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Abstract

We consider a two-period irreversible investment decision problem in which the �rm can

either invest in period 0 or in period 1. The �rm is assumed to be able to specify a set of three

scenarios or more but not a probability measure. Assuming the option to wait is valued with

the no-arbitrage principle, when the �rm makes use of the criteria α-maxmin, we show the �rm

ends up with a known probability measure that assigns a positive probability to four (or three)

scenarios only.

Keywords: Knightian uncertainty, investment decision, option to wait, no-arbitrage, α-maxmin
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1 Introduction

Consider an irreversible investment decision problem in which the �rm can either invest in period

0 or delay the decision in period 1. In a situation of risk, when the relevant probability measure

is perfectly known, the �rm should invest in period 0 only if the net present value is higher than

the value of the option to wait. In [Dixit et al., 1994] chapter 2, they consider such a two period

case in which the project's value can increase with a known probability p or decrease with the

complementary probability. In [Nishimura and Ozaki, 2007], they consider a similar example but in

which the �rm is uncertain about her estimation of p, the probability of the good scenario (called

boom) in period 1. However, the �rm is still assumed to be able to specify a set of plausible values

of p.

∗We thank two anonymous reviewers for their remarks and comments on this paper. The usual disclaimers apply.
†IÉSEG School of Management, CNRS-LEM,UMR 9221,Paris campus, Socle de la Grance Arche, 1 Parvis de la

Défense, 92044 Paris La Défense Cedex, France, y.braouezec@ieseg.fr.
‡IÉSEG School of Management, CNRS-LEM,UMR 9221, Lille campus, 3 rue de la Digue, 59000 Lille, France,

r.joliet@ieseg.fr.

1

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0165176519300783
Manuscript_c0511fb7046d24af596c94e417a20734

http://www.elsevier.com/open-access/userlicense/1.0/
https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0165176519300783
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0165176519300783


The aim of this paper is to reconsider this two-period irreversible investment decision problem.

We assume that the �rm is able to specify a (�nite) set of scenarios but is unable to specify a

probability measure. Such a situation is usually called Knightian uncertainty (see [Etner et al., 2012]

for a recent review on the subject). Assuming the option to wait is valued using the no-arbitrage

principle when the �rm uses, as in [Schröder, 2011] and [Gao and Driouchi, 2013], the α-maxmin

criteria, we show that the �rm ends up with a known probability measure that assigns a positive

probability to only four (possibly three) scenarios only, all the others being irrelevant. Everything

is thus as if the decision problem under uncertainty were reduced to decision problem under risk.

The paper is organized as follows. In section 2, we present the investment decision problem and

in section 3, we present the analysis of the problem under Knightian uncertainty.

2 The investment decision problem

We consider a two-period model similar to [Dixit et al., 1994] in which the �rm has the possibility

to invest at period 0 or at period 1 when the uncertainty is resolved. Let I be the cost the project.

When the �rm invests, in period 0 or 1, it can produce forever (at zero marginal cost) one unit of a

good sold at the market price. The current price of the good P0 is known but the price in period 1

is unknown. After period 1, the price is assumed to remain constant, i.e., Pt = P1 for t = 1, 2, ...∞.

Let

Ω = {ω1, ω2, ..., ωn} n ≥ 3 (1)

be the set of scenarios (or state of the world) regarding the price in period 1 de�ned as

P1(ω) = ωP0 ω ∈ Ω (2)

where for simplicity we assume that ω1 < ω2 < ... < ωn. The actual state is observed in period 1

before the �rm makes her decision. Let r>0 be the risk-free rate. Since there is no longer uncertainty,

all the cash-�ows are discounted at the risk-free rate r. The value of the project seen from period

1 in scenario ω ∈ Ω is equal to

V1(ω) =
∞∑
t=1

P1(ω)

(1 + r)t−1
= ω

(
P0

r

)
︸ ︷︷ ︸
V0

(1 + r) = ω V0(1 + r) (3)

The �rm will invest in the project if V1(ω) ≥ I and reject it if V1(ω) < I. The value of the project

thus is equal to

Π1(ω) := max{V1(ω)− I; 0} (4)

and is identical to the payo� of a call option with maturity T = 1, strike price I and underlying

asset V0. For the sake of interest, we assume that ω1V0(1 + r) < I and that ωnV0(1 + r) > I.
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When the �rm invests at time t = 0, the cash-�ow in period 0 is equal to P0 − I (which is typically

negative) and is equal to the (positive) random variable V1(ω) in period 1.

Let P be the objective (or historical) probability measure such that

P({ωi}) > 0 i = 1, 2, ..., n. (5)

Risk is the situation in which the �rm explicitly knows P while uncertainty is the situation in

which P is not perfectly known.

3 Investment decision problem under risk and uncertainty

Consider �rst the case of risk and assume that the �rm is risk-neutral. Since the underlying prob-

ability measure P is known, the value of investing at time t = 0 is equal to

P0 +
EP(V1(ω))

1 + r
− I (6)

while the present value of investing at time t = 1 is equal to

EPΠ1(ω)

1 + r
(7)

It is optimal to invest in period 0 (respectively period 1) if equation (6) is strictly higher (respectively

strictly lower) than equation (7).

Consider now the case of Knightian uncertainty in which the probability measure is unknown

so that no expectation can be computed. When the objective probability measure P (assuming it

exists) is unknown, a decision-maker (such as a Bayesian statistician) might be able to form an

unique (subjective) probability measure PSub over the state of the world Ω so that the problem

reduces to risk. However, specifying such an unique probability measure may be too demanding

in general. A given decision-maker may only be able to specify a set P of probability measures

over Ω, and this approach has been called multiple priors in the economics literature, see e.g.,

[Gilboa et al., 2008] for a very readable discussion and references therein. Interestingly, in the

theory of arbitrage-free securities markets, developed among others by [Harrison and Kreps, 1979],

[Taqqu and Willinger, 1987] for the case of a �nite Ω, the knowledge of the objective probability

measure is irrelevant. As clearly stressed by [Taqqu and Willinger, 1987], "investors may disagree

on their choice of P but they all agree on what states of nature are possible", which means that P
represents the set of all the probability measures P over Ω such that P({ωi}) > 0 for i = 1, 2, ..., n.

Assuming K ≥ 1 risky securities and one default risk-free asset, [Taqqu and Willinger, 1987]
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show (see theorem 3.1) that no arbitrage1 is equivalent to the existence (but not necessarily unique-

ness) of a probability measure Q := (Q({ωi})ni=1 called an equivalent martingale measure. This kind

of result is known as the fundamental theorem of asset pricing (see also [Cerreia-Vioglio et al., 2015]

section 2.2 for a presentation). The measure Q is said to be equivalent to P since Q({ωi}) > 0 is

equivalent to P({ωi}) > 0 for each i = 1, ..., n and it is said to be a martingale measure (within our

framework) since EQ(V1(ω)|V0)
1+r = V0. To �nd a martingale measure, [Taqqu and Willinger, 1987] rely

on duality theory for linear programming. Once the set of martingale measures Q is known (see

[Pliska, 1997] p. 12 example 1.2 for a numerical application), the value of an option seen from t = 0

is computed as a discounted expectation of the payo� under a (given) measure Q, that is,

EQ(Π1(ω))

1 + r
(8)

The analysis of no arbitrage is di�cult even when Ω is �nite since it requires to use a version

of the Hahn-Banach theorem, i.e., the separating hyperplane theorem (see [Elliott and Kopp, 2004]

chapter 3 or [Pliska, 1997] p. 14 for a discussion). In this paper, we follow the straightforward

approach introduced in [Braouezec and Grunspan, 2016], which only requires to locate two points

on a quadrilateral (or a triangle) to �nd the set of arbitrage-free prices of a given option. This

approach is very simple but is less general than the classical one (e.g., [Taqqu and Willinger, 1987])

since it considers a given option and not all the possible contingent claims one can think of.

3.1 No-arbitrage and the α-maxmin criteria

Let Pi := (V1(ωi),Π1(ωi)) ∈ R2
+ for i = 1, 2, ..., n be a set of planar points and let us call Γ be the

convex hull2 spanned by the set of n points P1,P2, ...,Pn, that is

Γ := Conv{P1,P2, ...,Pn} (9)

Since the n points form a set of planar points, Γ is just a convex polygon. In the generic case,

there are some states of the world ωi ∈ Ω such that V1(ωi) > I and some others for which V1(ωi) < I.

By de�nition, a point Pi which is not a vertex of Γ can be expressed as a convex combination of

the vertices. As a result, this point Pi is irrelevant. In �gure 1, the convex hull is a quadrilateral3

so that it has four vertices, namely P1, Pk, Pk+1 and Pn. Let F0 be the point de�ned as follows

F0 := ((1 + r)V0; (1 + r)Π0) (10)

1See also [Varian, 1987] for a simple presentation of the formalization of the no-arbitrage condition. [Varian, 1987]

uses the notion of a vector of state prices rather than the notion of a martingale measure but these two concepts are

identical up to the discount factor, i.e., 1
1+r

.
2The convex hull is the smallest convex set that contains the n points.
3If there exists ωi ∈ Ω such that ωiV0 = I, then Γ reduces to a triangle.
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Figure 1: The convex hull Γ is a quadrilateral

where Π0 is the value of the option at time t = 0. Recall that an arbitrage opportunity is a

situation in which it is possible to design a costless portfolio in period 0 such that its value in

period 1 is strictly positive in some state(s) of the world and zero otherwise. Let Int(Γ) be

the interior of the convex polygon Γ and ∂Γ be its boundary. The following result is proved in

[Braouezec and Grunspan, 2016].

Proposition 1 The value of the call option Π0 is arbitrage-free if and only if F0 ∈ Int(Γ).

The idea behind this result is simple. If F0 /∈ Int(Γ), then it becomes possible to separate by a

line v1 whose equation is Υ1(ωi) = aV1(ωi) + b the point F0 from the interior of Γ. If the option

is overvalued, i.e., Π0 > (1 + r)Π0, this means that Υ1(ω) > Π1(ω) for each ω ∈ Ω and this yields

an elementary arbitrage opportunity. Let Π0 and Π0 be two critical option values such that the

points F 0 = ((1 + r)V0; (1 + r)Π0)) and F 0 = ((1 + r)V0; (1 + r)Π0)) lie on the boundary of Γ,

see Fig. 1. The methodology also works in a multiperiod framework but is more challenging since

the problem is then equivalent to determine a sequence of convex hulls (and not only one). In

[Braouezec and Grunspan, 2016], they explicitly solve the valuation problem of an American option

in a two period trinomial model.

From the de�nition of Π0 and Π0, as long as Π0 ∈ (Π0,Π0), it is arbitrage-free. Following
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[Gao and Driouchi, 2013] or [Schröder, 2011], the �rm is assumed to use the α-maxmin criteria

de�ned as

αΠ0 + (1− α)Π0 (11)

which leads to an arbitrage-free option value since α ∈ (0, 1). It is usual to interpret α as a measure

of the degree of optimism of the �rm (see e.g., [Etner et al., 2012]).

Proposition 2 Assume that ωk <
I

V0(1+r) < 1 and ωk+1 > 1. For a given α ∈ (0, 1), the probability

measure Qα := (Qα({ωi})ni=1 de�ned as

Qα({ω1}) = α

(
ωn − 1

ωn − ω1

)
> 0 Qα({ωk}) = (1− α)

(
ωk+1 − 1

ωk+1 − ωk

)
> 0

Qα({ωk+1}) = (1− α)

(
1− ωk

ωk+1 − ωk

)
> 0 Qα({ωn}) = α

(
1− ω1

ωn − ω1

)
> 0

Qα({ωi}) = 0 for ωi /∈ {ω1, ωk, ωk+1, ωn}

is such that
EQαΠ1(ω)

1 + r
= αΠ0 + (1− α)Π0 (12)

Proof. See the appendix.

To understand the intuition behind this proposition, recall that Π0 is the lower bound of the

option value. In appendix, we show that this lower bound of the option value, Π0, can be written

as

Π0 =
EQΠ1(ω)

1 + r
(13)

which can be interpreted as the expected discounted value of the option payo� under a probability

measure Q that assigns a positive weight to the states ωk and ωk+1 only. Everything is as if Π0

were computed using a binomial model with the two states of the world ωk and ωk+1. In the same

vein, the upper bound of the option value, Π0, can be written as

Π0 =
EQΠ1(ω)

1 + r
(14)

which can once again be interpreted as the expected discounted value of the option payo� under a

probability measure Q that assign positive weight to the states ω1 and ωn only.

Consider now the probability measure Qα de�ned as a convex combination of the two probability

measures Q and Q (written as column vectors), that is, Qα = αQ + (1 − α)Q and note that Qα

assigns a positive weight to the states of the world ω1, ωk, ωk+1 and ωn only. By making use of the

linearity property of the expectation operator, it is not di�cult to show that equation (12) holds.
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This result shows interestingly that while the �rm is completely unaware of the true probability

measure P, by using the no-arbitrage principle and the α-maxmin criteria, she ends up with an

explicit set of weights Qα that can be interpreted as a probability measure (which is a martingale

measure).

Corollary 1 Everything is as if the �rm were in a situation of risk equipped with the probability

measure Qα that assigns a positive weight to the four states of the world ω1, ωk, ωk+1 and ωn only.

As a result, the probability measures Qα and P are not equivalent, i.e., for some i ∈ {1, 2, ..., n},
Qα({ωi}) = 0 while P({ωi}) > 0.

The fact that the probability measures Qα and P are not equivalent re�ects the fact that we

only value a given option with the no-arbitrage principle and not the consequence of no-arbitrage in

general. Under the (additive) probability measure Qα, we obtain a partition of Ω in two subsets, N
and E∗, that are respectively, to use the terminology introduced in [Chateauneuf et al., 2007], the

set of states of the world that cannot occur (the Qα-null events) and the set states of the world that

can occur with a positive probability strictly lower than one. We are now in a position to explicitly

derive the optimal investment decision rule using the probability measure Qα.

Proposition 3 Whether the �rm is risk-averse or not, the optimal investment decision rule is as

follows. Invest in period 0 if V0 − I > EQαΠ1(ω)
1+r − P0 and postpone if the inequality is reversed.

Proof. See the appendix

The optimal investment decision rule does not depend upon the characteristics of the decision

maker such as risk-aversion because the two critical option prices Π0 and Π0 are determined using

no-arbitrage.

3.2 No-arbitrage and the expected utility criteria

Since the probability measure P is unknown, no expected utility can be computed under P. However,

we have seen that the application of the no-arbitrage principle to value the option to wait led us

to two pricing measures Q and Q under which the critical price Π0 and Π0 can be thought of as

an expected discounted value of the payo� (equations (13) and (14)). Let δ < 1 be the subjective

discount factor used to compute the expected utility of the form E[δU(.)] and assume indeed that

δ = 1
1+r . In line with [Ghirardato et al., 2004], the α-maxmin expected utility criteria can be

written as

α
EQU(Π1(ω))

1 + r
+ (1− α)

EQU(Π1(ω))

1 + r
(15)
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where the utility function U(x) is assumed to be an increasing and continuous function of x. Equa-

tion (15) is closely related to equation (12) of proposition 19 of [Ghirardato et al., 2004] but they

are not, strictly speaking, identical since Q and Q do not minimize and maximize the expected

utility EQU(.) and EQU(.) respectively over the set of relevant probability measures. Equation (15)

takes as given the two measures Q and Q. It is not di�cult to show that equation (15) is equal to
EQαU(Π1(ω))

1+r , so that

EQαU(Π1(ω)) = αEQU(Π1(ω)) + (1− α)EQU(Π1(ω)) (16)

Assume now that the option price Π0 is equal to the certainty equivalent4 ΠC
0 de�ned as

EQαU(Π1(ω))

1 + r
= U(ΠC

0 )⇐⇒ ΠC
0 = U−1

(
EQαU(Π1(ω))

1 + r

)
(17)

When U(x) is linear, ΠC
0 reduces to the right-hand side of equation (12), that is, to the α-maxmin.

However, when U(x) is a concave function of x, the option price will be lower than the α-maxmin. In

[Musiela and Zariphopoulou, 2004], they note that "no linear pricing mechanism can be compatible

with the concept of utility based valuation". While this is not incorrect, a version of the expected

utility criteria can still be used to choose an option price Π0 as long as Π0 ∈ (Π0,Π0), i.e., it is

arbitrage-free. This means that if ΠC
0 < Π0, the chosen price can not be equal to the certainty

equivalent. This situation in which ΠC
0 < Π0 occurs for instance when the decision-maker is risk-

averse (U concave) and pessimistic (α = 0) but can also occur when the decision-maker is very

risk-averse even when α > 0. Since the option price Π0 should be arbitrage-free, it must de�ned as

follows

Π0 = max{Π0; ΠC
0 } (18)

Strictly speaking, since Π0 is not an arbitrage-free option price, in case ΠC
0 < Π0, the option price

Π0 should be equal to Π0 + ε for any arbitrarily small ε > 0.

3.3 Numerical example

Let Ω = {ω1, ω2, ω3, ω4} where ω1 = 0.8, ω2 = 0.85, ω3 = 1.05, ω4 = 1.1 be the four relevant states

of the world. Let P0 = 1, r = 2% so that V0 = 1
0.02 = 50. Assume that I = 45 so that V0−I = 5. Let

α = 1
2 and Q

1
2 ({ωi}) = qi. Using proposition 2, q1 = 0.166, q2 = 0.125, q3 = 0.375 and q4 = 0.333

and note that Π1(ω1) = Π1(ω2) = 0 and that Π1(ω3) = 8.55 and Π1(ω4) = 11.1. It is easy to show

that EQαΠ1(ω)
1+r = 6.76. Note that Π0 = 6.286 and that Π0 = 7.254 so that (0.5×6.286)+(0.5×7.254)

also yields 6.76. Since V0 − I = 5 and EQαΠ1(ω)
1+r − P0 = 5.76. From proposition 3, it is optimal to

wait.

4See [Staum, 2007] for a review of existing option pricing methods based on expected utility.
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Assume now that U(x) =
√
x = x0.5 for x ≥ 0. In this example, it is not di�cult to show that

EQαU(Π1(ω)) = q3U(Π1(ω3)) + q4U(Π1(ω4)) which is equal to 0.375
√

8.55+0.333
√

11.1
1.02 = 2.16 so that

ΠC
0 = 2.2062 = 4.67. Since the certainty equivalent is lower than 6.286, the chosen price Π0 must

be equal to Π0 = 6.286 plus ε > 0, say Π0 = 6.29. Consider now the utility function de�ned as

U(x) = x0.9 for x ≥ 0, i.e., the decision-maker is less risk-averse. The (discounted) expected utility

is equal to 5.35 so that the certainty equivalent is now equal to 6.44. Since it is higher than 6.286,

the option price Π0 can now be equal to the certainty equivalent.

4 Appendix: proofs

Notation. If x = (x1;x2) is a row vector, its transpose denoted x
′ is a column vector, that is

x
′ =

 x1

x2


Proof of proposition 2. It is assumed that ωk+1 > 1 and ωk <

I
V0(1+r) . The point de�ned

as F0 = ((1 + r)V0; (1 + r)Π0) lies on the boundary of Γ and is located on the segment formed by

Pk = (ωk(1 + r)V0; Π1(ωk)) and Pk+1 = (ωk+1(1 + r)V0; Π1(ωk+1), see Fig 1. Since F′0 lies on the

segment formed by P′k and P
′
k+1, there exists a weight q ∈ (0, 1) such that F′0 = qP′k+1 +(1− q)P′k.

This leads to the following linear system of two equations with two unknowns

(1 + r)V0 = qωk+1(1 + r)V0 + (1− q)ωk(1 + r)V0 (19)

(1 + r)Π0 = qΠ1(ωk+1) + (1− q)Π1(ωk) (20)

which leads to

q =
1− ωk

ωk+1 − ωk
and 1− q =

ωk+1 − 1

ωk+1 − ωk
(21)

Equation (20) can be written as Π0 =
qΠ1(ωk+1)+(1−q)Π1(ωk)

1+r and can also be interpreted as the

expected discounted value of the payo� under a probability measure Q = (0, ..., 0, 1 − q, q, 0, ..., 0)

that only assign positive weight to the states ωk and ωk+1, that is,

Π0 =
EQΠ1(ω)

1 + r
(22)

Since Π1(ωk) = 0 and Π1(ωk+1) = ωk+1(1 + r)V0 − I, it follows that

Π0 =
EQΠ1(ω)

1 + r
=
q(ωk+1(1 + r)V0 − I)

1 + r
(23)

A similar analysis can be done for the points P′1 and P′n and the point F
′
0, where F0 = ((1 +

r)V0; (1 + r)Π0) since the point F
′
0 is located on the segment formed by the points P′1 and P′n. As

before, there exists q ∈ (0, 1) such that F
′
0 = qP′n + (1− qn)P′1 which leads to

q =
1− ω1

ωn − ω1
and (1− q) =

ωn − 1

ωn − ω1
(24)
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As before, Π0 = qΠ1(ωn)+(1−q)Π1(ω1)
1+r . Since Π1(ω1) = 0 and Π1(ωn) = ωnV0 − I > 0, it follows

that

Π0 =
EQΠ1(ω)

1 + r
=
q(ωn(1 + r)V0 − I)

1 + r
(25)

where Q = (1−q, 0, ..., 0, q) can be interpreted as a probability measure that assign a positive weight

two states ω1 and ωn. By de�nition, for a given α ∈ (0, 1), the α-maxmin criteria is equal to

αΠ0 + (1− α)Π0 =
αq(ωn(1 + r)V0 − I) + (1− α)q(ωk+1(1 + r)V0 − I)

1 + r
(26)

which can also be written as

α
EQΠ1(ω)

1 + r
+ (1− α)

EQΠ1(ω)

1 + r
= α

q(ωn(1 + r)V0 − I)

1 + r
+ (1− α)

q(ωk+1(1 + r)V0 − I)

1 + r
(27)

Let Q′α := αQ′ + (1− α)Q′ so that the resulting probability measure, written as a row vector,

is equal to

Qα = (α(1− q)︸ ︷︷ ︸
Qα({ω1})

, 0, ..., 0, (1− α)(1− q)︸ ︷︷ ︸
Qα({ωk})

, (1− α)q︸ ︷︷ ︸
Qα({ωk+1})

, 0, ..., 0, αq︸︷︷︸
Qα({ωn})

) (28)

and note that this probability measure only assign positive a weight to the four following states,

ω1, ωk, ωk+1, ωn. By de�nition,

EQαΠ1(ω)

1 + r
=

(α(1− q)Π1(ω1) + (1− α)(1− q)Π1(ωk) + (1− α)qΠ1(ωk+1) + αqΠ1(ωn)

1 + r
(29)

Since Π1(ω1) = 0 and Π1(ωk) = 0 while Π1(ωk+1) = ωk+1(1 + r)V0 − I > 0 and Π1(ωn) =

ωn(1 + r)V0 − I > 0, we obtain

EQαΠ1(ω)

1 + r
=
αq(ωn(1 + r)V0 − I) + (1− α)q(ωk+1(1 + r)V0 − I)

1 + r
(30)

which is equation (26)�

Proof of proposition 3. From equation (19), V0 =
qωk+1(1+r)V0+(1−q)ωk(1+r)V0

1+r can be written

as EQV1(ω)
1+r = V0, i.e., Q can be thought of as a martingale measure. In the same way, V0 =

qωn(1+r)V0+(1−q)ω1(1+r)V0
1+r can be written as EQV1(ω)

1+r = V0. It is easy to show that EQα (V1(ω))
1+r =

αV0 + (1−α)V0 = V0. Since the value of investing in period 0 is equal to P0− I+
EQα(V1(ω))

1 + r︸ ︷︷ ︸
=V0

while

the value of investing in period 1 is equal to EQα (Π1(ω))
1+r , it follows it is optimal to invest in period 0

if V0 − I > EQα (Π1(ω))
1+r − P0. Note that this result does not depend upon the characteristics of the

decision-maker and thus is true whether the decision-maker is risk-averse or not �
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