract. The Internet of Things (IoT) consists in connecting every
aspect of daily and professional life to a common infrastructure, in order
to improve considerably the efficiency of otherwise unthinking objects.
The huge scale on which they operate, as well as the lack of adequate
standards and infrastructures makes the development of IoT applications
a task of gradually growing complexity. The objective of this work is to
define a formal model with BiAgents (Bigraphical Agents) for IoT ap-
plications, based on a suggested generic multi-layered architecture. We
show how bigraphs support the structural aspects modelisation of these
applications while the agents specify their analytical and decisional as-
pects. We proceed then to the edition and execution of our model us-
ing the bigraph implementation tool (RCTool4Bigraphs), and through
the exploitation of its model-checker, we formally verify its most criti-
cal property. As a practical example, we study the case of a Collision
Avoidance System.

Keywords: Advanced Driver Assistance Systems, BAM4IoT, Bigraphs,
BiAgents, Collision Avoidance System, Formal Specification, Internet of
Things, RCTool4Bigraphs.

1 Introduction

The Internet of Things (IoT) is the vision of a world where each entity has
a physical or virtual representation, as well as a presence on existing or future
interoperable networks. These entities interact through specific protocols in order
to offer and consume services. They can generally perceive their environment and
affect it.

The development of IoT applications becomes each year more complex and
challenging. This is due to, among others, the need of ensuring interconnectiv-
ity and supporting a huge scale of interconnected devices. An important point
to consider is that this type of application relies to a great extent on shared
infrastructure and protocols (the Internet in the most common case). A poorly
designed application may thus not only result in poor behaviour, but also in
damaging the infrastructure or hindering other applications. To fully exploit the
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widely recognized mathematical formalism potential in analysing, designing and
implementing IoT complex systems (with which human users and different de-
vices interact), well-defined development approaches are required. To address
this issue and specifically to model the IoT applications at different levels of ab-
straction, a new incremental approach is proposed. In fact, to date in literature,
several approaches for the development of IoT applications have been proposed.
It is possible to recognise some operational approaches based on multi-agent
frameworks [1] to support the implementation of IoT systems. Nevertheless, no
well-formalized approach able to support analysis, design and implementation
phase of IoT applications development is currently available. In this paper, we
address such issue by suggesting a systematic comprehensive approach.

In the beginning, we give a generic layered architecture for IoT applications
allowing a separation of concerns mastering thus their complexity. Then, this
architecture constitutes an intermediate model for the formal one. This latter
is based on a judicious combination of bigraph model [2] and agents, allowing
to describe either aspects of an IoT application with precision as well as a high
level of abstraction. The defined model may support both IoT system’s structure
and its behaviour. Indeed, Bigraphs give a way to represent structural aspects
according to two axis: locality (place graph) and connectivity (link graph). In
addition, a mechanism is provided to express the evolution of Bigraphs, called the
Reaction Rules. This makes it possible to describe the behaviour and the states
of a dynamically evolving system. Aside from the two previously mentioned
aspects of structure and behaviour, IoT applications are also characterized by
cognitive aspects, like awareness of the environment and the ability to affect it.
Intelligent agents may maintain these aspects, while providing an ideal tool for
the specification of communication and context aware interactions. The paper
contribution is twofold, on one hand we propose a formal approach for IoT
applications in order to master their complexity, on the other hand we extend
the BiAgents definition given in [3] for the modelling of this kind of systems.

The rest of this paper is structured as follows. In Section 2, we make a
summary of the useful concepts for the comprehension of this work’s main con-
tribution. Section 3 introduces our multi-layered generic architecture, as well as
our case study, the Collision Avoidance System. Section 4 presents our proposed
BiAgent-based model for IoT applications while illustrating it with a realistic
example. In Section 5, we establish a synthesis of related works that use formal
methods to model IoT applications. Finally, conclusion and future direction of
this work are drawn.

2 Basic concepts

This section introduces the different formal concepts we use to model the IoT.

2.1 Bigraphs

In Bigraphs theory [2], a bigraph structure facilitates the understanding and de-
sign of complex systems. Its formal notation guarantees a safety regarding the
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correction of the modelling. In addition, the reaction rules clearly specify the
dynamics of the modelled system.

A bigraph structure is the combination of two graphs (see figure 1) :

– The place graph is in the form of a forest of trees each having a root called a
”region”. It has a control function that assigns each node a control1. It can
also contain sites that are abstractions in which we can insert other bigraphs.

– The link graph is used to represent relationships and connectivity in a system.
It has the structure of a hypergraph.

Fig. 1. Example of a bigraph [2]

Definition 1. A bigraph [2] is a tuple of form : G = (V,E, ctrl, prnt, link) :
〈m,X〉 → 〈n, Y 〉 where 〈m,X〉 and 〈n, Y 〉 are the inner and outer faces of G.
V and E are respectively, a final set of nodes and a final set of hyperedges.
ctrl :V → K is the control function which assigns a control to each node. prnt
represents the parent function. link is the function that represents the different
links contained in the bigraph.

A reaction rule [4] has the form R → R′ where R is known as the bigraph
redex and R′ the reactum one. If we write B → B′, this means that there is
a reaction rule that can be applied to B and give B′, conversely if we write
B 6→ B′, this means that there is no possible reaction rule for B to get B′.

Definition 2. A Bigraphical Reactive System (BRS) is defined by the set
of bigraphs representing the different states of the system obtained from the initial
bigraph, and the set of reaction rules applied successively.

2.2 BiAgents

Bigraphical Agents [1] are defined by a physical structure and a logical structure.
The physical structure is modelled by the formalism of bigraphs and the logical
one by agents.

1 a number of ports
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Definition 3. The physical structure [3] of a BiAgent is defined as a tuple
B = (B,R,U, B0, F ) where B is the space of bigraphs, R is the set of reaction
rules, U is the control space such as U ⊆ R×VB, with VB the set of bigraph nodes.
B0 is the initial bigraph. Before defining F , dec3 is a function which gives a valid
decomposition of a bigraph into three bigraphs such as dec3(B) = (B′, B′′, B′′′)
and B is the composition B′ ◦ B′′ ◦ B′′′. VR is the set of redex’s nodes and VR′

is the set of reactum’s rules. F is the transition function that, from the current
bigraph and from a control action, gives a new bigraph: F : B × U → B. It is
defined as follows by considering C as the context of R′ and d the parameters of
R′ : F (B, (R → R′, h)) = C ◦ R′ ◦ d if ∃ dec3 such as dec3(B) = (C,R, d) and
h ∈ VR and h ∈ VR′ . If not, F is undefined.

Definition 4. The logical structure [3] of a BiAgent is defined as a tuple
a = (O,U , host0, obs, ctr,mgrt) where O is the agent’s observation space such
as O ⊆ B. U is the control space such as U = Ra×VB. host0 ∈ VB is the node that
hosts the agent initially. obs is the observation function, obs : B × VB → O ctr
is the control function with which an action can be executed, ctr : O → U . mgrt
is the migration function that, with the host of the agent and an observation,
provides the next host, mgrt : VB ×O → VB.

2.3 Trace

Definition 5. In a Bigraphical Reactive System, a trace [5] is a sequence of
bigraphs 〈a1, a2, ...〉 such that for each ai and ai+1, There is a reaction rule
ai → ai+1. If there are two traces s and t and the last element of s is the redex
of a reaction rule whose reactum is the first element of t, the composite trace
exists and begins with all the elements of s followed by all the elements of t, in
this case t is an extension of s. We denote Tr(A) the set of all traces for a given
BRS A.

We use traces to make a history of the different events that happen in the

system modelled. We can note t = B0

R1
≺ B1

R2
≺ B2

R3
≺ B3 with R1, R2 and R3

the reaction rules that allow the transition from a bigraph to another. On this
basis, a BiAgent can be an agent with a memory by using, as an observation
space, a set of traces of bigraphs instead of using a set of bigraphs. If we have a
system that contains x agents, we can have x traces, each one representing the
course of actions of a particular agent; we call each of these traces a projection.

Definition 6. We represent the flow of agents in space through a projection
ta of a trace t defined as follows :

ta = (pa0 , h
a
0) ≺ (pa1 , h

a
1) ≺ ...

where each pai is a projection of the bigraph Bi Which holds only the node in
which the host is located hai .
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3 A Layered-Architecture for IoT applications

Nowadays, we are witnessing a radical evolution of the current Internet in a
network of interconnected objects that not only collects information from the
environment (detection) and interacts with the physical world (action / control),
but also uses existing Internet standards to provide services for information
transfer, analytic, applications and communications [6]. In this context, an IoT
application is the set of software and hardware that enables a smart behaviour
from an ordinary object. In other words, it is a functional system whose aim is to
collect data, process it and emit some output that is relevant to its intended task.
Specifically, we can summarize the main characteristics of IoT applications as
follows [7,8]: Interconnectivity, Heterogeneity, Dynamic changes, Scale, Security
and Connectivity.

In the present work, the software part of an IoT application will be our main
focus; we give a multi-levels architecture of the Connected Objects applications
and discuss its implication for the objects communications in terms of the traffic
that will be generated. Figure 2 shows the given architecture knowing that an
IoT application could be specified according to four layers:

Fig. 2. Multi-layered architecture for an IoT application

Physical Layer It represents the system’s hardware. In particular, we focus
our interest on input and output hardware, as they are the mean to interact
with and to receive signals from the environment.

Abstraction Layer It is a low-level layer which implements all interaction pro-
tocols with the components within the Physical Layer (in the form of imple-
mentable driver modules). In addition, this layer offers an interface through
which the application interacts with the physical components. The main rea-
son we choose to represent this layer is the diversity of the used hardware for
this kind of systems as well as the lack of standards. We need this layer to
be provided with basic intelligence to analyse input at a low level and decide
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where to send it; we represent this by an agent that manages this particular
layer: the Abstraction agent.

Communication Layer Since communication is an essential part of every IoT
system, we choose to dedicate a separate layer to it. This layer is divided
into two sublayers: Internal Communication (ICL), which is the set of pro-
tocols used for interaction between all layers within a system, and External
Communication (ECL), which is the set of protocols used to communicate
with separate, external systems. The intelligent entity managing this layer is
the Communication agent, which verifies the correctness of package formats
and sends them to the right destination.

Application Layer This most high-level layer is the actual IoT application. It
is again divided into two sublayers: Generic Support for all non-functional
aspects which are common to a large spectrum of applications, and Specific
Support which is the handling of the most particular aspects of a system.
Decisions on the global behaviour of the application are ultimately issued by
this layer’s smart entity: the Application agent.

Each of the previously mentioned agents are conceived according to a control-
loop model as shown in figure 3.

Fig. 3. Principle of an agent control loop

Illustrative Example

The case we will study in this section is that of a Collision Avoidance System
(CAS) [9] as implemented in a car. It can detect a stationary natural obstacle
and issue a warning to the driver and to an external server so as to warn those
who might take the same road. It can also detect a moving obstacle (like a
pedestrian) or receive a warning from an external server; in either of these cases,
it will simply produce a warning for the driver.

By applying the proposed multi-layered architecture (of figure 2) to the CAS
example of this section, we obtain the structure in figure 4;

– In the Physical Layer, one radar and two cameras (one in the front, one in
the rear) are used to get raw information on the environment. A vibrator
and speakers are used to issue warnings to the driver. A network card is
used to communicate with other similar systems through a trusted server.
To each kind of these components, an interface in the Abstraction Layer is
associated.

– In the Communication Layer, we specify the subsystems that constitute the
two sublayers. The verification subsystem in the ECL checks whether a re-
ceived package is from a trusted server or needs to be destroyed.
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– The Application layer was extended with all functional and non-functional
high-level software components that specify the actual application behaviour.

Fig. 4. Multi-layered Architecture applied to the Collision Avoidance System

The major components of our proposed architecture for CAS example are used
for an easy management and development of this application by both users and
programmers. The re-usability and genericity of this approach allow the designer
to generate models for any IoT application. In the following we describe the
choices that have been taken to satisfy these requirements; we are interested
by the formal description and verification issues. Particularly, we show how we
generate a formal definition of IoT applications, based on the theory of bigraphs.

4 BAM4IoT: A BiAgent-based model for IoT

The generic architecture presented earlier represents an intermediate phase to-
wards the development of an appropriate formal model based on BiAgents [3].
Indeed, our model may have two distinct but complementary views: the phys-
ical view (the layers) that define the place the connectivity of components of
an IoT application and the logical view (the agents) that manages these lay-
ers by obtaining information, analysing it and take an action according to the
given information. We detail in the following sections the proposed Bigraphical

Agents Model for the IoT (BAM4IoT) according to its two structures (physical
structure and logical structure).
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Definition 7 (BAM4IoT Physical Structure). The physical structure of

BAM4IoT model is defined as following :

BIoT = (B,R,U, B0, F )

– B is the set of bigraphs modelling the chosen IoT application.
– R is the set of reaction rules describing its behaviour.
– U ⊂ VB×R is the set of controls representing the potential actions recording

to a single node with VB the set of nodes of every B ∈ B.
– B0 ∈ B is the bigraph representing the initial state of the IoT system mod-

elled.
– F is the control function defining the transition between a bigraph and an-

other according to a control ui ∈ U.

Definition 8 (BAM4IoT Logical Structure). The logical structure of BAM4IoT
model is defined by a set of adaptive agents aIoT , each agent a(i)IoT has the
following format:

a
(i)
IoT = (O,U ,D, host0, obs, an, ctr,mgrt)

with :

– O ⊂ B is the observation space.
– U is the control space which represents the possible agent’s actions.
– D is the decision space obtained after the agent’s analysis.
– host0 is the agent’s initial host.
– the function of observation obs which provides an observationo ∈ O using a

bigraph and the host of the observant agent : obs(b, h) = o.
– the analysis function that, with an observation or a set of observations and a

host, analyses this host or its sons and returns a positive or negative decision
: an(o, h) = α ∈ D.

– The control function which gives the next succession of rules to be executed,
each according to a node, using the result of an analysis : ctr(α) = u ∈ U .

– The migration function that provides the next host of the agent according to
the current host and an observation: mgrt(o, h) = h′.

CAS Example Application

Let us take again the CAS example (Collision Avoidance System) and try to
define their structures (physical and logical), as well as its behaviour while illus-
trating the BAM4IoT definitions.

The Physical Structure of CAS example is given by the tuple

BCAS = (B,R,U, B0, F )

– B = {B0, ..., B20} is the set of all bigraphs resulting from the application of
the defined reaction rules.
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– R = {R0, R1, R2, R3, R4, R5, R6, R7}. A summary of these reaction rules is
given in table 1.

– VB the set of nodes of every B ∈ B with VB = VSS ]VI ]VF ]VE ]VES ]VS .

– U the set of every possible couple made of reaction rules and nodes : R×VB.

– B0 ∈ B is the bigraph representing the system’s initial state BSDC (fig. 5).

– F is the control function that defines the transition from a bigraph to another
through a particular control. If a rule isn’t applicable to the node to which
it is associated in the control ui ∈ U, F is undefined.

Table 1. Collision Avoidance System Reaction Rules

Rule ID Description

R0 A sensor device (radar) determines the presence of an input (pedestrian).

R1 The information is sent to the ICL (Internal Communication Layer) in the purpose of beeing formatted.

R2 The information is formatted according to the Internal Communication Protocols (ICP) and its path is traced.

R3 The formatted information is transmitted to the system (GS).

R5 The system looks for internal data on known dangers that may correspond to the extracted information.

R6 An action corresponding to the detected danger is requested.

R7 The action is transmitted to the Internal Communication System (ICS) to be carried out on the Current System (CS).

The Logical Structure of CAS example is given by a set of three agents:
AppAg, ComAg , AbsAg , each one manages changes of the corresponding root
(layer) [10]. For lack of space, we explain only the following agent, which is
judged the more relevant (see [10] for more details):

AppAg = (OAppAg

,UAppAg

,DAppAg

, hostAppAg

0 , obsAppAg

, anAppAg

, ctrAppAg

,mgrtAppAg

)

with:

– OAppAg

= {B6, B8, B10}
– UAppAg

= {(R5, IE), (R7, IE)}
– DAppAg

= {αApp
1 }

– hostAppAg

0 = 2

– obsAppAg

(B, h) =



obsApp
1 if B = B6 and h = 2

obsApp
2 if B = B8 and h = FA

obsApp
3 if B = B8 and h = FS

obsApp
4 if B = B8 and h = GS

obsApp
5 if B = B10 and h = IE

– anAppAg

(o, h) = αApp
1 if o = {obsApp

1 , obsApp
2 } and h = GS

– ctrAppAg

(α) = {(R6, IE), (R7, IE)} if α = αApp
1
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– mgrtAppAg

(o, h) =



FA if o = obsApp
1 and h = 2

FS if o = obsApp
2 and h = FA

GS if o = obsApp
3 and h = FS

IE if o = obsApp
4 and h = GS

2 if o = obsApp
5 and h = IE

In addition to this definition, we can visualize a system’s behaviour through
the use of traces and projections. This will illustrate all state changes that hap-
pen alternatively to the physical structure (CAS reaction rules) and to the logical
structure (an agent’s migration). Describing an application through the use of
this extended model serves the main purpose of preventing non-deterministic be-
haviour. As a matter of fact, there is no way to guarantee a consistent execution
path with Bigraphical Reactive Systems alone. A reaction rule’s applicability is
decided through a pattern matching and could be applicable without it being
semantically appropriate. The control function on the other hand always asso-
ciates to a given analysis (of the current state) an applicable and semantically
appropriate set of actions. Figure 5 shows a scenario of detection of pedestrian.
After applying CAS reaction rules (R0 to R7), the system arrives at a final state
representing the action performed.

Fig. 5. The BAM4IoT of Collision Avoidance System BCAS

For validation purpose, we exploit the RCTtool4Bigraphs (an extended and
generic version of a tool that has been already proposed in [11] and [12]) to

check that our BAM4IoT specification satisfies an important property. Figure
6 shows model checking results of the Action-Attainability property; we conclude
that the entered specification verifies the desired property.
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Fig. 6. Model Checking results of the Action-Attainability property.

5 Related Work

In their paper about high-level application development in IoT [13], authors
mention three main approaches for developing IoT applications: Middleware,
Programming framework and Model-Driven Development (MDD). The latter,
which is most relevant for our current work, consists of describing the applica-
tions as high-level abstract models, and then using these models according to
some research ways (code generation, formal analysis, etc.).

Few works in the literature have focused on the use of formal methods to de-
sign and specify such applications by supporting the characteristics of complex,
distributed and auto-adaptive systems. For instance, authors of [1] based their
framework for the IoT on agents, focusing on self-adaptive and self-organizing as-
pects of the applications. On the other hand, graph-based formalisms are usually
favoured to support the description of interrelation as well as dynamic configura-
tion. The work cited in [14] tried to combine the advantages of both formalisms
and proposed a hybrid one using complex networks, a graph-based formalism, as
well as agent-based modelling for the IoT. The idea of creating a formal model
out of many different methods stems from their individual failure to keep up
with the ever-growing complexity of modern systems, and the decreasing accu-
racy with which they can describe IoT applications.

In the same thought, our proposed approach combines: (1) Bigraphs to
describe geographical dispersion, connectivity and dynamic changes; and (2)
Agents to model communications and context-aware interactions in IoT appli-

cations. In particular, the proposed formal model (BAM4IoT) gives an unified
way to describe IoT applications so as to result in a deterministic, understand-
able specification. Moreover, we used a practical tool (RCTool4Bigraphs [11],
[12]) to verify an IoT-related property (Action-Attainability property).

6 Conclusion

A recurring challenge in the development of IoT applications is managing their
complexity. To overcome this, we have set ourselves the main objective of ap-
plying one of the most appropriate mathematical formalisms. Our attention has
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turned to the bigraphs and the agents. A judicious combination of these two
formalisms allowed to consider the two aspects inherent to this type of applica-
tions; the associated physical object/virtual intelligence pair.
We have chosen to develop first, a layered architecture to simplify the descrip-
tion of IoT applications and its instantiation according to a case study: Collision
Avoidance System (CAS). Then, we were able to validate the physical structure

of the extended formal model BAM4IoT with a model-checking tool of bigraphs
(RCTool4 Bigraphs).
We propose, in the future works, to give our model a way for objects (agents)

to communicate by extending the definition of the agents in BAM4IoT with a
suitable function. Obviously, a tool around the bigraphs that supports the vir-
tual or logical aspect of the systems is an unavoidable solution.
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