Skip to Main content Skip to Navigation
Journal articles

Solvation Effects Drive the Selectivity in Diels-Alder Reaction Under Hyperbaric Conditions

Abstract : High pressure effects on the Diels-Alder reaction in condensed phase are investigated by means of theoretical methods, employing advanced multiscale modeling approaches based on physically grounded models. The simulations reveal how the increase of pressure from 1 to 10000 atm does not affect the stability of the reaction products, modifying the kinetics of the process by lowering considerably the transition state energy. The reaction profile at high pressure remarkably differs from that at 1 atm,showing a submerged TS and a pre–TS structure lower in energy. The different solvation between endo and exo pre–TS is revealed as the driving force pushing the reaction toward a much higher preference for the endo product at high pressure.
Complete list of metadata

Cited literature [41 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02504716
Contributor : Jean-Philip Piquemal <>
Submitted on : Thursday, November 5, 2020 - 6:04:21 PM
Last modification on : Thursday, February 4, 2021 - 4:50:01 PM
Long-term archiving on: : Saturday, February 6, 2021 - 8:06:48 PM

File

2020_ChemCom_ChemRXiv.pdf
Files produced by the author(s)

Identifiers

Citation

Daniele Loco, Riccardo Spezia, François Cartier, Isabelle Chataignier, Jean-Philip Piquemal. Solvation Effects Drive the Selectivity in Diels-Alder Reaction Under Hyperbaric Conditions. Chemical Communications, Royal Society of Chemistry, 2020, 56, pp.6632-6635. ⟨10.1039/D0CC01938K⟩. ⟨hal-02504716⟩

Share

Metrics

Record views

122

Files downloads

52