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Abstract—Static Analysis (SA) is one of the solutions to estimate
upper bounds of Worst Case Execution Times (WCET). It relies
on a set of mathematical techniques, such as IPET (Implicit Path
Enumeration Technique), and abstract interpretation based on Cir-
cular Linear Progressions, whose implementation partially depends
on the target processor. This paper shows how an industrial end-
user can develop a static WCET analyser for a specific processor
target thanks to the built-in components and the modularity of
the OTAWA WCET analysis framework. It points out the main
difficulties that have been encountered, and gives an estimation
of the development effort and of the accuracy of the results. In
this paper, the approach is applied on the Infineon AURIX TC275
microcontroller.

a) Keywords: Real-Time, WCET, static analysis, Multi-
core, Automobile platform

I. INTRODUCTION

Static Analysis (SA) is one of the techniques to estimate upper
bounds of Worst Case Execution Times (WCET) [1]. To be used
in industry, SA needs to be: (i) accurate and safe, (ii) precise,
and (iii) cost-effective.

SA ensures accuracy and safety thanks to the use of rigor-
ous mathematical methods such as abstract interpretation [2].
Hence, WCET estimates computed by SA are guaranteed to be
by design upper bounds of the actual – but usually unknown –
WCETs.

Precision is not a requirement for safety, but it is definitively
an important criterion for the industrial application of SA. If
safe but very pessimistic estimates of WCET upper bounds may
be easy to obtain, they also generally lead to an unacceptable
under-utilization of the platform. To improve the precision of the
estimates requires the analyser to be refined, and this refinement
has a cost. Reciprocally, any reduction of the development cost
of the analyser can also be seen as an opportunity to refine the
analyser, and consequently as an opportunity for improvement
of precision. In addition, improving the effectiveness of devel-
opment process of WCET analysers is also a means to reduce
the delay between the availability of a new processor, and the
availability of the associated WCET analysis tool.

Cost-effectiveness is a complex metric that concerns both the
development phase of the SA tool and its application phase.
Concerning the latter, it is worth noting that SA does not
require to define and to perform the large set of measurements

usually required by measurement-based techniques. Thanks to
the abstract interpretation, SA is highly automated and covers
all possible scenarios in ”one run”, without having to explicitly
generate and exercise each individual scenario.

To achieve accuracy, precision and cost-effectiveness, the
development of a SA tool faces three main difficulties. First,
SA requires a model of the target processor that is usually
hard to obtain and to validate. Second, the abstract domains
implemented in the analyses must be selected carefully in order
to not only provide safety but also to prevent over-estimations.
Third, a well-designed infrastructure is needed to integrate the
multiple elementary analyses required to obtain the final WCET
estimate.

The first difficulty, i.e., to validate the elements of the SA,
has been addressed in a previous publication [3]. Here this paper
focuses on the second and third difficulties. It describes how we
have built a WCET estimation tool for the Infineon’s AURIX
TC275 System-on-Chip, using the tools and the components of
the OTAWA framework [4] developed at IRIT1. It demonstrates
that constructing a usable SA tool is achievable with a rea-
sonable effort. This paper also provides some technical details
about (i) the ”tailoring” process and its main difficulties, and
(ii) the trade-offs that we have made between precision and
development costs.

The paper is organised as follows: Section II gives an
overview of the OTAWA framework and of the target micro-
controller; Section III describes the tailoring process; followed
by the evaluation in Section IV; Section V presents the related
works; finally, Section VI concludes the document and gives
directions for future works.

II. THE WCET ESTIMATION FRAMEWORK AND
THE TARGET PROCESSOR

This section gives a brief description of the two main elements
of our experimental setup: the OTAWA WCET framework used
to build the WCET estimation tool and the Infineon TC275
processor used as the target for WCET estimation.

A. The OTAWA framework
OTAWA [4] is a WCET analysis framework developed by the

TRACES team of the Institut de Recherche en Informatique de

1 OTAWA - an Open Toolbox for Adaptive WCET Analysis, see http://otawa.fr
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Toulouse (IRIT). OTAWA has been selected among other WCET
analysis tools such as AiT2, or Heptane3 for two important
reasons when it comes to support a new processor target: it is
open-source and it can be easily configured and extended to a
specific target processor thanks to its extensible plug-in system.
A more extensive discussion of alternative solutions is given in
Section V.

Figure 1 shows the steps to perform a WCET analysis for
a given platform. In this figure, the activities required to tailor
OTAWA for a new target are shaded in grey. The global process
involve two activities and two parties: a non-recurrent but
relatively heavy activity (see Section IV) for the developer who
describes the ISA (Instruction Set Architecture), constructs the
static analyses, and provides the configurations of the platform; a
recurrent but light activity for the user, who provides the “facts”
about programs to be analysed, such as the maximum number of
iterations for loops, and uses OTAWA to computes their WCETs.

Let’s detail the different steps. In 1 , the characteristics of the
instructions are defined using the NMP format [5]. In addition,
the developer provides information useful for OTAWA: types of
instructions (e.g. an ALU instruction, a branch instruction, etc.),
targets of branches, behaviours using semantic instructions [6],
etc. This information allows the subsequent static analyses to be
independent from the architecture. The NMP files are processed
by the GLISS [7] tool to create the binary decoder 2 and the
semantic instruction translator 3 .

The WCET estimation performed by OTAWA begins with
the binary decoding 4 and program structure representation
5 phases in which the CFGs (Control-Flow Graphs), the BB

(Basic Blocks), and each individual instructions are built.
The core activities are those concerning the static analyses

6 which are performed to determine the impact of the various
processor features, such as the program/data caches, on the
estimating WCET. To support a new processor target, the
developers can either configure the existing analyses, e.g. by
specifying the policy of the data-cache 7 , or create customised
analyses 8 .

The results of the analyses are used by the execution time
computation 9 which relies on the eXecution Graph (XGraph)
model, which captures the time taken by each instruction in
the processor pipeline. XGraph, first proposed in [8], has been
extended and refined to support the tracking of internal resources
in [9]. The creation of the XGraph requires the developer to
provide information about the pipeline 10 . The impacts of the
timings of both the software and the processor features, obtained
from the static analyses, are captured in the XGraph using time
events. The XGraph creation is further described in section III-F.

Next, the possible execution times for each BB, along with
the different configurations of time events are encoded in an
Integer Linear Programming (ILP) problem. Constraints such
as the maximum number of iterations for a loop and the initial
values of registers/memory locations are provided by the user
11 to further refine the ILP problem. The ILP problem is solved
so as to maximise the execution time 12 . The solution is the
WCET estimation.

2 See https://www.absint.com. 3 See https://team.inria.fr/pacap/software/heptane.
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Fig. 1: The work-flow of computing WCET in OTAWA

B. The target processor: Infineon TC275
Our target processor is the Aurix TC275, a multi-core pro-

cessor developed by Infineon mainly for the automotive market,
and designed to minimise inter-core interferences. The TC275
is one of the target processors of the industrial partners in our
project4. It is also the target of other research activities focused
on interference analysis [10] and automatic parallelisation.

The overall architecture of the TC275 is given in figure 2. The
TC275 embeds three cores: one E-core (for Efficiency) and two
P-cores (for Performance). E- and P-cores implement the same
Tricore 1.6 architecture [11] but with different features such as
different sizes of caches, but also different pipeline architectures:
while the E-core is a scalar processor, the P-core is a super-scalar
processor equipped with a program-fetch-FIFO to enhance its

4 Project “CAPHCA” (Critical Applications on Predictable High-Performance
Computing Architecture) is an on-going project at the Institut de Recherche
Technologique (IRT) Saint-Exupéry, Toulouse, France.
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performance. The architecture of the E-core and P-core pipelines
are given in figure 3

(peripherals connected to the SPB are not 
represented)

Fig. 2: The internal architecture of the TC275 (from [11]).

III. TAILORING OTAWA FOR THE TC275

Section II has introduced the main steps of the WCET anal-
ysis process. Here, we detail the steps involved specifically in
the tailoring process (those shaded in grey in Figure 1), namely:
the modelling of the instruction set architecture, the provision
of the target-specific hardware parameters, the integration of the
different analyses using the execution graph (XGraph), and the
provision of the software-level data required by the analysis.

A. ISA modelling and translation to semantic instructions

The ISA (Instruction Set Architecture) of the E-core and P-
cores on TC275 both follow the Tricore 1.6 architecture, so only
one ISA model is needed. The source of information about the
ISA is the publicly available user manuals [12]. As an example,
Listing 1 shows the NMP [5] model of the mov instruction in the
SimNML language. The first line declares that mov operates on
two data registers (of type reg d) named c and b. The second line
describes the bit-level structure (or “image”) of the instruction,
which is used to decode the instruction: the first 4 bits contain
the ID of the register c, followed by the 8-bit value 0x1F,
and so forth. An “X” indicates an unused bit. The third line
describes the syntax of the operation in assembly code. The
“kind” attribute gives characteristics of the instruction used by
the static analysis, such as whether an instruction accesses a
memory location, branches to a computed address, or perform
an ALU operation. Finally, the action segment describes the
behaviour of the instruction, which will be implemented by
the Instruction Set Simulator (ISS) generated from the NMP
description. In this example, the action assigns the value of

register b to register c. This segment is used to generate the
binary decoder using GLISS2, as mentioned in section II-A.

Listing 1: NMP model for a mov instruction
op mov reg ( c : reg d , b : r eg d )

image = f o r m a t (”%4b %8b XXXX %4b XXXX %8b ” ,
c . image , 0x1F , b . image , 0x0B )

s y n t a x = f o r m a t ( ” mov %s , %s ” , c . syn t ax , b . s y n t a x )
k ind = 0 x10000000
a c t i o n = { c = b ; }

To make static analysis as independent as possible from the
target platform, OTAWA translates each instruction into a set of
more primitive semantic instructions [6], as shown in Listing 2.
The semantics of the mov instruction is expressed using a SET
semantic instruction which states that data-register c shall get
the value of data-register b.

Listing 2: Semantic instructions for the MOV instruction
e x t e n d mov reg

sem = { SET (D( c . i ) , D( b . i ) ) ; }

This activity of modelling the ISA and creating the semantic
instructions, while tedious and error-prone, can be achieved in a
systematic manner on the basis of the available documentation.
The verification process of this model is presented in [3].

B. Hardware configuration

Step 7 of the WCET analyser development workflow re-
quires information about the hardware features. This includes
the configuration of the program and data caches, and the
characteristics (e.g. access times) of the device’s memories and
peripherals. For instance, listing 3 shows the configuration of the
program cache (or icache in OTAWA’s convention) of CPU0.
The size of the cache-line (also called block), the number
of ways (or sets), and the number of lines (rows) are also
specified. This information is retrieved from the TC275’s user-
manual [11]. The data-cache (dcache) is configured in the same
way.

Listing 3: The description of cache
<cache−c o n f i g>

<i c a c h e> <!−− 8 KB −−>
<b l o c k b i t s>5< / b l o c k b i t s> <!−− 32B l i n e −−>
<w a y b i t s>1< / w a y b i t s> <!−− 2 ways −−>
<r o w b i t s>7< / r o w b i t s> <!−− 128 s e t s −−>

< / i c a c h e><dcache> . . . < / dcache>
< / cache−c o n f i g>

Memory accesses, such as the instructions fetching and data
accesses from/to local memories or peripherals usually con-
tribute substantially to execution times. Therefore, the accuracy
and the precision of the WCET estimations strongly depend on
the model of the memory structure.

As shown on Figure 2, each CPU of the TC275 is fitted with
a scratch-pad memory (SPR) for both program (PSPR) and data
(DSPR). The CPUs have also access to a set of shared memories
via a cross-bar bus (SRI): program/data flash (PFlash/DFlash)
located in the Program Memory Unit (PMU), SRAM located
in the Local Memory Unit (LMU). Memory access latencies
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depend on whether accesses are local (in DSPR or PSPR) or
via the SRI where they are submitted to the bus arbitration
policy. The range of memory access latencies is very large. For
example, a load instruction (e.g. ld.w) can result an execution
time from 1 cycle (local access to DSPR) to 64 cycles (remote
access to DFlash).

Listing 4: The description of a memory component
<memory>

<bank>
<name>PFLASH0< / name>
<a d d r e s s>0 x80000000< / a d d r e s s>
<s i z e>0 x01000000< / s i z e> <!−− 2 MBytes /−−>
< l a t e n c y>13< / l a t e n c y>
<w r i t a b l e> f a l s e< / w r i t a b l e>
<c a c h e a b l e> t r u e< / c a c h e a b l e>

< / bank><bank> . . . < / bank>
< / memory>

Memories and memory-mapped peripherals are specified as
shown in Listing 4 (PFLASH0 on PMU). Note that information
about this component is scattered throughout the documentation,
and in various formats. For instance, cache-ability is found
in the user-manuals (section 3.2 of [11] and section 8.2.1
of [12]), information about the PMU are found in section 10
of [11], etc. Access times, which are crucial to the WCET
computation, is specified with a formula depending on the value
of various bits of the FCON (Flash CONfiguration) register. In
the latter case, we have confirmed the values obtained from
the formula by performing measurements on the actual physical
target, and cross-checked these values with those obtained from
other sources [13]. Finally, obtaining all the data necessary
to configure the hardware model require both experience and
significant efforts.
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Fig. 3: The pipeline model of the cores in TC275.

Information about the processor pipeline is also required. The
pipeline structures of the E-core and P-cores of TC275 are
shown in Figure 3. The corresponding XML description of the
P-core’s pipeline stages is shown in Listing 5.

“FETCH” denotes the stage where instructions entering the
processor pipeline (line 1). “LAZY” represents a pipeline stage
where instructions are held for a constant duration of 1 cycle
(line 2–4). In this case, the 2nd stage of the fetching (the F2
stage), the pre-decoding (PD) stage, and the decoding (DE)
stage fall into this category. “EXEC” denotes an execution stage
(line 5), attributes of this stage are further specified, such as
the in-order execution (line 6). The execution stage is further
refined into the loop (EXE L), the integer (EXE I), and the

load/store (LS) memory (EXE M) Functional Units, FUs (lines
8–13). The latency of 2 for the FUs indicates that there are
2 execution phases for each pipeline (EX1 and EX2). Lines
11 indicates that the EXE M pipeline involves with accessing
the memories/peripherals, while the access occurs at the second
execution phase (denoted by 1 in line 12, where 0 indicates the
first execution phase) of the EXE M pipeline.

Listing 5: The description of the P-Core’s pipeline
1 <s t a g e i d =” F1 ”><t y p e>FETCH< / t y p e>< / s t a g e>
2 <s t a g e i d =” F2 ”><t y p e>LAZY< / t y p e>< / s t a g e>
3 <s t a g e i d =”PD”><t y p e>LAZY< / t y p e>< / s t a g e>
4 <s t a g e i d =”DE”><t y p e>LAZY< / t y p e>< / s t a g e>
5 <s t a g e i d =”EXE”><t y p e>EXEC< / t y p e>
6 <o r d e r e d> t r u e< / o r d e r e d>
7 <!−− The p i p e l i n e s −−>
8 <fu i d =”EXE L”>< l a t e n c y>2< / l a t e n c y>< / f u>
9 <fu i d =”EXE I”>< l a t e n c y>2< / l a t e n c y>< / f u>
10 <fu i d =”EXE M”>< l a t e n c y>2< / l a t e n c y>
11 <mem> t r u e< /mem>
12 <mem stage>1< / mem stage>
13 < / f u>
14 <d i s p a t c h>
15 <t y p e>0 x80000000< / t y p e><fu r e f =”EXE L” />
16 <t y p e>0 x40000000< / t y p e><fu r e f =”EXE M” />
17 <t y p e>0 x10000000< / t y p e><fu r e f =”EXE I” />
18 < / d i s p a t c h>
19 < / s t a g e>
20 <s t a g e i d =”CM”><t y p e>COMMIT< / t y p e>< / s t a g e>
21 <queue>
22 <name>FETCH QUEUE< / name>
23 <s i z e>6< / s i z e>
24 <i n p u t r e f =” F2 ” />
25 <o u t p u t r e f =”PD” />
26 < / queue>

OTAWA uses instruction “kind” (see Listing 1) to determine
to which destination pipeline the instruction must be dispatched.
In the example, the mov instruction is of the kind 0x1000000,
which indicates that it must be executed by the EXE I (the
integer pipeline).

Finally the CM stage (line 20) of the type “COMMIT”
determines the completion of an instruction. Thus, the execution
time of instructions is estimated by computing the difference
between the commit times of two successive instructions.

The last element of the model, FETCH QUEUE, describes
the FIFO used to store the fetched instructions before they are
dispatched to the appropriate execution pipelines.

Information about the pipeline have been obtained from
various sources, including the user manual [11] (for the fetch
and execution organisations), and publications [14] (for pipeline
stages). The actual size of the Fetch-FIFO has been inferred
from a series of experiments performed on the actual processor.

Overall, information required to feed the analysis model
has been obtained by browsing formal documentation (user’s
manual), skimming through various application notes and pre-
sentations, and experimenting on the actual target. It is worth
noting that a unique source (document, chapter in the data-sheet
or user’s manual) providing the structural and behavioural data
required to estimate execution times would significantly simplify
the WCET analysis.
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C. Developing or reusing static analyses
In the simplest scenario, a processor fetches an instruction

without delay. The fetched instruction is then processed through
the pipeline with each stage taking one cycle. In this simple case,
accesses to memory and peripherals also take one cycle. Things
are obviously much more complicated in reality.

On the TC275, due to size constraints, the application code
may not fit completely in the local PSPR, and must be stored in
the PFlash. The PFlash access time varies from 5 to 14 cycles,
depending on the state of the buffers located within the PMU
(where the PFlash resides). In order to reduce the impact of
this latency on performance, each P-Cores is equipped with
a pre-fetch buffer within its fetch unit. In the best scenario,
the pre-fetching completely masks the PFlash latency. However,
when considering WCET estimations, it is essential to capture
the worst-case scenario, that is, in this case, to ignore the
presence of the instruction pre-fetching and systematically take
the worst access-time of PFlash. The resulting over-estimation
is huge (to 14 times, by comparing worst case of 14 cycles
to access PFlash and 1 cycle due to pre-fetching). This over-
estimation is safe, but it may be also so pessimistic that it
leads either to an under-utilization of the platform (i.e., the
cautious software architect allocates time budgets much larger
than what would actually be needed), or to a failure of the
schedulability tests (although the system may well be actually
schedulable). Therefore, in order to improve precision, reduce
pessimism, and keep a safe estimation, modelling the pre-
fetching mechanism was considered necessary. Similarly, other
processor features such as instruction/data caches, store-buffers,
and super-scalar execution – which also have a large potential
effects on execution times –, were added to the model.

Listing 6: Analyses for the E-core
1 < s c r i p t>
2 <s t e p r e q u i r e =” t r i c o r e 1 6 : : B r a n c h P r e d T C 1 6 E ” />
3 <s t e p r e q u i r e =”otawa::ICACHE CATEGORY2 FEATURE” />
4 <s t e p r e q u i r e =”otawa::ICACHE ONLY CONSTRAINT2” />
5 <s t e p r e q u i r e =” otawa::clp::CLP ANALYSIS FEATURE ” />
6 <s t e p r e q u i r e =” o t a w a : : d c a c h e : : C L P B l o c k B u i l d e r ” />
7 <s t e p r e q u i r e =” o t a w a : : d c a c h e : : A C S M u s t P e r s B u i l d ” />
8 <s t e p r e q u i r e =” o t a w a : : d c a c h e : : A C S M a y B u i l d e r ” />
9 <s t e p r e q u i r e =” o t a w a : : d c a c h e : : C A T B u i l d e r ” />
10 <s t e p r e q u i r e =” o t a w a : : d c a c h e : : C a t C o n s t r a i n t B u i l d ” />
11 <s t e p r e q u i r e =” t r i co re16 : :BBTimerTC16E ”>
12 <s t e p r e q u i r e =” otawa::ipet::WCET FEATURE ” />
13 < / s c r i p t>

Modelling all features that have (or may have) a significant
impact on execution times requires a significant effort. Hope-
fully, some features are common in one processor architecture
to another, such as the LRU (Least Recently Used) policy used
in the caches, for instance. OTAWA provides a collection of
static analyses (“built-ins”) developed over time to model the
supported processor architectures. In the best case, the user
can simply pick up one of these components to build his own
model. In the other cases, i.e., when some processor features are
specific, one has to develop its own analysis component, which
then becomes part of the collection.
Listing 6 gives the sequence of analyses used for the E-Core (the
configuration for the P-Core is similar). Within this list, analyses

prefixed with ”otawa::” are OTAWA built-ins, while the ones
prefixed with ”tricore16::” have been developed specifically for
the TC275.

Selecting the necessary static analyses requires a good expe-
rience and understanding of the target processor. The following
section describes how this choice has been done for the TC275
E-core.

D. Static analyses for instruction fetching

To analyse instruction fetching, one must consider if the
processor is featured with (1) branch prediction, (2) instruction
cache(s), and (3) any other mechanism such as pre-fetching. For
the E-core, branch prediction is static and depends on the type
of the branch instruction being executed. So we use a dedicated
analyses shown in line 2 on Listing 6.

The TC275 cores uses a standard LRU policy for its in-
struction cache, so we use the OTAWA built-in analysis, as
shown in lines 3 and 4. The configuration of this analysis is
given in the Listing 3. The static analyses on line 3 determines
if an instruction cache-miss must/may/never happens at any
given program point. That is, the analysis is made for all the
instructions on the instruction-cache boundary. The analysis on
line 4 uses the previous result to check if an instruction cache-
miss can happen on a given instruction. In that case, different
scenarios will be explored to ensure that the static analysis
covers all possible cases, i.e. different combinations of cache-
hit and -miss to ensure that timing anomalies [1] are taken into
account. Otherwise, the fetching of that instruction will never
have a timing penalties.

E. CLP Analysis: value and address analysis

As shown on Figure 1, the program structure and the in-
struction sequences are computed before the static analyses
are performed (step 5, CFGs, basic blocks, instruction). The
addresses of fetch accesses are known at that time, but the
addresses of data accesses are much more complicated to obtain
since they usually depend on the behaviour of the application.
However, knowing addresses of data accesses is crucial, as they
convey very important information for the WCET estimation:

1) The memory component targeted by the access: access
time on local DSPR and DFlash show huge differences
(around 60 times), so considering that all data-accesses
with unknown target addresses are to the DFlash will lead
to huge over-estimation;

2) Whether the target address is cache-able or not: if
cache-able this will affect the state of the cache and hence
the later cache-able accesses;

3) The necessity of finding dynamic branch targets: for
example, the target of switch-case statements are evaluated
based on the value of the dependant data.

We use CLP analysis [6] as the main value-and-address
analysis in OTAWA, as shown in line 5 of Listing 6. The analysis
relies on abstract interpretation [15]. It provides estimated
abstract values of the TC275 registers (data registers, address
registers, program counter, and other registers for context sav-
ings), and memory locations, at all program points. This analysis
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also provides the target addresses of memory accesses since all
memory access instructions in E/P-cores use address registers.
The other static analyses, such as data-cache analysis depend
on CLP analysis.

The data representation of the CLP analysis is in the form of
start, step, count as described in [16]. For example, value 0x100,
0x2, 0x20 describes a set of 21 different values: 0x100+0x2*i,
with i in 0,1,. . . ,20. Two special values inherited from the
abstract interpretation are Bottom (⊥) and Top (>), which are
used to denote un-initialized and unknown/any values, respec-
tively. Access registers/memories with un-initialized values only
happen on incorrect programs, which is out of the scope of this
paper. The Top value, due to widening and joining operations
from the abstract interpretation, can propagate and cause over-
estimation on WCET. As one cannot tell the value of an address
register, the data access based on that will refer to the access to
the DFlash (the worst case).

Listing 7: The invariant to the CLP analysis
1 <reg− i n i t name=”A10” v a l u e =” 0 x70019600 ” />
2 <reg− i n i t name=”PCXI” v a l u e =” 0x70019C00 ” />
3 <mem− i n i t a d d r e s s =” 0xD0000040 ” v a l u e =” 0x70019C00 ” />
4 < s t a t e a d d r e s s =” 0 x80000402 ”>
5 <r e g name=”A4” s t a r t =” 0 x600 ” s t e p =” 1 ” c o u n t =” 400 ” />
6 <mem a d d r e s s =” 0xD0000080 ” v a l u e =” 0x70019C00 ” />
7 < / s t a t e>

In order to avoid this pessimism, we have provided the user
with the capability to give additional information (initial values
and invariants) to support the analysis, as shown in Listing 7.

Invariants enables the users to define the initial values of the
registers/memories, i.e., values that cannot be inferred from the
program analysis. For example, the value of the PSW (program
status word) register is set to 0x00000B80. This is also useful
when the WCET estimation is performed for a part of a program,
i.e. a task among the whole application, where the associated
register/memory values are pre-defined, e.g. the stack pointer
register (A10 in Tricore) and the context register (PCXI), whose
initial values are defined in lines 1 and 2 using the reg-init clause
respectively.

While the initial values are used at the beginning of the CLP
analysis, it is also possible to introduce invariants at a given
program point. For example, when a register/memory value is
set to Top (which affects the results of the WCET estimation),
one can inject a snapshot of the state, which always stands,
i.e. the value given satisfies at all possible scenarios on the
associated program point, through the use of the state clause,
as shown in lines 4–7. The invariant state is associated with a
program point by providing the instruction address (line 4). The
values of registers and memories are assigned under the scope
of the corresponding invariant state, as lines 5 and 6, where in
line 5 the register A4 can cover of 401 possible values while in
line 6 the value is fixed to a constant.

It is extremely important to note that an incorrect initial
value or invariant can completely ruin the safety of the analysis.
Ensuring the correctness of those values are strictly under the
responsibility of the user.

Fig. 4: XGraph of an instruction sequence for E-core.

F. Analyses associated with the data cache

As the CLP analysis provides values of registers/memory
locations, it is possible to determine the target addresses of
memory-accesses (arguments of the all variants of ld (load)
and st (store) instructions. This is achieved by the CLPBlock-
Builder analysis (line 6 of Listing 6), as the first step of the
data-cache analysis. The state of the data cache is determined
by each data-access whose target address (obtained from the
CLP analysis) is identified as cache-able. If the target address
for a given data-access is unknown, i.e. Top-valued (>), the
data-cache analysis considers that the access can possibly affect
all the cache-lines. Such assumption is safe but reduces the
precision of the analysis. One way to improve the precision is to
provide state information (initial and invariant) when performing
the CLP analysis.

Similar to instruction-cache analysis, for each possible data-
access associated with data-cache, the data-cache analyses de-
termines if a data-cache miss must/may/never happen, through
the uses of ACS (abstract cache state) analyses (lines 7–9 in
Listing 6). Similar to line 4, line 10 creates scenarios which
cover all possible cases to evaluate the execution times for
possible data-cache misses.

Once all the previous analyses are completed, OTAWA creates
XGraphs to compute the execution time of the instruction
sequences. This is detailed in the next section.

G. XGraph: timings within instructions and pipeline stages

Figure 4 shows the CFGs of the binary search program of
the Mälardalen benchmark [17]. The CFG at the left, which
is the main function, calls the binary search function at BB3.
On the right-hand side, the search function terminates at BB8,
and returns to main function’s BB2. The execution time of
each BB is first computed and is used to compute the overall
WCET of the target program. To compute a BB’s execution
time, OTAWA considers the state of the processor as well as
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FE(I0)<1>
ld.w d15,[a14]-4 0 DE(I0)<1>

ld.w d15,[a14]-4 1
pipeline order

FE(I1)<1>
mov d2,d15 1

program order

EXE_M1(I0)<1>
ld.w d15,[a14]-4 2

pipeline order

DE(I1)<1>
mov d2,d15 2

program order

EXE_M2(I0)<1>
ld.w d15,[a14]-4 3

pipeline order

EXE_I1(I1)<1>
mov d2,d15 4

program order

CM(I0)<1>
ld.w d15,[a14]-4 4

pipeline order

d15

EXE_I2(I1)<1>
mov d2,d15 5

program order

CM(I1)<1>
mov d2,d15 6

program order

pipeline order

FE(I2)<1>
ret 2

program order

pipeline order

DE(I2)<1>
ret 3

program order

pipeline order

EXE_M1(I2)<1>
ret 5

program order

pipeline order

EXE_M2(I2)<3>
ret 6

program order

CM(I2)<1>
ret 9

program order

pipeline order

FE(I3)<1>
mov d15,#1 9

program order

pipeline order

DE(I3)<1>
mov d15,#1 10

program order

pipeline order

EXE_I1(I3)<1>
mov d15,#1 11

program order

pipeline order

return

EXE_I2(I3)<1>
mov d15,#1 12

program order

CM(I3)<1>
mov d15,#1 13

program order

pipeline order

FE(I4)<1>
mov d2,d15 10

program order

pipeline order

DE(I4)<1>
mov d2,d15 11

program order

pipeline order

EXE_I1(I4)<1>
mov d2,d15 12

program order

pipeline order

EXE_I2(I4)<1>
mov d2,d15 13

program order

CM(I4)<1>
mov d2,d15 14

program order

pipeline order

FE(I5)<1>
ret 11

program order

pipeline order

DE(I5)<1>
ret 12

program order

pipeline order

EXE_M1(I5)<1>
ret 13

program order

pipeline order

EXE_M2(I5)<3>
ret 14

program order

CM(I5)<1>
ret 15

program order

pipeline order pipeline order pipeline order pipeline order

Fig. 5: XGraph of an instruction sequence for E-core.

the context of the program execution, therefore the predecessor
BBs are also taken into account. For example, to compute the
execution time of BB2 of the main function (at the left, with
address 0x8000080A), its predecessor, BB8 at the right (with the
address 0x800007F8) is included to create a XGraph, shown as
Figure 5, for its execution on the E-core (CPU0) on TC275. We
call BB2 the Body BB (the 3 rows in blue at the bottom of the
XGraph) and BB8 the Prefix BB (the 3 rows in black at the top
of the XGraph), and the instructions of the two BBs form an
instruction sequence.

In this example, all the instructions are located in the local
PSPR and all the data are located in the local DSPR, so that the
memory access times are included in the associated pipeline
stages (Fetch stage for the instruction fetch and the second
execution stage for memory access). An XGraph consists of
the following elements:

1) Pipeline stages: The horizontal nodes correspond to the
movement of an instruction within the pipeline stages
of the processor. In this example, E-core consists of 4
pipeline stages, as illustrated in Figure 3: the Fetch (FE),
the Decode (DE), and two execution stages for each
pipelines, i.e. EXE M1 and EXE M2 for the memory
load-store pipeline, and EXE I1 and EXE I2 for the
integer pipeline. An extra stage, CM (which stands for
a Commit stage, as shown in line 20 of Listing 5), is
used to indicate the end of executing the instruction.

2) Instruction sequence: The XGraph is used to compute
the time taken to execute a set of instructions. The
vertical nodes are used to present individual instruction
in the sequence. Each node has a name in the form of
Stage(Instruction), e.g. DE(I1) means the second instruc-

tion at the Decoding stage.
3) Duration for each node: Each node is associated with

a cost, which is the time taken for the instruction to
complete a given stage. The cost is indicated in the <>,
e.g. EXE M2(I2)<3>indicates that it requires 3 cycles
for instruction 2 to complete the second execution stage.

4) The edges between the nodes: The edges between
nodes represent the relationship between the connected
nodes. A solid line gives the ”after” relation. Since the
TC275 executes instruction in order, each instruction is
connected to the previous instruction with a solid line.
The dependencies between data are also expressed with
the same line. For example, the first instruction (I0) loads
the value from the memory to the data register d15. The
next instruction (I1), which uses d15 at the first execution
stage (EXE I1), must wait until the data is ready, i.e., at
the end of the second execution stage (EXE M2) of I0.
The solid line labelled “d15” indicates this dependency.
Similarly, the edge between EXE M2(I2) to FE(I3) shows
that the execution of the instruction ret (return from
current call), requires 4 cycles to complete (1 cycle for the
first execution phase, and 3 cycles for the rest) by restoring
the context registers (including the program counter, PC)
from local DSPR (operations are defined in [12]). The
fetching process of I3 can only begin after executing I2
hence the solid line in between. The other kind of edge,
drawn with dashes, denotes the “as-early-as” relationship
between nodes. This is useful to describe, for instance, that
the execution stages of integer- and memory/LS- pipelines
can start at the same time (on the P-Core).

5) The time propagation and the execution cost: The
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F1(I6)<1>
st.w d15,[a14]-8 13 F2(I6)<1>

st.w d15,[a14]-8 14
pipeline order

F1(I7)<14>
mov d15,#-1 14

line

PD(I6)<1>
st.w d15,[a14]-8 19

pipeline order

F2(I7)<1>
mov d15,#-1 28

program order

DE(I6)<1>
st.w d15,[a14]-8 20

pipeline order

PD(I7)<1>
mov d15,#-1 29

program order

EXE_M1(I6)<1>
st.w d15,[a14]-8 21

pipeline order

DE(I7)<1>
mov d15,#-1 30

program order

EXE_M2(I6)<1>
st.w d15,[a14]-8 22

pipeline order

EXE_I1(I7)<1>
mov d15,#-1 31

program order

CM(I6)<1>
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pipeline order

EXE_I2(I7)<1>
mov d15,#-1 32

program order

CM(I7)<1>
mov d15,#-1 33

program order

pipeline order

F1(I8)<1>
st.w d15,[a14]-4 14

intra
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pipeline order
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program order

pipeline order
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pipeline order
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pipeline order
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st.w d15,[a14]-4 31
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pipeline order
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pipeline order

F1(I9)<1>
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intra

pipeline order

F2(I9)<1>
j 800007ec 28

program order

pipeline order

PD(I9)<1>
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program order

pipeline order

DE(I9)<1>
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program order

pipeline order

EXE_M1(I9)<0>
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program order

pipeline order
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program order
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program order

pipeline order

line

pipeline order
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ld.w d15,[a14]-12 45

program order

pipeline order
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pipeline order

pipeline order
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pipeline order

pipeline order
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pipeline order

pipeline order

EXE_M2(I10)<4>
ld.w d15,[a14]-12 49

pipeline order

CM(I10)<1>
ld.w d15,[a14]-12 53

pipeline order

pipeline order

F1(I11)<1>
ld.w d2,[a14]-8 31

intra

pipeline order

F2(I11)<1>
ld.w d2,[a14]-8 45

program order

pipeline order

PD(I11)<1>
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program order

pipeline order
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program order

pipeline order
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program order

pipeline order

EXE_M2(I11)<4>
ld.w d2,[a14]-8 53

program order

EXE_M1(I12)<1>
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d15 CM(I11)<1>
ld.w d2,[a14]-8 57

program order

pipeline order

F1(I12)<1>
jge d2, d15, 80000768 31

intra

pipeline order

F2(I12)<1>
jge d2, d15, 80000768 45

program order

pipeline order

PD(I12)<1>
jge d2, d15, 80000768 48

program order

pipeline order

DE(I12)<1>
jge d2, d15, 80000768 49

program order

pipeline order

program order

pipeline order

d2
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program order

CM(I12)<1>
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program order

pipeline order pipeline order pipeline order pipeline order pipeline order pipeline order

Fig. 6: XGraph of an instruction sequence for P-core exercising super-scalar effect and cache-misses

number next to the node indicates the arrival time of
the node at the latest. For example, node FE(I3) has two
incoming edges, one from FE(I2) the fetching node of the
previous instruction with the arrival time of 2, and another
one from EXE M2(I2) with the arrival time of 6. The
arrival time of a node is the arrival time of the previous
node plus its duration, e.g. the arrival time of FE(I2) to
FE(I3) is 2+1=3, while EXE M2(I2) to FE(I3) is 6+3=9
which is the maximum outcome. The execution time of
a sequence of instructions is the end time of the Body
BB, minus the end time of the Prefix BB, i.e. (15+1) -
(9+1) = 6 cycles.

H. Integration with the XGraph

Figure 6 illustrates a XGraph of the partial instruction se-
quence of BB1 and BB2 for the binary search function (on
the right of the Figure 4) running on the P-core (CPU1/CPU2).
We use this XGraph to illustrate the effects of the super-scalar
pipeline (P-core) and the instruction cache-misses. The XGraph
shows 7 pipeline stages (in contrast to 5 stages for E-core) as
described in Figure 3.

The super-scalar effect of the P-cores allows two instructions
of two different pipelines (integer- and memory/ls- pipelines)
to be dispatched and executed at the same time, given that
the instruction order is an integer-pipeline instruction followed
by a memory/ls-pipeline instruction. This information has been
obtained from the user manual of an older version of Tricore
[18]. We had confirmed that the TC275 still implements the
same behaviour by observing the performance counters [11],
which give the number of dispatches due to super-scalar effect.
This feature is captured in XGraph using the dashed edges
between the nodes. For example, in Figure 6, the instructions
I7 (move) and I8 (store) satisfy the requirement of super-scalar
execution. Their associated nodes (after the stage F2, which
dispatches the instructions), are linked with dashed edges. Note
that the arrival time of I7 and I8 stages (PD, DE, E1, and E2)

are equal. The data dependency of the register d15 between the
two instructions does not affect the super-scalar activities: at the
end of E1 of I7, the result is ready, while during E1 of I8 the
instruction was computing the target address to store and the
result of d15 is used at the second execution stage.

The feature of the instruction cache is also captured. Instruc-
tion in the same cached line are fetched simultaneously, hence
the dashed edges between the Fetch stages of instructions I7,
I8, and I9 (and also for the case of I10, I11, and I12). On
the other hand, when the instruction-fetch crosses the cache-
line, the penalty (fetch from the PFlash) will occur when cache
misses. From the instruction-cache analysis, the nodes F1(I7)
and F1(I10) “may” suffer from cache-misses. In this case, time
events are created to enumerates all four possibilities (i.e. both
miss, both hit, only I7 misses, and only I10 misses) to ensure the
result is timing-anomaly-free. Figure 6 illustrates the situation
“both miss” and hence a penalty of 14 cycles is given to both
nodes (from 14 to 28, and from 31 to 45), as described in
Section III-B.

I. Other enhancements to XGraph under developments

The TC275 implements a store-buffer and an instruction FIFO
to improve performances. The store-buffer is used to store
the values of store instructions without having to wait for the
actual access to memory. This is handled in a way similar to
that described in [19]. The instruction FIFO buffer is used to
accelerate the fetching of instructions. Its behaviour is still under
investigation using the approach mentioned in Section IV.

For the moment, our analyser takes conservative assumptions:
instead of benefiting from the store-buffer, writing to memory is
done with the normal latency (e.g. 1 cycle for local DSPR and 8
cycles for SRAM in LMU) at the second execution stage of the
memory/LS- pipeline. Without the acceleration of the instruction
FIFO buffer, an instruction cache-miss will lead to a PFlash
access. These assumptions introduce over-approximations but
give safe results.
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J. The flow-facts: The insights on the binary

At this point, the developer has enabled OTAWA to compute
WCET for the TC275. Now, the user needs to provide additional
information about the binary file under analysis, as shown in step
(11) of Figure 1. This information is called the flow-facts. An
example of a set of flow-facts is given in Listing 8.

As shown in Figure 4, the CFG at the right (for function
binary search) have loops in its body, e.g. BB2-BB3-BB4-BB6-
BB2, BB2-BB3-BB7-BB2, and so. Here, lines 2–7 give the facts
for function binary search. Lines 3–6 give information about a
loop: the header of the loop is located at offset 0xa0 (line 4)
from the entry of the function, which is BB2 of the associated
CFG (at address 0x800007ec); the bound of the loop is specified
in line 5.

Listing 8: The flow-facts of a given programn
1 <f l o w f a c t s >
2 <f u n c t i o n l a b e l =” b i n a r y s e a r c h ”>
3 <l oop l a b e l =” b i n a r y s e a r c h ”
4 o f f s e t =”0 xa0 ” <!−− 0 x800007ec −−>
5 maxcount =”23”>
6 </ loop>
7 </ f u n c t i o n>
8 </ f l o w f a c t s >

IV. EVALUATION

The evaluation of the effort to develop a static analyser is done
according to two important criteria (for an industrial end-user):
(i) the effort spent to tailor OTAWA to support the TC275, (ii)
the accuracy and precision of the WCET estimatations computed
by the tool.

A. Development effort

The total development effort requires around 17 weeks that
can roughly be decomposed as follows:

• Creation and validation of the NMPs: 4 weeks
• Configuration of the processor features: 1 week (mostly

finding the pipeline structure)
• Customisation of the XGraph: 4 weeks
• Customisation of static analyses: 8 weeks

Note that those developments have been done by one engineer
with a very good knowledge of OTAWA, and is new to the
TC275. The amount of the presented efforts have to be adapted
to the user’s experiences and profile. In addition, the verification
and validation efforts described in [3] took another 4 to 5 weeks.

As shown in section II-A, the computation of execution times
for each BB relies on a precise knowledge of the pipeline
structure. Finding this structure is difficult without an appro-
priate and reliable documentation. Hence we have performed
a series of tests to infer the pipeline structure. This consists
of fine tuning the CPUs such that: (1) setting the processor in
a known state (including its pipeline) using, for instance, the
isync instructions to flush the CPU buffers, and (2) crafting
instruction sequence carefully so that CPU features of interest
will be exercised, e.g. creating instructions pairs which will
trigger the super-scalar effect and measure the memory access
times. This was a complex and tedious activity.

B. Accuracy and precision

The accuracy and the precision of the TC275 Static WCET
analyser have been evaluated on a FOC (Field Oriented Control)
brushless motor control application.

This application, as depicted on Figure 7, uses all the three
cores: CPU0 and CPU1 are in charge of controlling two motors
(one core per motor without communications between the
motors); CPU2 is used to communicate with the rest of the
system (in our case, the mission control system of a three-
wheeled robot) via a CAN bus. The motor-control function is
performed on a timer-triggered interrupt service request, which
occurs every 50 us. However, the ISR is required to finish in 25
us due to the nature of the motor-position-sensing.

To compare the WCET estimations obtained using OTAWA
with the actual execution times, we performed two kinds of mea-
surements: firstly, using the non-intrusive performance counters
built-in in each CPU, to obtain the cycle count and hence the
execution time; secondly, using a GPIO-pin toggled at each
iteration. In the latter case, the time elapsed was measured using
an oscilloscope.

Rotor position from the encoder

3 phase PWMs
generation

3 phase
signals Current sensing to 

calculate the flux

ShieldBuddy 
TriCore TC275

Brushless DC motor 
with encoder

Motor drivers based 
on STM L6230

CAN bus transceiver

Communication for 
speed and other info

Fig. 7: The FOC motor control setup.

For the FOC motor control, experiments have been performed
to verify the compliance of a simple interrupt service routine
to its timing requirement (25us). OTAWA’s estimation was
14.675us (2,935 cycles, for E-core, which is less effecient than
the P-cores) to be compared with the value of around 12.24us
obtained by measurements on the E-core with GPIOs available
on the development board, resulting in an overestimation of
about 20%.

V. RELATED WORKS

Several open-sourced WCET estimation tools based on ab-
stract interpretation exist, but only a few are flexible enough to
support the creation, reconfiguration, and extension of analyses
by a end-user.

Heptane [20] implements multi-level cache analysis, but only
supports a limited number of processor targets, and provides a
limited set of built-in analyses. More generally, it has not been
designed with the specific objective to facilitate the development
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of new analysers for new architectures. Chronos [21] only
supports SimpleScalar architecture although they implement
a time calculation method very similar to OTAWA. Previous
experiences showed that adding new analyses in Chronos is
complex. Bound-T [22], which development is stopped now,
provides several interesting data-flow analyses but it only sup-
ports a few architecture and it is not aimed to be extended.
TU-Bound [23] is mostly a set of independent tools that targets
only one architecture (Infineon C167) and does not provide any
facility for extension. SWEET [24], provided by the University
of Mälardalen, was the first to provide a generic time calculation
method based on simulation but is now outdated. Yet, it still
provides powerful data flow analyses independent of the archi-
tecture thanks to the language ALF, an instruction behaviour
description more powerful than OTAWA’s semantic instructions.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we have shown the different steps to develop
a custom WCET analyser using the OTAWA framework. We
have demonstrated that this result can be achieved with a
reasonable effort (i) for a real-time processor with limited
complexity, and (ii) by a engineer having a good knowledge
of the framework.

This paper points out the difficulties that have been encoun-
tered during the design of the analyser, and how they have been
circumvented. In particular, it shows that a significant effort
has to be dedicated to collecting information from the docu-
mentation and, sometimes, from the hardware itself. This effort
could be significantly reduced by providing a section dedicated
to temporal analysis in the user-manual/data-sheet.

Finally, this paper explains the trade-offs that have been done
between the development efforts and the safety of the analysis,
in order to reduce the over-estimation of the analysis to keep it
useful.

In the future, we plan to combine Measurement-Based Prob-
abilistic Timing Analysis (MBPTA, [25]) with static analysis in
order to maximise the precision / modelling effort ratio. Our
approach is aimed at guiding the design process of the analyser
(i.e., determine the micro-architectural mechanism that can be
abstracted or not, select the appropriate abstractions, etc.) on the
basis of the WCET estimations obtained using MBPTA.
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