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A martingale approach for Pólya urn processes

Lucile Laulin

Abstract

This paper is devoted to a direct martingale approach for Pólya urn
models asymptotic behaviour. A Pólya process is said to be small when
the ratio of its remplacement matrix eigenvalues is less than or equal
to 1/2, otherwise it is called large. We find again some well-known
results on the asymptotic behaviour for small and large urns processes.
We also provide new almost sure properties for small urns processes.

1 Introduction

At the inital time n = 0, an urn is filled withα ≥ 0 red balls and β ≥ 0 white balls. Then, at
any time n ≥ 1 one ball is drawn randomly from the urn and its color observed. If it is red
it is then returned to the urn together with a additional red balls and b ≥ 0 white ones. If it
is white it is then returned to the urn together with c ≥ 0 additional red balls and d white
ones. The model corresponding replacement matrix is given, for a, b, c, d ∈ N, by

R =

(
a b
c d

)
. (1.1)

The urn processe is said to be balanced if the total number of balls added at each step is a
constant, S = a + b = c + d ≥ 1. Thanks to the balance assumption, S is the maximum
eigenvalue of RT. Moreover, the second eigenvalue of RT is given by m = a − c = d − b.
Throughout the rest of this paper, we shall denote

σ = m/S ≤ 1

the ratio of the two eigenvalues. It is straightforward that the respective eigenvectors of RT

are given by

v1 =
S

b + c

(
c
b

)
and v2 =

S
b + c

(
1
−1

)
.

We can rewrite RT under the following form

RT = PDP−1 =
1

b + c

(
c 1
b −1

)(
S 0
0 m

)(
1 1
b −c

)
.

Hereafter, let us define the process (Un), the composition of the urn at time n, by

Un =

(
Xn
Yn

)
and U0 =

(
α

β

)
where Xn is the number of red balls and Yn is the number of white ones. Then, let τ =
α +β ≥ 1 and τn = τ + nS be the number of ball inside the urn at time n. In particular, one
can observe that Xn + Yn = τn is a deterministic quantity.
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The traditionnal Pólya urn model corresponds to the case where the replacement matrix
R is diagonal, while the generalized Pólya urn model corresponds to the case where the
replacement matrix R is at least triangular.
The questions about the asymptotic behavior of (Un) have been extensively studied, firstly
by Freedman [9] and by many after, see for example [5, 7, 8, 13, 15, 14]. We also refer the
reader to Pouyanne’s CIMPA summer school lectures 2014 [16] for a very comprehensive
survey on Pólya urn processes that has been a great source of inspiration. The reader may
notice that this paper is related to Bercu [4] on the elephant random walk. This is due to the
paper of Baur and Bertoin [2] on connection between elephant random walks and Pólya-type
urns.
Our strategy is to use the martingale theory [6, 11] in order to propose a direct proof of the
asymptotic normality associated with (Un). We also establish new refinements on the almost
sure convergence of (Un). The paper is organized as follows. In Section 2, we briefly present
the traditional Pólya urn model, as well as the martingale related to this case. We establish
the almost sure convergence and the asymptotic normality for this martingale. In Section 3,
we present the generalized Pólya urn model with again the martingale related to this case,
and we also give the main results for this model. Hence, we first investigate small urn regime
where σ ≤ 1/2 and we establish the almost sure convergence, the law of iterated logarithm
and the quadratic strong law for (Un). The asymptotic normality of the urn composition is
also provided. We finally study the large urn where σ > 1/2 and we prove the almost sure
convergence as well as the mean square convergence of (Un) to a non-degenerate random
vector whose moments are given. The proofs are postponed to Sections 4 and 5.

2 Traditional Pólya urn model

This model corresponds to the case where the replacement matrix is diagonal

R =

(
S 0
0 S

)
.

It means that at any time n ≥ 1, one ball is drawn randomly from the urn, its color observed
and it is then returned to the urn together with S ≥ 1 additional balls of the same color. Let
us define the process (Mn) by

Mn =
Xn

τn

and write

Xn = α + S
n

∑
k=1
εk (2.1)

where the conditional distribution ofεn+1 given the past up to time n isL(εn+1|Fn) = B(Mn).
We clearly have

E[Mn+1|Fn] = Mn

which means that (Mn) is a martingale. We have ∆Mn+1 = S
τn+1

(
εn+1 −Mn

)
. Hence,

E
[
∆M2

n+1|Fn
]
=

S2

τ2
n+1

(
E
[
ε2

n+1|Fn
]
−M2

n

)
=

S2 Mn(1−Mn)

τ2
n+1

.

We now focus our attention on the asymptotic behavior of (Mn).

Theorem 2.1 . The process (Mn) converges to a random variable M∞ almost surely and in any Lp

for p ≥ 1. The limit M∞ has a beta distribution, with parameters αS and β
S .
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Remark 2.2 This results was first proved by Freedman, Theorem 2.2 in [9].

Our first new result on the gaussian fluctuation of (Mn) is as follows.

Theorem 2.3 . We have the following convergence in distribution

√
n

M∞ −Mn√
Mn(1−Mn)

L−→
n→∞ N

(
0, 1
)

(2.2)

3 Gereralized Pólya urn model

This model corresponds to the case where the replacement matrix is not diagonal,

R =

(
a b
c d

)
.

Let us rewrite

Xn = α + a
n

∑
k=1
εk + c

n

∑
k=1

(1−εk)

where the conditional distribution of εn+1 given the past up to time n is L(εn+1|Fn) =
B(τ−1

n Xn). We have

Un+1 = Un + RT
(

εn+1
1−εn+1

)
and

Un −E[Un] =

(
Xn −E[Xn]
Yn −E[Yn]

)
=
(
Xn −E[Xn]

) ( 1
−1

)
=

b + c
S
(
Xn −E[Xn]

)
v2.

Hence, we obtain that

E
[
Un+1 −E[Un+1]|Fn

]
= Un −E[Un] + RTE

[ (
εn+1

1−εn+1

)
−E

[ ( εn+1
1−εn+1

) ]
|Fn

]
=

(
I2 + τ

−1
n RT)(Un −E[Un]

)
= (Xn − E[Xn]

)(
I2 + τ

−1
n RT) ( 1

−1

)
=

(
1 + τ−1

n m
)(

Xn − E[Xn]
) ( 1
−1

)
=

(
1 + τ−1

n m
)(

Un −E[Un]
)
. (3.1)

Finally, denote

σn =
n−1

∏
k=0

(
1 + τ−1

k m
)−1

=
Γ(n + τ

S )Γ(
τ
S +σ)

Γ( τS )Γ(n + τ
S +σ)

. (3.2)

One can observe that

lim
n→∞ nσσn =

Γ( τS +σ)

Γ( τS )
. (3.3)

Hereafter, we define the process (Mn) by

Mn = σn
(
Un −E[Un]

)
. (3.4)
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Thanks to equation (3.1) we immediatly get that

E[Mn+1|Fn] = Mn.

Hence, the sequence (Mn) is a locally bounded and square integrable martingale. We are
now allowed to compute the quadratic variation of (Mn). First of all

∆Mn+1 = mσn+1
(
εn+1 −E[εn+1|Fn]

) ( 1
−1

)
= mσn+1

(
εn+1 − τ−1

n Xn
) ( 1
−1

)
. (3.5)

Moreover,
E
[(
εn+1 − τ−1

n Xn
)2∣∣Fn] = τ−1

n Xn
(
1− τ−1

n Xn
)
. (3.6)

Consequently, we obtain from (3.5) and (3.6) that

E
[
∆Mn+1∆MT

n+1
∣∣Fn] = m2σ2

n+1τ
−1
n Xn

(
1− τ−1

n Xn
) ( 1 −1
−1 1

)
. (3.7)

Therefore

〈M〉n =
n−1

∑
k=0

E
[
∆Mk+1∆MT

k+1

∣∣Fk]

= m2
(

1 −1
−1 1

) n−1

∑
k=0
σ2

k+1τ
−1
k Xk

(
1− τ−1

k Xk
)
. (3.8)

It is not hard to see that

Tr〈M〉n ≤ m2wn where wn =
n

∑
k=1
σ2

k . (3.9)

The asymptotic behavior of (Mn) is closely related to the one of (wn) with the following
trichotomy

– The diffusive regime where σ < 1/2 : the urn is said to be small and we have

lim
n→∞ wn

n1−2σ =
λ2

1− 2σ
where λ =

Γ( τS +σ)

Γ( τS )
.

– The critical regime where σ = 1/2 : the urn is said to be critically small and we have

lim
n→∞ wn

log n
=

Γ( τS + 1
2 )

Γ( τS )
.

– The superdiffusive regime where σ > 1/2 : the urn is said to be large and we have

lim
n→∞ wn =

∞
∑
k=0

( Γ(k + τ
S )Γ(

τ
S +σ)

Γ( τS )Γ(k +
τ
S +σ)

)2
.

Proposition A . We have for small and large urns

E[Un] = nv1 +σ
−1
n

(bα − cβ
S

)
v2 +

τ

S
v1. (3.10)
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Proof of Proposition A. First of all, denote Λn = I2 + τ
−1
n RT = P

(
I2 + τ

−1
n D

)
P−1 and Tn =

∏
n−1
k=0 Λk. For any n ∈ N, Tn is diagonalisable and

Tn = PDnP−1 =
1

b + c

(
c 1
b −1

)(
τn/τ 0

0 σ−1
n

)(
1 1
b −c

)
.

Since E[Un+1|Fn] = ΛnUn we easily get that E[Un] = TnU0, which leads to

E[Un] =
1

b + c

(τn

τ

(
c c
b b

)
+σ−1

n

(
b −c
−b c

))
U0

= nv1 +
τ

S
v1 +σ

−1
n

bα − cβ
S

v2.

�

3.1 Small urns

The almost sure convergence of (Un) for small urns is due to Janson, Theorem 3.16 in [13].

Theorem 3.1 . When the urn is small, σ < 1/2, we have the following convergence

lim
n→∞ Un

n
= v1 (3.11)

almost surely and in any Lp, p ≥ 1.

Our new refinements on the almost sure rates of convergence are as follows.

Theorem 3.2 . When the urn is small and bc 6= 0, we have the quadratic strong law

lim
n→∞ 1

log n

n

∑
k=1

1
k2 (Uk − kv1)(Uk − kv1)

T =
1

1− 2σ
bcm2

(b + c)2

(
1 −1
−1 1

)
a.s. (3.12)

In particular,

lim
n→∞ 1

log n

n

∑
k=1

‖Uk − kv1‖2

k2 =
2

1− 2σ
bcm2

(b + c)2 a.s. (3.13)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Un − nv1‖2

2n log log n
=

2
1− 2σ

bcm2

(b + c)2 a.s. (3.14)

Remark 3.3 The law of iterated logarithm for (Xn) was previously established by Bai, Hu
and Zhang via a strong approximation argument, see Corollary 2.1 in [1].

Theorem 3.4 . When the urn is small and bc 6= 0, we have the following convergence asymptotic
normality

Un − nv1√
n

L−→
n→∞ N

(
0, Γ
)

(3.15)

where Γ =
1

1− 2σ
bcm2

(b + c)2

(
1 −1
−1 1

)
.

Remark 3.5 An invariance principle for (Xn) was proved by Gouet, see Proposition 2.1 in
[10].
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3.2 Critically small urns

The almost sure convergence of (Un) for critically small urns is again due to Janson, Theorem
3.16 in [13].

Theorem 3.6 . When the urn is critically small, σ = 1/2, we have the following convergence

lim
n→∞ Un

n
= v1 (3.16)

almost surely and in any Lp, p ≥ 1.

Once again, we have some refinements on the almost sure rates of convergence.

Theorem 3.7 . When the urn is critically small and bc 6= 0, we have the quadratic strong law

lim
n→∞ 1

log log n

n

∑
k=1

1
(k log k)2 (Uk − kv1)(Uk − kv1)

T = bc
(

1 −1
−1 1

)
a.s. (3.17)

In particular,

lim
n→∞ 1

log log n

n

∑
k=1

‖Uk − kv1‖2

(k log k)2 = 2bc a.s. (3.18)

Moreover, we have the law of iterated logarithm

lim sup
n→∞

‖Un − nv1‖2

2 log n log log log n
= 2bc a.s. (3.19)

Remark 3.8 The law of iterated logarithm for (Xn) was also established by Bai, Hu and
Zhang via a strong approximation argument, see Corollary 2.2 in [1].

Theorem 3.9 . When the urn is critically small and bc 6= 0, we have the following asymptotic nor-
mality

Un − nv1√
n log n

L−→
n→∞ N

(
0, Γ
)

(3.20)

where Γ = bc
(

1 −1
−1 1

)
.

Remark 3.10 An invariance principle for (Xn) was also proven by Gouet, see Proposition 2.1
in [10].

3.3 Large urns

The convergences of n−σ (Un − nv1) to Wv2 first appeared in Pouyanne [15], Theorem 3.5.
The almost sure convergence of (Un) for large urns is again due to Janson, Theorem 3.16 in
[13]. The explicit calculation of the moments of W are new.

Theorem 3.11 . When the urn is large, σ > 1/2, we have the following convergence

lim
n→∞ Un

n
= v1 (3.21)

almost surely and in any Lp, p ≥ 1. Moreover, we also have

lim
n→∞ Un − nv1

nσ
= Wv2 (3.22)
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almost surely and in L2, where W is a real-valued random variable and

E[W] =
Γ( τS )

Γ( τS +σ)

bα − cβ
S

, (3.23)

E[W2] = σ2 Γ( τS )

Γ( τS + 2σ)

( bc
2σ − 1

τ

S
+ (b− c)

bα − cβ
σS

+
(bα − cβ)2

σ2S2

)
. (3.24)

4 Proofs of the almost sure convergence results

4.1 Generalized urn model – small urns

Proof of Theorem 3.1. We denote the maximum eigenvalue of 〈M〉n by λmax〈M〉n. We make
use of the strong law of large numbers for martingales given e.g. by Theorem 4.3.15 of [6],
that is for any γ > 0,

‖Mn‖2

λmax〈M〉n
= o
(
(log Tr〈M〉n)1+γ) a.s.

It follows from (3.9) that

‖Mn‖2 = o
(
wn(log wn)

1+γ) a.s.

which implies
‖Mn‖2 = o

(
n1−2σ (log n)1+γ) a.s.

Hence, we deduce from (3.3) and (3.4) that

‖Un −E[Un]‖2 = o
(
n(log n)1+γ) a.s.

which completes the proof for the almost sure convergence. The convergence in any Lp for
p ≥ 1 holds since n−1‖Un −E[Un]‖ is uniformly bounded by 2

√
2(τ + S).

�

Proof of Theorem 3.2. We shall make use of Theorem 3 of [3]. For any u ∈ R2 let Mn(u) =

〈u, Mn〉 and denote fn =
σ2

n
wn

. We have from (3.3) that fn is equivalent to (1 − 2σ)n−1 and

converges to 0. Moreover, we obtain from equations (3.8), (3.11) and Toeplitz lemma that

lim
n→∞ 1

wn
〈M〉n = lim

n→∞ m2

wn

(
1 −1
−1 1

) n−1

∑
k=0
σ2

k+1τ
−1
k Xk

(
1− τ−1

k Xk
)

=
bcm2

(b + c)2

(
1 −1
−1 1

)
a.s.

which implies that

lim
n→∞ 1

wn
〈M〉n = (1− 2σ)Γ a.s. (4.1)

Therefore, we get from (4.1) that

lim
n→∞ 1

log wn

n

∑
k=1

fk

(Mk(u)2

wk

)
= (1− 2σ)uTΓu a.s.
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which leads to

lim
n→∞ 1

log n

n

∑
k=1

f 2
k uT(Uk − E[Uk])(Un − E[Uk])

Tu = (1− 2σ)2uTΓu a.s.

Furthermore, we have from (3.10) that E[Un] is equivalent to nv1. Consequently, we obtain
that

lim
n→∞ 1

log n

n

∑
k=1

1
k2 (Uk − kv1)(Uk − kv1)

T = Γ a.s.

We now focus our attention on the law of iterated logarithm. We already saw that

∞
∑

n=1

σ4
n

w2
n
< ∞.

Hence, it follows from the law of iterated logarithm for real martingales that first appeared
in Stout [17, 18], that for any u ∈ Rd,

lim sup
n→∞

1√
2wn log log wn

Mn(u) = −lim inf
n→∞ 1√

2wn log log wn
Mn(u)

=
√
(1− 2σ)uTΓu a.s.

Consequently, as Mn(u) = σn〈u, Un −E[Un]〉, we obtain that

lim sup
n→∞

1√
2n log log n

〈u, Un −E[Un]〉 = −lim inf
n→∞ 1√

2n log log n
〈u, Un −E[Un]〉

=
√

uTΓu a.s.

In particular, for any vector u ∈ R2

lim sup
n→∞

1
2n log log n

uT(Un −E[Un])(Un −E[Un])u = uTΓu a.s.

Finally, we deduce once again from (3.10)

lim sup
n→∞

1
2n log log n

(Un − nv1)(Un − nv1)
T = Γ a.s.

which completes the proof of Theorem 3.2.

�

4.2 Generalized urn model – critically small urns

Proof of Theorem 3.6. Again, we make use of the strong law of large numbers for martin-
gales given e.g. by Theorem 4.3.15 of [6], that is for any γ > 0,

‖Mn‖2

λmax〈M〉n
= o
(
(log Tr〈M〉n)1+γ) a.s.

Since Tr〈M〉n ≤ m2wn and the quadratic version of Mn is a semi-definite positive matrix we
have λmax〈M〉n ≤ m2wn so that

‖Mn‖2 = o
(
wn(log wn)

1+γ) a.s.
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which implies
‖Mn‖2 = o

(
log n(log log n)1+γ) a.s.

Moreover, by definition of Mn and using σn equivalent we get

‖Un −E[Un]‖2 = o
(√

n log n(log log n)1+γ) a.s.

which completes the proof for the almost sure convergence. The convergence in any Lp for
p ≥ 1 holds by the same arguments as in the proof of Theorem 3.1.

�

Proof of Theorem 3.7. We shall once again make use of Theorem 3 of [3]. For any u ∈

R2 let Mn(u) = 〈u, Mn〉 and denote fn =
σ2

n
wn

. We have from (3.3) that fn is equivalent to

(n log n)−1 and converges to 0. When σ = 1/2 we have b + c = m. Moreover, we obtain
from equations (3.8), (3.16) and Toeplitz lemma that

lim
n→∞ 1

wn
〈M〉n = lim

n→∞ m2

wn

(
1 −1
−1 1

) n−1

∑
k=0
σ2

k+1τ
−1
k Xk

(
1− τ−1

k Xk
)

= bc
(

1 −1
−1 1

)
a.s.

which implies that

lim
n→∞ 1

wn
〈M〉n = Γ a.s. (4.2)

Therefore, we get from (4.1) that

lim
n→∞ 1

log wn

n

∑
k=1

fk

(Mk(u)2

wk

)
= uTΓu a.s.

which leads to

lim
n→∞ 1

log log n

n

∑
k=1

f 2
k uT(Uk − E[Uk])(Un − E[Uk])

Tu = uTΓu a.s.

Consequently, we obtain from (3.10) that

lim
n→∞ 1

log log n

n

∑
k=1

1
(k log k)2 (Uk − kv1)(Uk − kv1)

T = Γ a.s.

We now focus our attention on the law of iterated logarithm. It is not hard to see that

∞
∑

n=1

σ4
n

w2
n
< ∞.

Hence, it follows from the law of iterated logarithm for real martingales that first appeared
in Stout [17, 18], that for any u ∈ Rd,

lim sup
n→∞

1√
2wn log log wn

Mn(u) = −lim inf
n→∞ 1√

2wn log log wn
Mn(u)

=
√

uTΓu a.s.
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Consequently, we obtain that

lim sup
n→∞

1√
2 log n log log log n

〈u, Un −E[Un]〉 = −lim inf
n→∞ 1√

2 log n log log log n
〈u, Un −E[Un]〉

=
√

uTΓu a.s.

In particular, for any vector u ∈ R2

lim sup
n→∞

1
2 log n log log log n

uT(Un −E[Un])(Un −E[Un])u = uTΓu a.s.

Finally, we deduce once again from (3.10) that

lim sup
n→∞

1
2 log n log log log n

(Un − nv1)(Un − nv1)
T = Γ a.s.

which completes the proof of Theorem 3.7.

�

4.3 Generalized urn model – large urns

Proof of Theorem 3.11. First, as Tr〈M〉n ≤ m2wn < ∞, we have that (Mn) converges almost
surely to a random vector Mv2, where M is a real-valued random variable and

lim
n→∞σn

(
Xn −E[Xn]

)
=

S
b + c

M =
1

1−σ M a.s.

Hence, it follows from (3.4) that

lim
n→∞σn(Un −E[Un]) = Mv2 a.s. (4.3)

which implies via (3.3) that

lim
n→∞σn(Un −E[Un]) = lim

n→∞ λ

nσ
‖Un −E[Un]‖ = ‖Mv2‖ a.s.

Therefore, we obtain that

lim
n→∞ ‖Un −E[Un]‖

n
= 0 a.s. (4.4)

Hence, we deduce (3.21) from (4.3) and (4.4). The convergence in any Lp for p ≥ 1 holds
again by the same arguments as before. We now focus our attention on equation (3.22). We
have from (3.10) and (4.3) that

lim
n→∞σn

(
Un −E[Un]

)
= lim

n→∞σn
(
Un − nv1

)
−
(bα − cβ

S

)
v2 = Mv2 a.s.

Consequently,

lim
n→∞ Un − nv1

nσ
= Wv2 a.s.

where the random variable W is given by

W =
1
λ

(
M +

bα − cβ
S

)
(4.5)

10
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Hereafter, as
E
[
‖Mn‖2] = E

[
Tr〈M〉n] ≤ m2wn,

we get that
sup
n≥1

E
[
‖Mn‖2] < ∞

which means that (Mn) is a martingale bounded in L2, thus converging in L2. Finally, as
E[Mn] = 0 and (Mn) converges in L1 to M, E[M] = 0. Hence, we find from (4.3) that

E[W] =
Γ( τS )

Γ( τS +σ)

bα − cβ
S

.

We shall now proceed to the computation of E[W2]. We have from (4.5) that

E[M2] = λ2E[W2]− (bα − cβ)2

S2 , (4.6)

so that we only need to find E[M2]. It is not hard to see that

E
[
(Xn+1 −E[Xn+1])

2] = (1 + 2mτ−1
n )E

[
(Xn −E[Xn])

2]+ m2τ−1
n E[Xn]

(
1− τ−1

n E[Xn])

wich leads to

E
[
Xn −E[Xn]

]2
= m2 Γ(n + τ

S + 2σ)
Γ(n + τ

S )

n−1

∑
k=0

Γ(k + 1 + τ
S )

Γ(k + 1 + τ
S + 2σ)

τ−1
k E[Xk]

(
1− τ−1

k E[Xk])

=
σ2

(1−σ)2

Γ(n + τ
S + 2σ)

Γ(n + τ
S )

Sn.

It follows from (3.10) that

Sn = (b + c)2
n−1

∑
k=0

τ−1
k E[Xk]

(
1− τ−1

k E[Xk])
Γ(k + 1 + τ

S )

Γ(k + 1 + τ
S + 2σ)

= bcAn + (b− c)
bα − cβ

S
Γ( τS )

Γ( τS +σ)
Bn −

(bα − cβ)2

S2

Γ( τS )
2

Γ( τS +σ)2 Cn

where An, Bn and Cn are as follows, and we obtain from lemma B.1 in [4] that

An =
n

∑
k=1

Γ(k + τ
S )

Γ(k + τ
S + 2σ)

=
1

2σ − 1
( Γ( τS + 1)
Γ( τS + 2σ)

−
Γ(n + τ

S + 1)
Γ(n + τ

S + 2σ)
)
,

Bn =
n

∑
k=1

Γ(k− 1 + τ
S +σ)

Γ(k + τ
S + 2σ)

=
1
σ

( Γ( τS +σ)

Γ( τS + 2σ)
−

Γ(n + τ
S +σ)

Γ(n + τ
S + 2σ)

)
,

Cn =
n

∑
k=1

Γ(k− 1 + τ
S +σ)2

Γ(k + τ
S )Γ(k +

τ
S + 2σ)

=
1
σ2

( Γ(n + τ
S +σ)2

Γ(n + τ
S )Γ(n + τ

S + 2σ)
−

Γ( τS +σ)2

Γ( τS )Γ(
τ
S + 2σ)

)
.

Consequently, we have

E[M2] =
σ2λ2Γ( τS )

Γ( τS + 2σ)

( bc
2σ − 1

τ

S
+ (b− c)

bα − cβ
σS

+
(bα − cβ)2

σ2S2

)
− (bα − cβ)2

S2 (4.7)

and we achieve the proof of Theorem 3.11 via (4.6) and (4.7).

�
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5 Proofs of the asymptotic normality results

5.1 Traditional urn model

Proof of Proof 2.3. We shall make use of part (b) of Theorem 1 and Corollaries 1 and 2 from
[12]. Let

s2
n =

∞
∑
k=n

E[∆M2
k ].

It is not hard to see that
lim

n→∞ s2
n = 0

since ∞
∑

n=1
E[∆M2

n] ≤
S2

4

∞
∑

n=1

1
τ2

n
< +∞.

Moreover, using the convergence of (Mn) in L2 and the moments of a beta distribution with
parameters αS and β

S , we get that

lim
n→∞

( ∞
∑
k=n

1
τ2

k+1

)−1
s2

n =
αβS2

(α +β)(α +β+ S)
,

leading to

lim
n→∞ ns2

n = ` where ` =
αβ

(α +β)(α +β+ S)
.

Hence

lim
n→∞ 1

s2
n

∞
∑
k=n

E
[
∆M2

k+1|Fk
]

= lim
n→∞ 1

s2
n

∞
∑
k=n

c2 Mk(1−Mk)

τ2
k+1

a.s.

= lim
n→∞ 1

`S2

( ∞
∑
k=n

1
τ2

k+1

)−1 ∞
∑
k=n

S2 Mk(1−Mk)

τ2
k+1

a.s.

=
M∞(1−M∞)

`
a.s.

Consequently, the first condition of part (b) of Corollary 1 in [12] is satisfied with η2 =
`−1 M∞(1 − M∞). Let us now focus on the second condition of Corollary 1 in [12] and let
ε > 0. On the one hand, we get that for all ε > 0

1
s2

n

∞
∑
k=n

E
[
∆M2

k+11|∆Mk+1|>εsn

]
≤ 1
ε2s4

n

∞
∑
k=n

E
[
∆M4

k+1
]
≤ 7S4

ε2s4
n

∞
∑
k=n

1
τ4

k
≤ 7
ε2s4

n

∞
∑
k=n

1
k4 .

On the other and, using that s4
n increases at speed n2 and that

lim
n→∞ 3n3

∞
∑
k=n

1
k4 = 1,

we can conclude that

lim
n→∞ 1

s2
n

∞
∑
k=n

E
[
∆M2

k1|∆Mk |>εsn

]
= 0 a.s.

12
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Hereafter, we easily get that

∞
∑
k=1

1
s4

k
E
[
∆M4

k |Fk−1
]
≤ 7

∞
∑
k=1

1
k2 < +∞. (5.1)

Noting that
n

∑
k=1

1
s2

k

(
|∆Mk|2 −E

[
|∆Mk|2|Fk−1

])
is a martingale, the equation (5.1) proves that its bracket is convergent, wich implies that the
martingale is also convergent. This gives us

∞
∑
k=1

1
s2

k

(
|∆Mk|2 −E

[
|∆Mk|2|Fk−1

])
< +∞ a.s.

Hence, the second condition of Corollary 1 in [12] is satisfied. Therefore we obtain that

M∞ −Mn√
〈M〉∞ − 〈M〉n

L−→
n→∞ N

(
0, 1
)
. (5.2)

Moreover, since

lim
n→∞

√
Mn(1−Mn)

n(〈M〉∞ − 〈M〉n) = 1 a.s.

we finally obtain from Slutky’s Lemma that

√
n

M∞ −Mn√
Mn(1−Mn)

L−→
n→∞ N

(
0, 1
)
. (5.3)

which achieves the proof of Theorem 2.3.

�

5.2 Generalized urn model – small urns

Proof of Theorem 3.4. We shall make use of the central limit theorem for multivariate mar-
tingales given e.g. by Corollary 2.1.10 in [6]. First of all, we already saw from (4.1) that

lim
n→∞ 1

wn
〈M〉n = (1− 2σ)Γ a.s.

It only remains to show that Linderberg’s condition is satisfied, that is for all ε > 0,

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

] P−→
n→∞ 0.

We clearly have

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

]
≤ 1
εw2

n

n−1

∑
k=0

E
[
‖∆Mk+1‖4] ≤ m2

εw2
n

n−1

∑
k=0
σ4

k a.s.

However, it is not hard to see that

lim
n→∞ 1

w2
n

n−1

∑
k=0
σ4

k = 0

13
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which ensures Lindeberg’s condition is satisfied. Consequently, we can conclude that

Mn√
wn

L−→
n→∞ N

(
0, (1− 2σ)Γ

)
.

As Mn = σn
(
Un − E[Un]

)
and
√

nσn is equivalent to
√
(1− 2σ)wn, together with (3.10), we

obtain that
Un − nv1√

n
L−→

n→∞ N
(
0, Γ
)
.

�

5.3 Generalized urn model – critically small urns

Proof of Theorem 3.9. We shall also make use of the central limit thoerem for multivariate
martingales. We already saw from (4.2) that

lim
n→∞ 1

wn
〈M〉n = bc

(
1 −1
−1 1

)
.

Once again, it only remains to show that Linderberg’s condition is satisfied, that is for all
ε > 0,

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

] P−→
n→∞ 0.

As in the proof of Theorem (3.4), we have

1
wn

n−1

∑
k=0

E
[
‖∆Mk+1‖21‖∆Mk+1‖≥ε

√
wn |Fk

]
≤ 1
εw2

n

n−1

∑
k=0

E
[
‖∆Mk+1‖4] ≤ m2

2εw2
n

n−1

∑
k=0
σ4

k . a.s.

It is not hard to see that once again

lim
n→∞ 1

w2
n

n−1

∑
k=0
σ4

k = 0.

Hence, Lindeberg’s condition is satisfied and we find that

Mn√
wn

L−→
n→∞ N

(
0, Γ
)
.

As Mn = σn
(
Un −E[Un]

)
and σn

√
n log n is equivalent to

√
wn, together with (3.10), we can

conclude that
Un − nv1√

n
L−→

n→∞ N
(
0, Γ
)
.

�

References

[1] BAI, Z. D., HU, F., AND ZHANG, L. Gaussian approximation theorems for urn models and their
applications. Ann. Appl. Probab. 12, 4 (11 2002), 1149–1173.

[2] BAUR, E., AND BERTOIN, J. Elephant random walks and their connection to pólya-type urns.
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