Skip to Main content Skip to Navigation
Conference papers

Learning with minibatch Wasserstein : asymptotic and gradient properties

Kilian Fatras 1, 2 Younes Zine 2 Rémi Flamary 3, 4 Rémi Gribonval 5 Nicolas Courty 1
1 OBELIX - Observation de l’environnement par imagerie complexe
IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
2 PANAMA - Parcimonie et Nouveaux Algorithmes pour le Signal et la Modélisation Audio
Inria Rennes – Bretagne Atlantique , IRISA-D5 - SIGNAUX ET IMAGES NUMÉRIQUES, ROBOTIQUE
5 DANTE - Dynamic Networks : Temporal and Structural Capture Approach
Inria Grenoble - Rhône-Alpes, LIP - Laboratoire de l'Informatique du Parallélisme, IXXI - Institut Rhône-Alpin des systèmes complexes
Complete list of metadata

Cited literature [4 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-02502329
Contributor : Kilian Fatras <>
Submitted on : Monday, March 9, 2020 - 11:23:46 AM
Last modification on : Thursday, January 21, 2021 - 2:32:02 PM
Long-term archiving on: : Wednesday, June 10, 2020 - 1:43:39 PM

File

mbot_arxiv.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-02502329, version 1
  • ARXIV : 1910.04091

Citation

Kilian Fatras, Younes Zine, Rémi Flamary, Rémi Gribonval, Nicolas Courty. Learning with minibatch Wasserstein : asymptotic and gradient properties. AISTATS 2020 - 23nd International Conference on Artificial Intelligence and Statistics, Jun 2020, Palermo, Italy. pp.1-20. ⟨hal-02502329⟩

Share

Metrics

Record views

345

Files downloads

381