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Abstract

Testing containment of queries is a fundamental reasoning
task in knowledge representation. We study here the con-
tainment problem for Conjunctive Regular Path Queries (CR-
PQs), a navigational query language extensively used in on-
tology and graph database querying. While it is known that
containment of CRPQs is EXPSPACE-complete in general,
we focus here on severely restricted fragments, which are
known to be highly relevant in practice according to several
recent studies. We obtain a detailed overview of the complex-
ity of the containment problem, depending on the features
used in the regular expressions of the queries, with complete-
ness results for NP, Πp

2 , PSPACE or EXPSPACE.

1 Introduction
Querying knowledge bases is one of the most important and
fundamental tasks in knowledge representation. Although
much of the work on querying knowledge bases is focused
on conjunctive queries, there is often the need to use a sim-
ple form of recursion, such as the one provided by regular
path queries (RPQ), which ask for paths defined by a given
regular language. Conjunctive RPQs (CRPQs) can then be
understood as the generalization of conjunctive queries with
this form of recursion. CRPQs are part of SPARQL, the
W3C standard for querying RDF data, including well known
knowledge bases such as DBpedia and Wikidata. In particu-
lar, RPQs are quite popular for querying Wikidata. They are
used in over 24% of the queries (and over 38% of the unique
queries), according to recent studies (Malyshev et al. 2018;
Bonifati, Martens, and Timm 2019). More generally, CR-
PQs are basic building blocks for querying graph-structured
databases (Barceló 2013).

As knowledge bases become larger, reasoning about
queries (e.g. for optimization) becomes increasingly impor-
tant. One of the most basic reasoning tasks is that of query
containment: is every result of query Q1 also returned by
Q2? This can be a means for query optimization, as it may
allow to avoid evaluating parts of a query, or reduce and sim-
plify the query with an equivalent one. Furthermore, query
containment has proven useful in knowledge base verifica-
tion, information integration, integrity checking, and coop-
erative answering (Calvanese et al. 2000).

The containment problem for CRPQs is EXPSPACE-
complete, as was shown by (Calvanese et al. 2000) in a now

‘classical’ KR paper, which appeared 20 years ago. How-
ever, the lower bound construction of Calvanese et al. makes
use of CRPQs which have a simple shape (if seen as a graph
of atoms) but contain rather involved regular expressions,
which do not correspond to RPQs how they typically occur
in practice. Indeed, the analyses of (Bonifati, Martens, and
Timm 2019; Bonifati, Martens, and Timm 2020) reveal that
a large majority of regular expressions of queries used in
practice are of a very simple form. This motivates us to re-
visit CRPQ containment on queries, focusing on commonly
used kinds of regular expressions. Our goal is to identify
restricted fragments of CRPQs that are common in practice
and which have a reasonable complexity for query contain-
ment.

Contribution. According to recent studies on query logs,
investigating over 500 million SPARQL queries (Bonifati,
Martens, and Timm 2019; Bonifati, Martens, and Timm
2020), it turns out that a large majority of regular expres-
sions that are used for graph navigation are of rather simple
forms, like a∗, ab∗, (a+b)c∗, a(b+c)∗d, i.e., concatenations
of (disjunctions of) single symbols and Kleene stars of (dis-
junctions of) single symbols. Since CRPQs have concatena-
tions built-in, CRPQs with such expressions are essentially
CRPQs in which every atom has a regular expression of the
form (a1 + · · ·+ an) or (a1 + · · ·+ an)∗ for n ≥ 1. In the
remainder of the paper, we often abbreviate the former type
of atom with A and the latter by A∗. If n = 1, we write a
and a∗. Table 1 gives an overview of the frequency of such
expressions in the following data sets:
(a) The data set studied by (Bielefeldt, Gonsior, and

Krötzsch 2018; Bonifati, Martens, and Timm 2019),
which was released by (Malyshev et al. 2018) and con-
tains 208 million parseable Wikidata queries, with over
55 million regular path queries.

(b) The data set of (Bonifati, Martens, and Timm 2020),
which contains 339 million parseable queries, mostly
from DBpedia, but also from LinkedGeoData, BioPor-
tal, OpenBioMed, Semantic Web Dog Food and the
British Museum. These queries contain around 1.5 mil-
lion regular path queries.1

1One sees that regular path queries are much more common in
the Wikidata log than in the (mainly) DBpedia log. The reason
for this is that the graph structure of DBpedia was designed before



When we list multiple types of atoms in the table, we allow
concatenations of these types. So, a(b+c)∗d is of type a,A∗
and also of the more general type A,A∗. In contrast to the
types listed, RPQs that are merely concatenations of single
symbols, e.g., abc or aa, represent only about 25% of the
valid Wikidata expressions and 7% of the valid DBpedia±
expressions in the table.

Another motivation to study CRPQs with atoms of the
forms a, a∗, A, andA∗ is that these are currently the only ex-
pressible atoms in CRPQs in Cypher 9 (Francis et al. 2018,
Figure 3), a popular query language for property graphs.

We study the complexity of CRPQ containment for such
fragments F of “simple CRPQs”, that is, CRPQs that only
use atoms of some of the types a, a∗, A, and A∗. For each
fragment F , we provide a complete picture of the com-
plexities of containment problems of the form F ⊆ F ,
F ⊆ CRPQ, and CRPQ ⊆ F (cf. Table 2, which we dis-
cuss in Section 3 in detail). The main take-aways are:
1. Even for such simple CRPQs, containment of the form
F ⊆ F can become EXPSPACE-complete. Moreover, this
lower bound already holds for containment of CRPQs us-
ing only a-atoms and A∗-atoms. This was surprising to
us, because such CRPQs seem at first sight to be only mild
extensions of conjunctive queries: they extend conjunc-
tive queries only with atoms of the form (a1 + · · ·+an)∗,
i.e., Kleene closures over sets of symbols. The contrast
between NP-completeness of containment for conjunc-
tive queries and EXPSPACE-completeness for CRPQs that
additionally allow (a1 + · · ·+ an)∗ is quite striking.

2. As soon as we disallow disjunction within Kleene clo-
sures in F , the complexity of the abovementioned con-
tainment problems drops drastically to Πp

2 or PSPACE.
The good news is that such regular expressions are still ex-
tremely common in practice, e.g., over 98% of the RPQs
in the Wikidata query logs (Table 1).

Due to the page limit, we can only provide sketches of
some of the proofs. A version with more extensive proofs
is available at https://arxiv.org/abs/2003.04411 (Figueira et
al. 2020).

Organization In Section 2 we introduce the necessary no-
tation. In Section 3 we present our main results which are
then proved in Sections 4–7. We discuss related work in
detail in Section 8 and we conclude in Section 9.

2 Preliminaries
Let Σ be an infinite set of labels, to which we sometimes
also refer as the alphabet. We abstract knowledge bases (or
KBs, knowledge graphs, or graph databases) as finite, edge-
labeled directed graphs K = (V,E), where V is a finite
nonempty set of nodes, and E is a set of labeled directed
edges (u, a, v) ∈ V × Σ× V . A path is a (possibly empty)
sequence π = (v0, a1, v1) · · · (vn−1, an, vn) of edges; we
say that π is a path from v0 to vn. The length of π is the
number n ≥ 0 of edges in the sequence. We denote by
lab(π) the word a1 · · · an of edge labels seen along the path.

RPQs (property paths) existed in SPARQL.

If all edges of π have the same label a ∈ Σ, we say π is an a-
path. By ε we denote the empty word. Regular expressions
are defined as usual. We use uppercase letters R for regular
expressions and denote their language by L(R).

A conjunctive regular path query (CRPQ) has the gen-
eral form Q(x1, . . . , xn) ← A1 ∧ . . . ∧ Am. The atoms
A1, . . . , Am are of the form yRz, where y and z are vari-
ables and R is a regular expression. Each distinguished
variable xj from the left hand side has to occur in some
atom on the right hand side. A homomorphism from Q
to K is a mapping µ from the variables of Q to V . Such
a homomorphism satisfies an atom xRy if there is a path
from µ(x) to µ(y) in K which is labeled with a word in
L(R). A homomorphism from Q to K is called a satisfying
homomorphism if it satisfies each atom Ai. For brevity,
we also use the term embedding for satisfying homomor-
phisms. The set of answers ans(Q,K) of a CRPQQ over a
knowledge base K is the set of tuples (d1, . . . , dn) of nodes
of K such that there exists a satisfying homomorphism for
Q on K that maps xi to di for every 1 ≤ i ≤ n.

Given two CRPQs Q1, Q2, we say that Q1 is contained
in Q2, denoted by Q1 ⊆ Q2, if ans(Q1,K) ⊆ ans(Q2,K)
for every knowledge base K. We say Q1 is equivalent to
Q2, denoted by Q1 ≡ Q2, if Q1 ⊆ Q2 and Q2 ⊆ Q1. We
study the following problem, for various fragments F1,F2

of CRPQ.

Containment of F1 in F2

Given: Two queries Q1 ∈ F1, Q2 ∈ F2.
Question: Is Q1 ⊆ Q2?

Example. To illustrate query containment we consider the
following example. Let Q1(x1, x2) ← (x1 app jm1) ∧
(x2 app jm1) ∧ (jm1 app jm2). Query Q1 returns (x1,
x2) only if they were both the apprentices of jm1 (a Jedi
master) who was in turn an apprentice of jm2. Now con-
siderQ2(x1, x2)← (x1 app·app jm)∧(x2 app·app jm).
We see that Q1 ⊆ Q2. However if we remove the last atom
from Q1, Q1 ⊆ Q2 is not necessarily true. The following
database provides a counterexample. Q1 without the last

YODA
LUKE

OBI-WAN

app

app

atom returns (LUKE, OBI-WAN) though Q2 does not. �
Let Q be the CRPQ Q(x1, . . . , xn) ← y1R1y2 ∧ . . . ∧

y2m−1Rmy2m. Let K be a knowledge base and ν a total
mapping from the variables {x1, . . . , xn, y1, . . . , y2m} of Q
to the nodes of K. Then K is ν-canonical for Q if
• K consists of m simple paths, one for each atom of Q,

which are node- and edge-disjoint except for the start and
end nodes, and

• for each i ∈ {1, . . . ,m} the simple path πi associated to
the atom y2i−1Riy2i connects the node ν(y2i−1) to the
node ν(y2i) and has lab(πi) ∈ L(Ri).

It is easy to see that Q1 6⊆ Q2 iff there exists a knowledge
base K and a mapping ν from the variables of Q1 to the

https://arxiv.org/abs/2003.04411


Wikidata Queries
One-way RPQs Two-way RPQs

RPQ Class Valid % Unique % Valid % Unique %

A,A∗ 99.02% 98.73% 99.83% 99.83%
A, a∗ 98.40% 98.31% 99.22% 99.44%
a,A∗ 93.50% 95.99% 94.30% 97.10%
a, a∗ 92.88% 95.58% 93.69% 96.69%

Total 55,333K 14,189K 55,333K 14,189K

DBpedia± Queries
One-way RPQs Two-way RPQs

Valid % Unique % Valid % Unique %

68.99% 47.41% 94.35% 82.86%
65.29% 46.02% 75.00% 76.44%
64.27% 31.37% 89.51% 66.53%
60.57% 29.97% 65.87% 44.45%

1,529K 405K 1,529K 405K

Table 1: Percentage of simple RPQs and 2RPQs in the Wikidata query logs in the study (Bonifati, Martens, and Timm 2019) (left) and the
diverse query logs of (Bonifati, Martens, and Timm 2020) (right). For every analysis, we show percentages on all valid queries (Valid) and
on all valid queries after duplicate elimination (Unique).

F F ⊆ F F ⊆ CRPQ CRPQ ⊆ F
a NP (†) NP (4.2) Πp

2 (4.4)
A Πp

2 (4.3) Πp
2 PSPACE (4.5)

(a, a∗) Πp
2 (‡) Πp

2 PSPACE (5.3)
(A, a∗) Πp

2 Πp
2 (5.2) PSPACE (5.5)

(a,A∗) EXPSPACE (6.1) EXPSPACE EXPSPACE
(A,A∗) EXPSPACE EXPSPACE (?) EXPSPACE (?)

Table 2: Complexity of Containment of different fragments F of
CRPQs. All results are complete for the class given. We provide
references in round brackets. When there is no bracket, the result
follows directly from another cell in the table. (†): (Chandra and
Merlin 1977), (‡): (Deutsch and Tannen 2002, fragment (l∗)), (?):
(Calvanese et al. 2000)

nodes of K such that (i) K is ν-canonical for Q1 and (ii)
(ν(x1), . . . , ν(xn)) /∈ ans(Q2,K). Therefore, to decide
Containment, it suffices to study containment on knowledge
bases which are ν-canonical for Q1. We call these knowl-
edge bases canonical models of Q1.

It is well-known that there is a natural correspondence be-
tween (the bodies of) CRPQs and graphs by viewing their
variables as nodes and the atoms as edges. We will therefore
sometimes use terminology from graphs for CRPQs (e.g.,
connected components).

3 Main Results
For a class of regular languages L we write CRPQ(L) to
denote the set of CRPQs whose languages (of regular ex-
pressions in atoms) are in L. We use the same abbreviations
for L as discussed in the Introduction: a for regular expres-
sions that are just a single symbol, a∗ for Kleene closures
of a single symbols, A for disjunctions (or sets) of symbols,
and A∗ for Kleene closures of disjunctions (or sets) of sym-
bols. A sequence of abbreviations in L represents options:
for instance, CRPQ(a,A∗) is the set of CRPQs in which
each atom uses either a single symbol or a transitive closure
of a disjunction of symbols.2

2In some proofs, we also allow concatenations of these forms.
But this does not make a difference: in CRPQs such concatenations
can always be eliminated at the cost of a few extra variables.

In this paper, we give a complete overview of the com-
plexity of containment for the fragments F = CRPQ(a),
CRPQ(A), CRPQ(a, a∗), CRPQ(A, a∗), CRPQ(a,A∗), and
CRPQ(A,A∗). That is, for each of these fragments we prove
that their containment problem is complete for NP, Πp

2, or
EXPSPACE. Furthermore, for each of these fragmentsF , we
give a complete overview of the complexity of the contain-
ment problems of the formF ⊆ CRPQ and CRPQ ⊆ F . An
overview of our results can be found in Table 2. All results
are completeness results. Some of the results were already
obtained in other papers, which we indicate in the table.

Interestingly, our results imply that containment is EXP-
SPACE-complete only if we allow sets of symbols under the
Kleene star both in the left- and right-hand queries. As soon
as we further restrict the usage of the Kleene star on one
side, the complexity drops to PSPACE or even Πp

2. As it
turns out, queries having a∗ as only means of recursion is
still very representative of the queries performed in practice,
as evidenced in Table 1, where over 98% of the RPQs in the
Wikidata logs are of this form. In the DBpedia± logs, this
percentage is still around 70% of the total RPQs. Two main
reasons why this percentage is lower here are that “wild-
cards” of the form !a, i.e., follow an edge not labeled a, and
2RPQs of the form (a + â)∗, i.e., undirected reachability
over a-edges, make up around 15% and 20% respectively of
the expressions in unique queries in DBpedia±. The fact that
equivalence testing is Πp

2 for these queries, gives hope that
optimizations by means of static analysis may be practically
feasible for most of the CRPQ used for querying ontologies
and RDF data.

Our results apply to both finite and infinite sets of labels, if
we do not explictly say otherwise. The reason is that as long
as the query language does not allow for wildcards, we can
always restrict to the symbols explicitly used in the queries,
which is always a finite set.

If wildcards are allowed, the complexity of query contain-
ment can heavily depend on the finiteness of the alphabet of
edge labels Σ. We discovered that our techniques can be
used to settle an open question (and correct an error) in the
work of Deutsch and Tannen (2002), who have also consid-
ered containment of simple CRPQs. Deutsch and Tannen
considered CRPQ fragments motivated by the navigational
features of XPath and claimed that containment for their W-
fragment (see Section 7 for a definition), using infinite al-



phabets, is PSPACE-hard. However, we prove that contain-
ment for this fragment is in Πp

2 (Theorem 7.1). The minor
error is that Deutsch and Tannen assumed finite alphabets in
their hardness proof. In fact, when one indeed assumes a
finite set of edge labels in KBs, we prove that the contain-
ment problem for the W-fragment is EXPSPACE-complete
(Proposition 7.2).

4 No Transitive Closure
In this section we study simple CRPQ fragments without
transitive closure. We first observe that CRPQ(a) is equiva-
lent to the well-studied class of conjunctive queries (CQ) on
binary relations.

Theorem 4.1 (Chandra and Merlin 1977). Containment of
CRPQ(a) in CRPQ(a) is NP-complete.

Even when we allow arbitrary queries on the right, the
complexity stays the same. The reason is that the left query
has a single canonical model K of linear size, and thus we
can check containment by testing for a satisfying homo-
morphism from Q2 to K (that preserves the distinguished
nodes).

Theorem 4.2. Containment of CRPQ(a) in CRPQ is NP-
complete.

If we allow more expressive queries on the left, the com-
plexity becomes Πp

2, even if the right-hand queries are CQs.

Theorem 4.3. Containment of CRPQ(A) in CRPQ(a) is
Πp

2-complete, even if the size of the alphabet is fixed.

Proof sketch. The upper bound is immediate from Corol-
lary 5.2, which in turn follows from Theorem 7.1. Both
these results are proved later. For the lower bound, we re-
duce from ∀∃-QBF (i.e., Π2-Quantified Boolean Formulas).
Let

Φ = ∀x1, . . . , xn ∃y1, . . . , y` ϕ(x1, . . . , xn, y1, . . . , y`)

be an instance of ∀∃-QBF such that ϕ is quantifier-free and
in 3-CNF. We construct boolean queries Q1 and Q2 such
that Q1 ⊆ Q2 if, and only if, Φ is satisfiable.

The query Q1 is defined in Figure 2, over the alphabet of
labels {a, x1, . . . , xn, y1, . . . , y`, t, f}. We now explain how
we define Q2, over the same alphabet. Every clause of Φ is
represented by a subquery inQ2, as depicted in Figure 3. All
nodes with identical label (y1,t and y1,f in gadgets D,E) in
Figures 2 and 3 are the same node. (So, both queries are
DAG-shaped.) Note that for every clause and every existen-
tially quantified literal yi therein we have one node named
yi,tf in Q2. The E-gadget is designed such that every rep-
resented literal can be homomorphically embedded, while
exactly one literal has to be embedded in the D-gadget.

The intuitive idea is that the valuation of the x-variables
is given by the concrete canonical model K (i.e., whether
the corresponding edge is labeled t or f in the D gadget),
while the valuation of the y-variables is given by the em-
bedding of Q2 into K (i.e., whether the corresponding node
is embedded into the node y ,t or y ,f ). The embedding of
y-variables across several clauses has to be consistent, as all

Q1 =
E E D E E

a a a a

D =

. . .

x1 x2 xn

. . .

t + f t + f t + f

. . .

y1
y`

y1,t y1,f

. . .
y`,t y`,f

t f t f

E =

. . .

x1 x2 xn

. . .
t f t f t f

. . .

y1
y`

y1,t y1,f

. . .
y`,t y`,f

t
f t

f t
f t

f

Figure 2: Query Q1 used in the proof of Theorem 4.3 and the gad-
gets D and E used in Q1.

Q2 =

C1
1 C2

1 C3
1

a a

C1
1 = x2 t

C2
1 = x5 f

C3
1 = y4,tf

y4 f

Figure 3: Example of Q2 in the proof of Theorem 4.3 for the for-
mula ϕ = (x2 ∨ ¬x5 ∨ ¬y4).

clauses share the same nodes y ,tf , which uniquely get em-
bedded either into y ,t or y ,f . Hence, when the formula Φ
is satisfiable, for any assignment to the variables {xi} (given
by the choice of t/f edges in D), there is a mapping from
y ,tf to one of y ,f or y ,t. This gives Q1 ⊆ Q2. Con-
versely, if Q2 can be embedded in K, then, for a choice of
t/f edges in D, we have an embedding of each clause gad-
get of Q2 in K. In particular, we can always map a literal in
each clause of Q2 to D, ensuring that ϕ is satisfied. As this
is true for any knowledge base K obtained for all possible
t/f assignments to {xi}, we obtain Φ is satisfiable.

We note that this result can be extended to alphabets of
constant size by encoding xi as x̂i = ♦i−1�♦n−i−1 ∈
{♦,�}n and yi as ŷi = Mi−1NM`−i−1 ∈ {M,N}`.

On the other hand, even if we now allow arbitrary CRPQs
on the left, containment remains in Πp

2.

Theorem 4.4. Containment of CRPQ in CRPQ(a) is Πp
2-

complete.

Proof. The lower bound is immediate from Theorem 4.3.
For the upper bound, we provide a Σp2 algorithm for non-
containment, which yields the result. Let Q1 ∈ CRPQ,
Q2 ∈ CRPQ(a), and # be a symbol not appearing in Q1

or Q2. For every atom A = xRy of Q1 we guess words uA
and vA of length≤ |Q2| such that uAΣ∗vA∩L(R) 6= ∅ and
|uAvA| < 2|Q2| implies that uAvA ∈ L(R). We guess a
component Q′2 of Q2 and we check that



(1) Q′2 cannot be embedded in Q′1, where Q′1 is the KB re-
sulting from replacing each atom A = xRy with the
path uA · s# · vA, where s# = ε if |uAvA| < 2|Q2| and
s# = # otherwise; and

(2) for every atom A = xRy of Q1 such that |uAvA| =
2|Q2| there is w ∈ uAΣ∗vA ∩ L(R) such that Q′2 can-
not be embedded in w. This last test amounts to check-
ing that either (i) Q′2 is not homomorphically equiv-
alent to a path or, otherwise, (ii) if Q′2 is homomor-
phically equivalent to a path with label ŵ, we test
uAΣ∗vA ∩ L(R) ∩ (Σ∗ŵΣ∗)c 6= ∅.

If tests (1) and (2) succeed, we found a knowledge base into
which Q1 can be embedded, but not Q2. Testing whether
Q′2 can be homomorphically embedded in Q′1 is in NP as
the size of Q′1 is polynomial in Q1 and Q2. Test (2) is in
CONP as we need to check for an embedding of Q′2 for each
atom of Q1.

Allowing disjunctions in the right query is rather harm-
less if we only need to consider polynomial-size canoni-
cal models to decide containment correctly. Even if such
canonical models may become exponentially large, they can
sometimes be encoded using polynomial size, allowing for
Πp

2 containment algorithms (cf. Corollary 5.2, Theorem 7.1).
However, if we have arbitrary queries on the left, these tech-
niques do not work anymore, to the extent that the problem
becomes PSPACE-complete.

The following theorem can be regarded as a generaliza-
tion of the result of Björklund, Martens, and Schwentick
(2013) [Theorem 9] stating that the inclusion problem be-
tween a DFA over an alphabet Σ = {a, b, c} and a regular
expressions of the form Σ∗aΣnbΣ∗ is PSPACE-complete.

Theorem 4.5. Containment of CRPQ in CRPQ(A) is
PSPACE-complete, even if the size of the alphabet is fixed.

Proof. The upper bound follows from Theorem 5.5, which
we prove later. For the lower bound we reduce from the cor-
ridor tiling problem, a well-known PSPACE-complete prob-
lem (Chlebus 1986). An instance of this problem is a tuple
(T,H, V, ī, f̄ , n), where T is the set of tiles, H,V ⊆ T × T
are the horizontal and vertical constraints, encoding which
tiles are allowed to occur next to each other and on top
of each other, respectively, ī = i1 . . . in ∈ Tn is the ini-
tial row, f̄ = f1 . . . fn ∈ Tn is the final row, and n en-
codes the length of each row in unary. The question is
whether there exists a tiling solution, that is, an N ∈ N
and a function τ : {1, . . . , N} × {1, . . . , n} → T such that
τ(1, 1) · · · τ(1, n) = ī, τ(N, 1) · · · τ(N,n) = f̄ and all hor-
izontal and vertical constraints are satisfied: (τ(i, j), τ(i, j+
1)) ∈ H and (τ(i, j), τ(i+1, j)) ∈ V for every i, j in range.

The coding idea is that the query Q1 is a string describing
all tilings with correct start and end tiles, with no horizontal
errors, and having rows of the correct length. The query Q2

describes vertical errors. Then we haveQ1 ⊆ Q2 if and only
if there exists no valid tiling, i.e., every tiling has an error.

Let (T,H, V, ī, f̄ , n) be a corridor tiling instance as de-
fined before. From the original proof of Chlebus (1986), it
follows that the following restricted version of corridor tiling
remains PSPACE-complete. The set of tiles T is partitioned

into T = T1]T2]T3, such that each row in a solution must
belong to T ∗1 T2T

∗
1 ∪T ∗1 T3T3T

∗
1 . The original proof further-

more implies, that (i) (T1×T1)∪(T1×T2)∪(T2×T1) ⊆ H;
and (ii) for all u, v ∈ T3 with (u, v) ∈ H we have that
T1 × {u} ⊆ H and {v} × T1 ⊆ H . This implies that our
horizontal errors can only occur with T2 or T3 involved, so
only once per row. Therefore, we construct a new set H̃ de-
fined as follows: H̃ = H ∩ (T2 × T1 ∪ T1 × T2 ∪ T3 × T3).
This set is used in the definition of query Q1.

We encode tiles as follows: each tile ti has an encod-
ing t̂i given by Mi−1�M|T |−i−1e1 · · · e|T |, where ej = N
if (ti, tj) ∈ V and ej = M, otherwise. The second half of
the encoding of a tile describes which tiles are allowed to
occur above the tile. The query Q1 is

î1 · · · în

n−2∑
i=0

∑
(v1,v2)∈H̃

(T̂1)iv̂1v̂2(T̂1)n−i−2

∗f̂1 · · · f̂n .

We note thatQ1 encodes exactly the tilings without horizon-
tal errors, due to the imposed restrictions.

The query Q2 is M(M + N + M + �)(2n−1)|T |−1� and
matches exactly those positions where a vertical error oc-
curs, exploiting the encoding of vertical constraints in the
second half of each tile’s encoding.

5 Simple Transitive Closures
In this section, we investigate what happens if we consider
fragments that only allow singleton transitive closures, that
is, transitive closures of single symbols. Our first results
imply a number of Πp

2-results in Table 2.

Theorem 5.1. Containment of CRPQ(a, a∗) in CRPQ(a) is
Πp

2-hard, even if the size of the alphabet is fixed.

Proof sketch. We use a similar reduction as in Theorem 4.3.
The only change we make is that we replace the expressions
t+ f in Q1 with t∗f -paths. Intuitively, Q1 sets a variable xi
to true if and only if there exists at least one t-edge after the
xi-edge. The query Q2 is not changed.

Corollary 5.2. Containment of CRPQ(A, a∗) in CRPQ is in
Πp

2.

Proof. This will be a corollary of Theorem 7.1, since
CRPQ(A, a∗) is a fragment of CRPQ(W ).

On the other hand, if we allow arbitrary queries on the
left and simple transitive closure on the right-hand query,
the problem becomes PSPACE-hard.

Theorem 5.3. Containment of CRPQ in CRPQ(a, a∗) is
PSPACE-complete, even if the size of the alphabet is fixed.

Proof sketch. We adapt the encoding in the proof of The-
orem 4.5, by (a) replacing each symbol σ ∈ {♦,�,M,N}
with σ$, where $ is a new symbol, and (b) replacing Q2

with M$(♦∗�∗M∗N∗$)(2K−1)|T |−1�$.

Interestingly, the complexity of containment can drop by
adding distinguished variables to the query:



Proposition 5.4. The complexity of Containment of (1)
CRPQ in CRPQ(A) and (2) CRPQ in CRPQ(a, a∗) is in
Πp

2 if every component of each query contains at least one
distinguished variable.

Finally we show that, as long as the right query only has
single symbols under Kleene closures, query containment
remains PSPACE-complete.

Theorem 5.5. Containment of CRPQ in CRPQ(A, a∗) is
PSPACE-complete.

Proof. The lower bound is immediate from Theorem 4.5.
For the upper bound we provide a PSPACE-algorithm for
non-containment. Let Q1 ∈ CRPQ, Q2 ∈ CRPQ(A, a∗),
and # be a symbol not appearing inQ1 andQ2. We first note
that each component of Q2 can express at most |Q2| many
label changes on a path. Hence it suffices if the algorithm
stores just the part of a path that corresponds to the last |Q2|
label changes. Furthermore, a standard pumping argument
yields that, in a counterexample, the length of segments that
only use a single label can be limited to |Q1|+ |Q2|.

Therefore, for each atom ofA = xRy ofQ1, the PSPACE-
algorithm guesses words uA, vA of length at most |Q2| ×
(|Q1| + |Q2|), such that uAΣ∗vA ∩ L(R) 6= ∅ and, if uA
or vA has less than |Q2| label changes, then uAvA ∈ L. We
guess a component of Q′2 and check that
(1) Q′2 cannot be embedded in Q′1, where Q′1 is the KB re-

sulting from replacing each atom A = xRy with the
path uA · s# · vA, where s# = ε if uA or vA contains
less than |Q2| label changes and s# = # otherwise; and

(2) for every atom A = xRy of Q1 such that uA and vA
have |Q2| label changes there is w ∈ uAΣ∗vA ∩ L(R)
such that Q′2 cannot be embedded in w.

If tests (1) and (2) succeed, we found a knowledge base into
which Q1 can be embedded, but Q2 cannot. Test (1) is in
CONP asQ′1 has size polynomial inQ1 andQ2. Test (2) is in
polynomial space, as the restricted language ofQ2 allows us
to guess and verify the existence of w on the fly while only
keeping the path corresponding to the last |Q2| label changes
in memory with length at most |Q2| × (|Q1|+ |Q2|).

6 Transitive Closures of Sets
In this section we show that adding just a little more ex-
pressiveness makes containment EXPSPACE-complete. This
high complexity may be surprising, considering that it al-
ready holds for CRPQ(a,A∗) queries, which is a fragment
that merely extends ordinary conjunctive queries by adding
transitive reflexive closures of simple disjunctions. Our
proof is inspired by the hardness proof in (Calvanese et al.
2000) for general CRPQs, but we need to add a number of
non-trivial new ideas to make it work for CRPQ(a,A∗).

Disjunction creation. A significant restriction that is im-
posed on CRPQ(a,A∗) is that the non-transitive atoms are
not allowed to have disjunctions in their expressions. We get
around this by the following idea that generates disjunctive
bad patterns out of conjunctions — we use a similar idea in
our next proof.

Consider the following query Q2 where ` is a special
helper symbol, y1 `

∗ ·s1 · ` ·s2 · `∗y2. For query Q1 given by∧
σ∈Σ\{`} x1σx1 ∧ x1` (Σ \ {`})∗ `x2 ∧

∧
σ∈Σ\{`} x2σx2

it is clear that Q1 allows for exactly two `, and hence, if Q1

were be contained in Q2, one of the patterns s1 or s2 has
to be be matched to the (Σ \ {`})∗ fragment in the middle.
Essentially, we capture all bad patterns matching either s1

or s2, thereby “creating” the result of a disjunction.

Theorem 6.1. Containment of CRPQ(a,A∗) in
CRPQ(a,A∗) is EXPSPACE-hard, even if the size of
the alphabet is fixed.

Proof sketch. We reduce from the exponential width corri-
dor tiling problem. That is, we have
• a finite set T = {t1, . . . , tm} of tiles,
• initial and final tiles tI , tF ∈ T , respectively,
• horizontal and vertical constraints H,V ⊆ T × T ,
• a number n ∈ N (in unary),
and we want to check if there is a k ∈ N and a tiling function
τ : {1, . . . , k} × {1, . . . , 2n} → T such that τ(1, 1) = tI ,
τ(k, 2n) = tF , and all horizontal and vertical constraints are
satisfied. In order to have a fixed alphabet, we encode tiles
from T as words from {♦,�}m. The i-th tile ti is encoded
as t̂i = ♦i−1�♦m−i−1 ∈ {♦,�}m.

A tiling τ is encoded as a string over the alphabet B =
{$, 0, 1,♦,�,#}, where $ is the row separator, 0 and 1 are
used to encode addresses for each row of the tiling from 0
to 2n − 1 as binary numbers, # separates the individual bits
of an address, and ♦ and � are used to encode the individual
tiles. We visualize a tiling as a matrix with k rows of 2n tiles
each. An example of a tiling τ with n = 3 is below:

τ̂(k, 1)0#0#0τ̂(k, 2)0#0#1 · · · ̂τ(k, 23)1#1#1 $

...
...

...
...

$ τ̂(1, 1)0#0#0τ̂(1, 2)0#0#1 · · · ̂τ(1, 23)1#1#1 $

The queries Q1 and Q2 use the alphabet A = B ∪
{[, ], 〈, 〉, b, ?}. This new set contains helper symbols [ and
] which we use for disjunction creation (in a similar way as
we explained before the Theorem statement), and 〈 and 〉 de-
note the start and end of the tiling. The b-symbol is used for a
special edge that we use for checking vertical errors. Query
Q1 is given in Figure 4 and queryQ2 is sketched in Figure 5.
For convenience we use B〈〉 to abbreviate B∪{〈, 〉}, B[]〈〉 to
abbreviate B〈〉 ∪ {[, ]}, and B

$
to abbreviate B \ {$}.

The intuition is that the tiling is encoded in the B∗-edge
of Q1, i.e. the only edge that is labeled by a language that
is not a single symbol. The query Q2 consists of a sequence
of bad patterns, one for each possible kind of violation of
the described encoding or the horizontal and vertical con-
straints. The queries are designed in such a way that Q2

cannot be embedded if a valid tiling is encoded in a canoni-
cal model of Q1. Otherwise, at least one of the bad patterns
can be embedded in the encoding of the tiling. The other
bad patterns can be embedded at the nodes z2 and z7 of Q1,
as these nodes have one self loop for every symbol of the
alphabet except ?.



z1 z2 z3 z4 z5 z6 z7 z8

?

B[]〈〉

[

B〈〉
〈 B∗ 〉

B〈〉
]

B[]〈〉

?

b

Figure 4: Query Q1 in the proof of Theorem 6.1. Double-self-
loops indicate a distinct self-loop for every single symbol, i.e., not
a self-loop labeled with the alphabet.

? [ ] [ ] ?· · ·B1 B`

Figure 5: Query Q2 in the proof of Theorem 6.1. The Bi de-
note “bad patterns” described in the proof; each Bi has a ‘left’ and
‘right’ distinguished variable as in the picture.

We can easily design (sets of) patterns, where each pattern
is a simple path, to catch the following errors: malformed
encoding of a tile, malformed encoding of an address, non-
incrementing addresses, missing initial or final $, wrong ini-
tial or final tile, and an error in the horizontal constraints.

The most difficult condition to test is an error in the ver-
tical constraints, which we encode with the pattern Gt,t

′
for

every (t, t′) /∈ V , given by∧
1≤i≤n

Gt,t
′

i ∧
∧

i,j∈{1,...,n}
c,d∈{0,1};|i−j|=1

(xt,t
′

i,c Lx
t,t′

j,d ∧ y
t,t′

i,c Ly
t,t′

j,d ) ,

where Gt,t
′

i is given in Figure 6 and L = b∗B∗〈〉b
∗. We first

explain the intuition behind Gt,t
′

i . We assume that the ver-
tical error occurs at tile t having 0 as i-th bit of its address.
In that case, the variable xt,t

′

i,0 should be embedded just be-

fore the encoding of t, while yt,t
′

i,0 should be embedded in the
next row just after the tile t′ with the same i-th bit. This is
enforced as there is one $ between xt,t

′

i,0 and yt,t
′

i,0 , ensuring
that both variables occur in consecutive rows. The variables
xt,t

′

i,1 and yt,t
′

i,1 are simply embedded at the node correspond-
ing to z6 of Q1.

In the case that the i-th bit is 1, we embed xt,t
′

i,0 and yt,t
′

i,0

at z3, while xt,t
′

i,1 and yt,t
′

i,1 are embedded at the tiles violating
the vertical constraint, as described in the previous case.

xt,t
′
xt,t

′

i,0 yt,t
′

i,0 xt,t
′

i,1 yt,t
′

i,1
yt,t

′

〈B∗ t̂e0
iB∗$$B∗

$
t̂′e0

i B∗〉〈B∗ t̂e1
iB∗$$B∗

$
t̂′e1

i B∗〉

Figure 6: Subquery Gt,t′

i in the proof of Theorem 6.1. Here, eai =
({0, 1}∗#)i−1a(#{0, 1}∗)n−i−1 is the language enforcing the i-
th bit to be a.

Altogether, Gt,t
′

i verifies that there are positions v and w
in consecutive rows of the encoding such that the tiles ad-
jacent to v and w would violate the vertical constraints and

the positions agree on the i-th bit of the address. To ensure
that the positions v and w agree on all n bits of the address
we have to ensure that the n patterns Gt,t

′

1 , . . . , Gt,t
′

n all re-
fer to the same two positions in the tiling. This is why we
have the additional conjuncts with language L = b∗B∗〈〉b

∗ in

Gt,t
′
. The language L is chosen to ensure that there exists

exactly one node v in the tiling such that all the variables
xt,t

′

1,j , . . . , x
t,t′

n,j , for j ∈ {0, 1} are either embedded at v, at
the node corresponding to z3 from Q1, or at the node corre-
sponding to z6 from Q1. If there were two variables xt,t

′

i,c

and xt,t
′

j,d embedded at different positions between z3 and

z6 then there is a k and c̃, d̃ such that xt,t
′

k,c̃ and xt,t
′

k+1,d̃
are

embedded at different positions and thus at least one of the
conjuncts xt,t

′

k,c̃Lx
t,t′

k+1,d̃
and xt,t

′

k+1,d̃
Lxt,t

′

k,c̃ has to be violated,
as the symbol b can be read only at the beginning or end of
a string in L (recall that b /∈ B〈〉). The argument for the
y-variables and the position w is analogous.

To conclude, whenever there exists a valid tiling, we have
a canonical knowledge base with the encoding of a tiling
occurring between z4 and z5. To embed Q2 into this, we
need to span the full length flanked by the ?’s in the start
and the end. Thanks to (i) the symbols [, ] flanking the bad
patterns Bi in Q2, and (ii) the presence of these symbols
only at edges from nodes z2, z7 in Q1, at least one of the
bad patterns must embed into the part between z3 and z6. If
there is no error, we cannot embed Q2, and hence no Bi can
be mapped between z3 and z6 and we have Q1 6⊆ Q2. On
the other hand, when there is no valid tiling, for each canon-
ical knowledge base with a ‘guessed’ tiling, Q2 maps one of
the Bi between z3 and z6, and can hence embed completely
from ? to ?, giving Q1 ⊆ Q2.

Remark 6.2. We observe that the queries Q1 and Q2 in
Theorem 6.1 have bounded treewidth. Treewidth is a com-
monly used parameter in parameterized complexity analysis
and intuitively, captures how close the graph is to a tree.
A tree has treewidth 1, while Kn, the complete graph on
n vertices has treewidth n − 1. It is known that the con-
tainment problem of CQs with bounded treewidth (as is the
evaluation problem of CQs with bounded treewidth) is in
PTIME (Chekuri and Rajaraman 2000). In this light, it is
surprising how the complexity of containment increases to
EXPSPACE already for CRPQ(a,A∗), even for queries of
bounded treewidth.

7 Deutsch and Tannen’s W-Fragment
The complexity of containment of CRPQs with restricted
regular expressions has also been investigated by Deutsch
and Tannen (2002). Their work was motivated by the types
of restrictions imposed on navigational expressions in the
query language XPath. Interestingly, they left some ques-
tions open, such as the complexity of containment for CR-
PQs using expressions from their W-fragment.3 The W-

3The nomenclature of this fragment is a mystery to us. Even
Deutsch and Tannen say: “The fragments called W and Z have



fragment is defined by the following grammar:

R → σ | | S∗ | R ·R | (R+R)

S → σ | | S · S

Here, σ ∈ Σ and is a wildcard, i.e., it matches a single,
arbitrary symbol from the infinite set Σ. In the RPQs un-
derlying Table 1, wildcards occurred in 0% (40 out of 55M)
property paths in Wikidata queries, but in ∼4.30% of the
property paths in valid and in 15.68% of the property paths
in unique DBpedia± queries. By CRPQ(W ), we denote CR-
PQs where the regular expressions are from the W-fragment.

Deutsch and Tannen (2002) claimed that containment for
CRPQ(W ) is PSPACE-hard, but their proof, given in Ap-
pendix C of their article, has a minor error: it uses the as-
sumption that Σ, the set of edge labels, is finite. In fact, we
show that containment of CRPQ(W ) queries is in Πp

2. Fur-
thermore, the right query can even be relaxed completely.

Theorem 7.1. Containment of CRPQ(W ) in CRPQ is in
Πp

2.

Proof. Let Q1 ∈ CRPQ(W ) and Q2 ∈ CRPQ. We first
show a small model property. More precisely, we show that
whenever there is a counterexample to the containment, then
there also exists a canonical model B of Q1 such that B /∈
Q2 and B can be represented by a polynomial size graph
where each edge is either labeled with a single symbol or by
wi, where w is of size linear in Q1 and i is at most 2|Q2|3 .

Assume that B is the smallest graph that is a canonical
model ofQ1 and has no satisfying homomorphism fromQ2.
W.l.o.g., we assume that all occurrences of in Q1 are re-
placed by the same symbol $ that does not occur in Q2. As
the W-fragments allows only a fixed string below every star,
every path of B can be written as w`00 a1w

`1
1 a2 · · · anw`nn ,

where n < |Q1| and `i ∈ N, as all long segments of a path
have to result from applying the Kleene star to a fixed string.

It remains to show that for every path, all multiplicities
are at most 2|Q2|3 . We assume towards a contradiction that
there exists a path p in B, where for some string w, the mul-
tiplicity ` is larger than 2|Q2|3 . We assume w.l.o.g. that all
NFAs in Q2 share the same transition function δ over the
same set of states P , which can be achieved by taking the
disjoint union of all sets of states. Let M be the adjacency
matrix of the transition relation for the string w, i.e., M is
a Boolean |P | × |P | matrix, that has a 1 on position (i, i′),
if and only if δ∗(qi, w) = qi′ . By the pigeonhole principle,
there have to be j and k such that 0 ≤ j < k ≤ 2|P |

2

and
M j = Mk. We now shorten p by k − j copies of w and
call the resulting graph B′. It is obvious that Q1 can still
embed into B′. We have to show that Q2 cannot embed into
B′. Towards a contradiction we assume that h is a satisfying
homomorphism from Q2 to B′. Let p′ be a subpath of the
path p that spans at least j copies of w such that no node
of p′ occurs in the image of h. Such a subpath exists due
to the length of p still being at least 2|P | + j and the fact
that the sizes of |P | and the image of h are both bounded by

technical importance but their definitions did not suggest anything
better than choosing these arbitrary names.”

|Q2|. We now insert k − j copies of w into p′. By defini-
tion of M and the fact that M j = Mk, we have that h is
also a satisfying homomorphism from Q2 to B, the desired
contradiction.

We note that the minimal model property implies that the
smallest counter examples can be stored using only poly-
nomial space by storing the multiplicities of strings in bi-
nary. The Πp

2-algorithm universally guesses such a polyno-
mial size representation of a canonical modelB ofQ1. Then
it tests whether there exists an homomorphism from Q2 into
B by guessing an embedding. Testing whether a guessed
mapping is indeed a satisfying homomorphism can be done
in polynomial time using a square-and-multiply algorithm to
compute any necessary δ∗(q, wi).

Next we show that, if we assume a finite set of edge la-
bels Γ for knowledge graphs, the containment problem of
CRPQ(W ) is not just PSPACE-hard (as Deutsch and Tan-
nen showed), but even EXPSPACE-complete. The important
technical difference with Theorem 7.1 is that, when the la-
beling alphabet Γ is finite, it is not always possible to re-
place occurrences of the wildcard with a fresh symbol that
doesn’t appear in either query. Therefore, the counterexam-
ples cannot be stored in a compact way. Even though this
is a different setting than all the other results in the paper,
we provide a proof, because the problem was left open by
Deutsch and Tannen (2002).
Proposition 7.2. If edge labels of knowledge bases come
from a finite alphabet Γ, then containment of CRPQ(W ) in
CRPQ(W ) is EXPSPACE-complete.

Proof. To avoid confusion with an infinite alphabet, we
write Γ instead of . We change the languages used in the
proof of Theorem 6.1. We apply the following homomor-
phism h to all single label languages of Q1 and Q2 (includ-
ing the languages resulting from the double-self-loops in
Figure 4): # 7→ ε, $ 7→ $MN, σ 7→ σNN for σ ∈ B\{$,#},
and σ 7→ σMM ∈ A \ B, where N and M are new symbols,
i.e., we encode every symbol σ of our original construction
by the three symbols σσ1σ2, where σ1, σ2 ∈ {N,M} encode
whether σ belongs to B and B

$
, respectively.

We replace every occurrence of B∗ with the language
(ΓΓN)∗ and every occurrence of B∗

$
with the language

(ΓNN)∗. We replace eai as used in Figure 6 with
((0 + 1)NN)i−1aNN((0 + 1)NN)n−i−1.

The last change is that we add further bad patterns to
the construction of Q2 that detects whenever the language
(ΓΓN)∗ resulting from the B∗ inQ1 produces an invalid pat-
tern, i.e., a triple that is not in the image of h.

8 Related Work
The most relevant work to us is that of Calvanese et al.
(2000), who proved that containment for conjunctive reg-
ular path queries, with or without inverses, is EXPSPACE-
complete, generalizing the EXPSPACE upper bound for CR-
PQs of Florescu, Levy, and Suciu (1998).

Deutsch and Tannen (2002) have also studied the contain-
ment problem for CRPQ with restricted classes of regular
expressions. They chose fragments of regular expressions



based on expressions in query languages for XML, such as
StruQL, XML-QL, and XPath. The fragments they propose
are orthogonal to the ones we study here. This is because
they allow wildcards and union of words as long as they are
not under a Kleene star, while we disallow wildcards and
allow union of letters under Kleene star. Concretely, they
allow (aa + b), which we forbid. On the other hand, their
fragments (∗,, l∗, |) and W do not allow unions under Kleene
star, i.e., they cannot express (a + b)∗. Their fragments Z
and full CRPQs allow unions under Kleene star, but are al-
ready EXPSPACE-complete.

Florescu, Levy, and Suciu (1998) studied a fragment of
conjunctive regular path queries with wildcards for which
the containment problem is NP-complete—thus, it has the
same complexity as containment for conjunctive queries. In
their fragment, they only allow single symbols, transitive
closure over wildcards, and concatenations thereof.

Miklau and Suciu (2004) were the first to investigate con-
tainment and satisfiability of tree pattern queries, which are
acyclic versions of the CRPQs studied by Florescu, Levy,
and Suciu (1998). Tree pattern queries are primarily consid-
ered on tree-structured data, but the complexity of their con-
tainment remains the same if one allows graph-structured
data (Miklau and Suciu 2004; Czerwiński et al. 2018). Con-
tainment of tree pattern queries was considered in various
forms in (Miklau and Suciu 2004; Neven and Schwentick
2006; Wood 2003; Czerwiński et al. 2015).

Björklund, Martens, and Schwentick (2011) studied con-
tainment of conjunctive queries over tree-structured data
and and proved a trichotomy, classifying the problems as
in PTIME, CONP-complete, or Πp

2-complete. Their results
cannot be lifted to general graphs since they use that, if a
child has two direct ancestors, then they must be identical.

Sagiv and Yannakakis (1980) studied the equivalence and
therefore the containment problem of relational expressions
with query optimization in mind. They show that when se-
lect, project, join, and union operators are allowed, contain-
ment is Πp

2-complete.
Chekuri and Rajaraman (2000) showed that containment

of conjunctive queries is in PTIME when the right-hand side
has bounded treewidth. More precisely, they give an algo-
rithm that runs in (|Q1| + |Q2|)k, where k is the width of
Q2. So their algorithm especially works for acyclic queries.

Calvanese et al. (2001) provide a PSPACE-algorithm for
containment of tree-shaped CRPQs with inverses. The algo-
rithm also works if only the right-hand side is tree-shaped.
Figueira (2020) shows that containment of UC2RPQs is
in PSPACE if the class of graphs considered has “bounded
bridgewidth” (= size of minimal edge separator is bounded)
and is EXPSPACE-complete otherwise. Barceló, Figueira,
and Romero (2019) studied the boundedness problem of
UC2RPQs and prove that its EXPSPACE-completeness al-
ready holds for CRPQs. (A UC2RPQ is bounded if it is
equivalent to a union of conjunctive queries.)

The practical study of (Bonifati, Martens, and Timm
2019) that we mentioned in the beginning of the paper and
that was crucial for the motivation of this work would not
have been possible without the efforts of the Dresden group
on Knowledge-Based Systems (Malyshev et al. 2018), who

made sure that anonymized query logs from Wikidata could
be released. Bonifati, Martens, and Timm (2019) studied the
same log files as Bielefeldt, Gonsior, and Krötzsch (2018).

It should be noted that several extensions and variants
of CRPQs have been studied in the literature. Notable
examples are nested regular expressions (Pérez, Arenas,
and Gutierrez 2010), CRPQs with node- and edge-variables
(Barceló, Libkin, and Reutter 2014), regular queries (Reut-
ter, Romero, and Vardi 2015), and GXPath (Libkin, Martens,
and Vrgoč 2016).

9 Conclusions and Further Work

We have provided an overview of the complexity of CRPQ
containment in the case where the regular expressions in
queries come from restricted, yet widely used classes in
practice. A first main result is that, even when the regular
expressions are from the restricted class CRPQ(a,A∗), the
containment problem remains EXPSPACE-hard. Second, in
the case that transitive closures are only allowed over single
symbols, the complexity of CRPQ containment drops signif-
icantly. This is rather good news in practice, because, as we
see in Table 2, the types of CRPQs for which containment
falls into such lower complexities are extremely common.

Contrary to the EXPSPACE lower bound reduction of Cal-
vanese et al. (2000), the shape of queries (i.e., its underly-
ing graph) is quite involved, and it crucially involves cycles.
This immediately raises a number of questions.
• What is the complexity of Containment of CRPQ(a,A∗)

in CRPQ(a,A∗) if one of the sides is only a path or a
DAG?

• If one takes a careful look at our results, we actually set-
tle the complexity of all forms of containment F1 ⊆ F2

where Fi is one of our considered classes, except the
cases of Containment of CRPQ(a,A∗) in CRPQ(A) and
Containment of CRPQ(a,A∗) in CRPQ(a, a∗). What is
the complexity in these cases?
Of course, it would be interesting to understand which of

our results can be extended towards C2RPQs, which would
slightly increase the coverage of the queries we consider in
Table 2. We believe that all our upper bounds can be ex-
tended and we plan to incorporate these results in an ex-
tended version of the paper.

Another direction could be to combine our fragments with
arithmetic constraints. There is a lot of work done consid-
ering query containment of conjunctive queries with arith-
metic constraints (which is Πp

2-complete), see for example
Afrati (2019) and the related work mentioned there. We
would like to understand to which extent such constraints
can be incorporated without increasing the complexity of
containment.

It would also be interesting to investigate the problem of
boundedness (Barceló, Figueira, and Romero 2019) for the
studied classes of CRPQ; understanding whether a query is
‘local’ might be of interest for the graph exploration during
its evaluation.
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