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Abstract

This paper presents a kinematic enhanced plate model formulated within the Mindlin-Reissner theory. The main purpose of the model is 

to simulate the behavior of a structure up to membrane or bending failure. The shear strain is taken into account and the numerical shear 

locking problem is regularized by the Assumed Transverse Shear strain Field method. Two kinematic enhancements are applied at the 

level of the displacement fields by introducing two strong discontinuity fields. The first one is associated with the membrane displacement 

field and allows to describe the membrane failure and the second one is introduced in the rotation field to describe the bending failure. 

The Embedded Finite Element Method is used to incorporate the two kinematic discontinuities within a plate finite element, which allows 

to determine these new variables at the local level by the static condensation technique and to keep the architecture of the computational 

software unchanged. The kinematic and equilibrium operators associated with the enhancement variables are determined by fulfilling 

specific conditions. Case-studies are considered to asses the relevancy of the behavior of the enhanced membrane component as well as the 

behavior of the enhanced bending component. A mesh sensitivity analysis is also carried out. Finally, the Willam's test is performed for 

both components to verify the numerical robustness of the model and to analyze the apparent anisotropy associated with the development 

of discontinuities within the element. The present results allow to demonstrate the robustness of the numerical framework reported in this 

paper.

Keywords: Plate Finite Element, shear locking, strong discontinuities, E-FEM, membrane failure, bending failure

1. Introduction

When studying a solid mechanics problem, the choice of kinematic assumptions allows to particularize it for specific applications. 

A plate model is a solid structure element characterized by a reference plane and by a thickness, which is small compared to other 

dimensions (length and width). It can be made of a homogeneous material or of different layers of different materials. In addition, this 

framework is derived from the plane cross-section hypothesis and introduces, besides displacements, the notion of cross-section rotations. 

The Kirchhoff Plate (KP) theory is widely used for thin structures for which shear effects are negligible. On the other hand, the Mindlin- 

Reissner Plate (MRP) theory is used for any structure and particularly thick ones, whose transverse shear strain is of great importance 

and needs to be taken into account [1]. Regarding finite element discretization, the MRP variational formulation is more flexible than the 

KP formulation since the displacement field can be approximated by C0 interpolations. However, plate elements belonging to the MRP 

theory are sensitive to the so-called shear locking, when the plate tends to be very thin. This problem has been widely studied in the 

literature and in this paper the Assumed Transverse Shear strain Field method is used to overcome this drawback.
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Elementary displacement vector 

Elementary stiffness matrix of a plate element 

The Heaviside function 

Elementary discontinuity vector 
Displacement discontinuity vector

Matrix of the first derivatives of the interpolation functions 
Local stiffness matrix

Matrix of stiffness of the plate cross-section

Membrane strain component field

Plate generalized force field
Compatibility operators

Equilibruim operators

Matrix of interpolation functions

Young’s modulus
Fracture energy in bending

Fracture energy in membrane

Ultimate stress value in bending

Ultimate stress value in membrane

Generalized displacement field

Displacement field

Plate generalized strain field

3D strain field
Shear strain component field 

Bending strain component field 

3D stress field 
Rotation field 

Poisson’s ratio
Rotational discontinuity vector 

The Dirac function

The (MRP) theory is used in the literature to model structures of different scales. For instance, [2] extended this theory to capture the 

microstructure and thus the size effect in the context of functional gradation microplates. However, in our work, we are more interested 

in large-scale structures, particularly reinforced concrete walls and slabs. This work aims to develop an MRP plate element allowing to 

model properly the strain-softening phenomena that accompanies cracks initiation prior to the element failure. To achieve this objective, 

three main strategies are proposed in the literature: (i) the smeared crack strategy, in which the assumption of a continuous model is made 

by its stress-strain relationship and thus, the representative displacement jump is replaced by an equivalent inelastic strain. The main 

problem with this strategy is that cracking features can not be quantified; (ii) the discrète crack strategy, in which the strain softening is 

modeled by means of kinematic enhancements. In addition, cracks are modeled by interface (zero-thickness) elements placed between two 

adjacent finite element. This strategy does not require a very fine mesh, but localized failure can only occur in predetermined locations. 

Re-meshing is often necessary to follow the propagation of the crack [3]; (iii) in this paper, the focus is on a third strategy entitled the 

discontinuous crack strategy. The principle is to incorporate the kinematics associated with the small scale at the material level with the
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kinematics associated with the large scale at the structure level. The discontinuity is termed as weak when it is introduced in the strain 

field while it is strong when it is introduced in the displacement field. The discontinuity can be taken into account according to different 

finite element methods: (a) the Extended Finite Elément Method (X-FEM), in which discontinuities are carried out by nodes and solved 

at the global level [4, 5]. (b) the Embedded Finite Element Methods (E-FEM), in which discontinuities are not restricted to the element 

boundaries, nor held by nodes, but embedded within the element [6]. This technique allows determining the displacement discontinuities 

at the local level of the element using static condensation technique without changing the number of degrees of freedom to be resolved 

globally at the structure level. The application of the discontinuity crack strategy on plate structures is initiated by [7] where a hinge line 

is embedded within the rotation field. In [8], a multiscale approach is presented to model strain localization by means of concentrated 

hinge lines in plates elements using E-FEM for which two displacement jumps in the rotation and deflection fields were considered in 

contrast to the model proposed here. Indeed, the proposed model in the present paper consists in enhancing the displacement and rotation 

fields of the plate element by a membrane and a rotational discontinuities respectively, within the E-FEM scope. This choice is more 

appropriated to deal with civil engineering application, in which bending is a common loading. On the other hand, failure under antiplane 

conditions was analysedby [9].

To find a numerical solution to the problem, the equilibrium equations are first linearized in order to illustrate how they can be 

implemented. Case-studies are presented to verify the relevancy of the model. First, the opening and closing mechanisms of each 

discontinuity is checked under cyclic loading. Then, we examine the case for which the two discontinuities of membrane and rotation are 

activated at the same pseudo-time without ensuring a specific coupling between them. Furthermore, a sensitivity analysis with respect to 

the mesh size is carried out to show that the model is free of mesh-dependency effects.

Finally, a particular attention is paid to the Willam’s test. This test aims to check not only the robustness of the numerical integration 

strategy but also to study the capability of the model to describe the intrinsic anisotropy when non proportional loading is considered. 

The test is performed for both membrane and rotation discontinuities. The numerical implementations as well as the various cases studied 

were carried out in CastLab toolbox [10].

The paper is organized as follows. Section (2) recalls the main ingredients for formulating a MRP element with the appropriate 

kinematic assumptions. The displacement and strain fields are introduced. The variational formulation is then addressed within the 

framework of the principle of virtual works. Then, the generalized behavior model of the plate structure is derived from a behavior 

relationship of an isotropic elastic material. The Assumed Transverse Shear Strain Field method to prevent from shear locking problem is 

also briefly examined. In section (3) the kinematic enhancement of the plate is detailed. The two discontinuities of membrane and rotation 

are introduced. In addition, generalized cohesive models representing discontinuities behaviors are examined. The compatibility and 

equilibrium operators are determined in section (3.4). Section (4) is devoted to the linearization procedure of the equilibrium equations. 

Finally, different case studies are examined to verify the proper functioning of the enhanced model.

2. Plate finite element modeling

2.1. Kinematic assumptions

Let us consider a plate structure having a thickness of h as shown in Fig.1. We start by pointing out that the spatial coordinates (x, y) 

in the plane are designated by the vector x; in addition, the out-of-plane coordinate, z, remains scalar2. The displacements ux and vy of 

any point P of coordinates (x, z) vary linearly in z; however the transverse displacement wz (displacement according to z) depends only

2. By writing the variables in bold, it indicates that they represent a nth order tensor. Otherwise, the variables are scalar.
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on x. The transverse strain along z is assumed to be zéro (no variation along the thickness). According to the plane stress hypothesis, the 

associated out-of-plane stress is negligible compared to the other components of the stress tensor. For any point P corresponds a point M

Figure 1: Illustration of a plate structure.

of coordinates (x, 0) belonging to the reference plane (z = 0) as illustrated in Fig.1. The displacement field u(x, 0) of M is referred to 

the generalized displacement U(x) and expressed as follows:

u(x, 0) =

Ux (x, 0)

vy (x> 0) =

Ux (x) 

Vy (x) = U(x) (1)

Wz (x, 0) Wz (x)

where ux, vy and wz are respectively the representative variables of the displacements according to x, y and z in the 3D plate. On 

the other hand, Ux, Vy and Wz are the generalized displacements respectively over x, y and z. In addition, the plane cross-sectional 

assumption implies the introduction of a rotation vector 0(x). Therefore, the displacement field u(x, z) at point P is:

ux (x, z) Ux (x) 0 1 0 ©x (x)

u(x, z ) = vy(x,z ) = Vy (x) + z -1 0 0 ©y (x) (2)

Wz (x,z ) _Wz (x)_ 0 0 0
✓

0

R

Thus,

u(x, z) = U(x) + zR0(x) (3)

The strain field e derives from the displacement field u. Taking into account the small strain hypothesis, e is written as:

e(x,z) = 2 (Vu(x,z) + VTu(x,z)) (4)

where V is the gradient operator and (^)T denotes the transpose.

In order to distinguish the different strain components of the plate (i.e. membrane, bending and shear), specific notations are used 

such as:
ex Ux,x Kx ©y,x

Yx = Wz,x + ©y
e = ey = Vy,y , K = Ky — ©x,y , Y = (5)

Yy = Wz,y - ©x
2exy = Ux,y + Vy,x 2Kxy = ©y,y ©x,x

where (^),a denotes the spatial derivative of • with respect to coordinate a G {x, y, z}. Therefore, the strain tensor (4) can be formulated
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in vector form according to the Voigt’s notation as follows:

e + zk

1

ex + zkx

Cy + ZKy 

2exy + 2zKxy (6)

Yx 

Yy

2.2. Principle ofvirtual works

Let us assume an arbitrary finite element plate e of surface Qe. The elementary internal virtual work W?nt is written according to the 

variations of the virtual strains e* where the upper index (•)* is used to designate a virtual variable. Thus:

Wfnt(t) = ^e* (x, z,t)a(x, z,t)dzdüe
fie -h

where t is the pseudo-time and a is the stress vector composed of a plane part Sp and a distortion part Sz such as:

(7)

a = [— I ^xx &yy &xy &xz &yz (8)

sj

Then, by introducing the expression (6) of the strains e in (7) and by integrating along the thickness h, we get the following formula:

Went(t)= Se*T(x, t)F(x, t)dQe (9)

with e* the plate generalized strains3 such that e*T — [e* k* 7*] (see Eq. (5)) and F — [N M T]t the plate generalized forces defined 

as follows:

N — Spdz , M — zSpdz , T — Szdz (10)

For the sake of conciseness, spatial and pseudo-time coordinates x, z and t are omitted in the following.

2.3. Generalized constitutive laws

From a material point of view, we consider a plane stress elastic isotropic constitutive law. The three-dimensional constitutive law 

can be written as follows:

a — Ce (11)

with C the local stiffness matrix combining plane stresses and transverse distortion. For a homogeneous isotropic linear elastic behavior, 

C takes the following form:

C
E

1 — v2

1 v 0

v 1 0

0 0 1-2V 0 

0 0 0
k( 1 — v) 

2

(12)

0 0 0 0

with k the transverse shear correction factor, E the Young’s modulus and v the Poisson’s ratio. Furthermore, the matrix C can be put in 

the following simplified form:

H 0

0 h
C (13)

h2

]T

3. It is important to note the difference between the strain field e expressed in three dimensions and the generalized deformation field s having 8 components (e = e).
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with:

H
E

1 — v2

1

v

0

Therefore, the équation (11) can be written using (6).

v0 

10 

0

(8) and (13) as

1 — V 
2

H
E

1 — v2

k( 1 —v) 
2

0

0
k(1 —v) 

2
(14)

S p H(e + zk)

S z_ Hy!
(15)

In order to obtain a generalized form of the plate behavior, the generalized force equations (10) are developed according to the material 

behavior law (15). Please see AppendixA for details. Therefore, the plate generalized behavior can be written as follows:

N Hm Hmf 0 e

M = Hmf H f 0 K ^ F = De

T 0 0 Hct _7

(16)

with D the stiffness matrix of a plate element of thickness h. Lastly, the introduction of the generalized behavioral equation (16) into the 

expression of internal work (9) provides:

Wn = SeT D edQe
Qe

(17)

2.4. Finite Elément discretization

Because computational cost is directly proportional to the number of integration points, engineers have a strong interest in using 

elements that require only one integration point per element. That is why the finite element chosen in this study is a triangular element 

with three nodes, referred hereafter as T3y. Each node i has six degrees of freedom representing the three generalized displacements 

(Uxi, Vyi and Wzi), the two independent rotations (©xi and ©yi) and the out-of-plane rotation (©zi). The out-of-plane rotation has not 

been particularly explored since the study of torsion has not been covered in this paper but the corresponding degree of freedom is left in 

the formulation for compatibility reasons. However, since the out-of-plane rotation does not correspond to any stiffness, it is necessary to 

be careful in the numerical computation of the system of equations in order to avoid rank deficiencies. The six independent generalized 

components are expressed by the same linear interpolation functions [11].

Ux = £i Ni Uxi Vy

©x = Ei Ni@xi ©y

where Ni is the interpolation function corresponding to node i:

Ei Ni Vyi 
Ei Ni ©yi

Wz

©z

Ei NiWzi

Ei Ni©zi

Ni(x) 1
(xi ■j)

hi
ni

(18)

(19)

ni is the normal vector to the opposite side of node i (directed, in our case, towards the inside of the triangular element) and hi is the 

height associated with the node i. The assembly of these six equations (18) results in:

d = Nde such that d
- T

Ux Vy Wz ©x ©y ©z (20)

with N the matrix of the interpolation functions associated with the six generalized displacement fields d, and de the elementary vector 

of the 18 nodal degrees of freedom. Thus, the generalized displacement fields (20) can be differentiated to obtain the generalized strain 

fields as follows:

e = Bde (21)
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with B the matrix of the first derivatives of the interpolation functions associated with the eight components of the generalized strain fields 

e. By combining equations (21) and (17), we end up with the following expression:

wn = Jdf QT BTDBdfie) de (22)

According to equation (22), the elementary stiffness matrix of a plate element can be deduced and written as:

Ke = BtDBd^e
Üe

(23)

2.5. Shearlocking

Shear locking is a numerical phenomenon which occurs with the MRP theory when the plate tends to be thin. This locking results 

in an overestimation of the bending stiffness. Several methods have been proposed in the literature to avoid this locking problem. To 

overcome this drawback, one can mention (i) the uniform reduced intégration, where the bending and shear terms are both integrated with 

the same rule which is of a lower order than the required one [12]; (ii) sélective reduced intégration, where only the integration rule order 

of the shear terms is reduced [13]; (iii) the mixed variational formulation, which is capable of reducing the influence of shear energy. 

However, the resulting formulations are complex and computationally expensive [14]. Finally, (iv) the Assumed Transverse Shear strain 

Field, [15] which is used in this work since it avoids the problems raised by the reduced integration methods such as the development of 

strong distortions or Hourglass phenomena, and avoids the complexity of the mixed formulations. The spatial variation of the distortion

Figure 2: Simplified illustration of shear distortion.

is assumed to be linear with a constant tangential component on each side. The element compatibility is imposed in the middle of all 

three sides only in the tangential direction. The values of the tangential component of the transverse distortion along the side ij in 

Fig.2 can be calculated directly as follows:
Y = Wzj — + 2 (0Î' + ) (24)

sin a, see Fig.2

where 0ki and 0kj are the projected values of the rotations on the tangent of the side ij such that :

0kJ = 0X cos nk + 0y sin nk (25)

where ük represents the angle of the side ij with respect to the horizontal axis of the local system of axes. This procedure allows to 

determine the interpolation functions associated with the transverse strains which leads to a shear locking free element. These functions

7



take the following forms:

with:

and:

and:

Yx

Yy

©yi

©xi 

Wzi

©yj

mi m2 ©xj

©yk

©xk

Wzk

mi
1 - t Qt sk Qt

_Ci i s + Ci. t — s — Ck Qt 1 — s + Cfc QtSk QSs + Sk6 Ss Sk Qt Sk Sks + S2 Qt

m2

2 0 

0 0
—L

0

1
2

Cj
2

0
Si

2
Ck Sk _1_

2 2 Lfc 00

0 0
Li

Ci Si
" Lj 2 2
0 Ck Sk0 2 2

0

X
Lj

Lk

Q
1

C - Si c
Cl = cos0; ; S; =sinQ; ; l = {i,j, k}

(26)

(27)

(28)

(29)

where = 0 for l = i as a result of changing the system of physical axes of the finite element ijk to the system of orthonormal axes of 

origin i. The variables s and t are the coordinates in the system of reference axes4.

3. Enhanced plate model

3.1. Kinematic enhancement

The kinematic enhancement-based method using discontinuities has been proven as efficient to describe failure. Several enhanced 

models have been developed in literature [8, 17-19]. The kinematic enhancement is done within the framework of the generalized 

approach. In other words, the discontinuity variables are generalized ones. The idea is to introduce two discontinuity fields per element:

— Ue: displacement discontinuity in the membrane;

— ©e: rotational discontinuity for bending.

The elementary discontinuity5 vector de = [Ue ©e]T is represented by a thick black line designated rd in Fig.3. The discontinuity 

line is generally inclined by an angle a with respect to the vertical axis and having n = [cos a sin a]T as a normal vector. The line rd 

divides the element into two domains: 0+ and O-, see Fig.3. Each of the two discontinuity fields has two components, according to x 

and y as follows:

I Ux = ||Ue|| cos a I ©x = || ©e || sin a
Ue = < = = and ©e = < = = (30)

Vy = ||Ue|| sin a ©y = || © e || cos a

The two discontinuities are assumed to occur at the same position within the element. The opening of the membrane discontinuity is

4. Note that for this standard displacement formulation, membrane locking is not significant (i.e. the inability of the element to capture a state of pure bending problem 
[16]). Therefore, it does not raise any issues.

5. The variables highlighted with two upper bars refer to variables associated with discontinuities.
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Figure 3: The components of the two discontinuities in the global system of axes.

assumed to be constant throughout the line rd. This means that the two discontinuity lines are assumed to be parallel. In addition, it 

should be noted that only a mode I opening is considered in the model developed here. This means that in the local system of axes (n, t) 

corresponding to the discontinuity, see Fig.4, the tangent component Ut representing the sliding between the two lips of the discontinuity 

is assumed to be setup to zero and thus, the sliding angle P = arctan =t is zero too 6. Therefore, one can write:
U n

Ue = Un n (31)

The same consideration is made for the rotational discontinuity:

le = ln n (32)

In the framework of the model proposed in this paper, crack continuity between elements is not taken into account. To do this, an

Figure 4: Representation of the general case of a membrane discontinuity.

additional compatibility condition must be introduced and global/local crack tracking algorithms should be used in order to ensure the 

continuity of the crack-path in particular under complex cracking conditions involving curved cracks [20].

6. It should be noted that the extension to mode II opening is not a difficulty. This can be done by considering the tangent component Ut of the discontinuity variable
Ue
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The application of the enhancement to équation results in the following expression:

d(x, t) = d(x, t) + d(x, t)

= N(x)de(t) + M(x, Xd)de(t) (33)

= N(x)de(t) + [^(x) + 'H(xd)] de(t)

with xd the position of discontinuity line in the element, H(xd) the Heaviside function at xd and ^ an appropriate function requires 

that the enhanced component of the displacement field to be equal to zero at the element nodes. Therefore, the generalized strain field 

becomes:

e(x, t) = e(x, t) + Vd(x, t)

= B(x)de(t) + Gr (x, xd)de(t)

= B(x)de(t) + Gr (x, xd)de(t) + S(xd)3e(t) 

è(x,t) ê{xd,t)

with S(xd) the Dirac function centered at xd and Gr (x, xd) 

variables such that:

= dydxxd) the compatibility operators associated with real enhancement

Grm(x) 0

Gr (x, xd ) 0 GrK (x)

0 RMe (x, xd)

(35)

where Me is the matrix of enhancement functions associated with the rotation discontinuity such that Me = 0e (x) + He (xd) and

S(xd)

Sm(xd) 0

0 dK(xd)

00

with Sm = S K
œ for x = xd 

0 otherwise
(36)

Since linear triangles are considered, the strain field is constant within the element. Therefore, the discontinuity line can be set to any 

position within the element except that its direction is defined according to the principal direction (Rankine criterion). Indeed, the normal 

vector at the discontinuity line is parallel to the direction of the principal stress. Finally, we consider that the discontinuity line passes 

through the centre of gravity of the cracked element.

3.2. Variationalformulation

*The virtual strain field e* is written as a function of d* and de :

e*(x,t) = B(x)d*(t) + Gv (x, xd)de(t)

= B(x)d*(t) + Gv (x)de(t) + S(xd)de(t)

(37a)

(37b)

The virtual discontinuity variable de is interpolated using the enhancement functions Gv named the equilibrium operators. In general, 

Gr and Gv are not necessarily the same. Each of them can be determined according to specific conditions, as shown in section (3.4).

Remembering equation (9) in which (37a) is introduced, the following expression can be derived:

WUt) = ^df (t)F?nt,B (t) + Sd**T (t)F?nt,G(t)
(38)
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where:

FLt,B (t)= BT(x)F(x,t)dUe
J Qe

F?nt,G(t)= (x)F(x, t)dQ.e

After determining the expression of the elementary internai work, the principle of virtual works is written as:

n
E {Wient(t) - Weeæt(t)} =0

e
n n _ tE (t)(F?nt,B (t) - FLt(t)) + E ^ (t)F?nt,G(t) = 0

(39)

(40)

(41)

Tdd:E(t)(F?nrt,B(t) - F:xrt(t)) +ewf^w = 0

with

dstr Wz1 0x 0y
-|T

0zm

with m the total number of nodes, n the total number of plate finite elements and n the number of plate elements with, at least, one active 

discontinuity. The activation of the discontinuity is assumed to be defined by a Rankine’s failure criterion. In addition, the equilibrium
—=t=must be fulfilled for all virtual displacements dd^tr as well as for all elementary virtual jumps dde. Therefore, the following system is 

obtained:

F?nrt,B (t) - f ext(t) = 0

Ve G{1, 2, ... ,n} F?nt,G(t)=0

(42a)

(42b)

The first equation of this system represents the structure equilibrium at a global level. The second equation represents the elementary 

equilibrium at local level. The development of the second equilibrium equation gives:

F ?nt,G(t)= GT (x)F(x, t)dQ.e

J
= ^ (GT(x) + 8t(*,)) F(x,t)dUe =0

Therefore, we end up with the following equation:

GT (x)F(x, t)dQe = - ôT (xd)F(x, t)dQe

(43)

(44)

where ôT (xd) is given in equation (36) and:

TGv (x, xd)
Gvm(x) 0 0

0 Gvk(x) RMe (x, xd)
(45)

The following system of equations is obtained7:

GTm(x)N(x,t)dQe = - N(x,t)dTd = N(xd,t)Z^
fie r d

7. Equations (46) were obtained by knowing the following Dirac function property:

ST (xd)F(x, t)dQe = F(x, t)dTd = F(xd,t)lTd
«e rd
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(46)

GTvk (x)M(x, t)Qe + [RM« (x, Xd)]T T(x, t)düe

= - M(x,t)drd = M(xd, t)lrd
rd

3.3. Generalized cohesive laws

The material behavior at the level of the membrane and rotation discontinuities needs now to be defined. For this purpose, a gener

alized traction separation law is considered. For quasi-brittle materials, discrete cracking can be modeled by either a damage model or a 

plasticity model. For more details about these strategies, see [21]. In this work, a cohesive damage-based model is chosen. Discontinuity 

initiation is assumed to be defined by a Rankine's failure criterion. In addition, discontinuity is assumed to occur along a localized surface 

oriented perpendicularly to the direction of the maximum principal stress. The discontinuity activation and evolution can be described 

either by neglecting shear stresses or by taking into account the two stress components (axial and shear) in the definition of the failure 

surface. For both membrane and bending components we assume a linear elastic model in the bulk. Nevertheless, a cohesive model takes 

control at the discontinuity level. For the membrane component, the membrane discontinuity is likely to develop only in tension beyond a 

certain stress threshold. This choice is made in order to distinguish between the behaviour of concrete in tension and compression. On the 

other hand, for the bending component, the rotational discontinuity can develop either in tension or in compression since a symmetrical 

behavior is considered to represent the concrete cross-section.

The failure criterion for membrane and $ f for bending are computed by comparing the values of the normal components with the 

ultimate stress values (Nu and Mu) allowed before the discontinuities are initiated:

^m(t) = Nn(t) - Nu(t) < 0 and ^f (t) = |M„(t)| - Mu(t) < 0 (47)

where Nn and Mn are the normal components of the generalized membrane and bending forces in the discontinuity system of axes. 

Nu and Mu represent their limit values which evolve according to the softening cohesive laws. The cohesive models take standard 

exponential forms:

N = Nu exp(-Un) and M = Mu exp(-On) (48)
Gm G f

with Gm and G f the fracture energies in membrane and bending respectively. For more details about the thermodynamic framework of 

this cohesive damage model, readers are invited to refer to paper [21].

3.4. Enhancement operators
3.4.1. Compatibility operators

Two conditions must be fulfilled in order to determine these operators [22].

First, the presence of discontinuity must not affect nodal compatibility between the elements. The following equations are derived from 

this condition:

M(x,xd) = H(xd) + <?(x) = H(xd) - Ni(x)

Therefore:

Gr (x) = - ^ Bi(x)

i£Q+

(49)

(50)
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Second, the cracked element must be able to reproduce a zéro strain state when the discontinuities are fully opened. In this case, at 

the pseudo time t = tf, the kinematic relationships between the discontinuities can be obtained by writing the displacement at node i 

belonging Q+ in Fig.3 as follows:

dhinge(tf ) = d rigid(tf ) + Dhingede(tf )rigid hinge_ (51)

with:

Dhinge

1 0

0 xi - xrd

0 1

00

(52)

For the other nodes (j) and (k) of the element belonging to üe , their nodal displacement vectors in case of a zero strain state d^nge(tf ) 

and dhinge(tf ) are equal to those of their rigid states d”gid(tf ) and d”gid(tf ) such that:

dhinge(tf) = drigid(tf) and dhinge(tf) = d"gid(tf) (53)

By assembling the three nodal displacement vectors, the elementary displacement vector is obtained as follows:

dhinge(tf ) = deigid(tf ) + Dhingede(tf ) (54)

with:

Dhinge
e

Dhinge

0

0

The regular part ë of the enhanced strain e in (34) must be cancelled in case of a zero strain state. This results in:

(55)

0 = B(x)Dhingede(tf ) + Gr (x)de(tf ) (56)

with B(x)deigid(tf ) = 0. Therefore, the introduction of (55) in equation (56) gives:

Gr (x) = -Bi (x)Dhinge (57)

Knowing that,

we obtain:

Grm (x) GrmU(x) 0

Gr (x) = GrK (x) = 0 ÜrK^(x)

GrY (x) . 0 Gr7.(x).

GrmU(x) = Bmui (x)

G = (x) = -B«fli(x)

(58)

(59)

Gr7g(x) = -B7wi(x)(xi - xrd) - Nei(x)

For a three-node element T3y which has linear shape functions (cf. equation (19)), the expressions of the compatibility operators can be 

deduced directly from the equation (58). Therefore, the functions associated with the membrane part and the bending part are:

GrmU(x) = GrK^(x)
1
hi

n\ 0

0 nî,

n2 n\

(60)
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with n® = (n\, n2 ) the normal vector on the opposite side of the main node i and h® the element height. The discontinuity line is assumed 

to be parallel to the opposite side of the main node. Thus, they have the same normal vector. Finally, regarding the enhancement functions 

G related to the shear strain y, we have :
TjO

Gr7^(x) = -Bywi (x)(x® - xrd ) - Nei(x) (61)

Therefore, the choice of the enhancement functions G = depends on the choice of the functions BYwi and N g® associated with the node 

i.

3.4.2. Equilibrium operators

The enhancement functions Gv, also known as equilibrium operators, must verify the stress continuity between the continuous model 

and the cohesive model. In other words, they must satisfy equation (46). It is also necessary to check the patch test condition. An 

additional equation must be introduced in order to ensure the continuity of traction vectors through the discontinuity line. In other words, 

the normal cohesive forces Nd and bending cohesive forces Md on the discontinuity line rd are defined as a function of the normal force 

N and the bending moment M defined in the element Qe outside rd. The weak form of these equations is written as:

- Nn dFd + N dâTd = 0 (62)
Jrd Jrd

- [Mn + (x - Xd)Vn] dFd + [Md + (x - Xd)Vd] dFd = 0 (63)
Td Td

However, according to [8], functions Gv are defined to allow the transition from an integration along the discontinuity line rd to an 

integration over the element Qe. Therefore, taking into account this idea to express the first terms of equations (62) and (63) respectively 

allows us to write :

GL=(x)N(x, t)düe + Nddrd = 0 (64)

fie r d

fie

gÜj (x)M(x,t) + G!^(x)v(x,t) dQe
(65)

+ [Md + (x - xd)Vd] dFd = 0
rd

For x = xd, we obtain Jr (x - xd)VddFd = 0. As a consequence, we find the same local equilibrium equations derived from the virtual 

work principle (46). By analogy between (64), (65) and (62), (63), one can deduce:

Gvmu(x)NdGe - Nn drd + hdo(hp+1)
rd

Gv= (x)MdGe = - Mn dFd + o
rd

(hP+1)

f Gv7= (x)VdGe = -f (x - xd)Vn dFd + Zrdo(hp+1)

fie r d

(66)

(67)

(68)

where Zrd is the length of the discontinuity line, rd and o(h|+1) stands for higher order terms for p > 0. In [8], general expressions

for GT =, GT T
vk6 and Gvy^ satisfying the equations (66), (67) and (67) have been determined. The proposed expressions depend on the 

interpolation functions order. In case of a T3y element, the interpolation functions for the strain field are constant. A simple expression 

is proposed for the equilibrium operator in [23] in the context of a plane stress problem. Therefore, we can use these functions for both 

the membrane and the bending parts independently:

0
_ _ Zt,
Gvm Gv

ZlA.
Sfie

n1 

0 n2 

n2 ni

(69)

fi

fi
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with SQe the element surface and n = (ni,n2) the normal vector at the discontinuity line. Lastly, the patch test ensures the possibility 

of representing a constant stress state per element [24]. Indeed, in order to perform the patch test, the following condition (70) must be 

checked.

GvmdGe — ° knowing that Gvm — Gvm + &m(xd),
Qe

^ GvmdGe — ^m(xd)d^e —
Qe Qe

Therefore, the introduction of the equilibrium operator expression (69) in (70) allows us to easily fulfill the patch test.

ni 0

0 n2

n2 ni

(70)

4. Computational framework

4.1. Linearization procedure

The equilibrium equations of the system (42) are not generally linear. That is why, they must be linearized in order to be implemented. 

Let us assume that the variables of the problem are determined at pseudo-time t. The objective is to determine these variables at pseudo- 

time t +1. The residue associated with equation (42a) is defined as follows:

R(dstr, di, di,..., d=) — (t) - FSXt(t)

n
— A {Fent,B (t) - Feœt(t)}

(71)

with,
dR A /dFkB

ddstr e=i dde
dR dFe

(72)
int,B Ve G {1, ...,n}

.dde dde

The symbol A refers to the assembly operator. Then, the overall equilibrium of the structure is achieved iteratively using the index k 

according to a fixed point method. We end up with:

r(++i)—Rt+i+^ • Adefc++v+Ê dR • aê:?

ddstr _i dde
(73)

0 — R(+\ + AKbb • Adefc++V + Ê Kbg • Ade'+Ï

=i

with Kbb and Kbg the stiffness matrices such that:

K
d f:

BB —
int,B

d d.e Q,

d FBT(X) dg (x)B(x)dOe (74)
e

K
dF^nt.B

BG
dde J Q

Therefore, equation (73) can be reformulated into a matrix form as follows:

(k+i)

dFBT (x) dë (x)Gr (X)d^e

A
e=i

Kbb Kbg
(k)

1

>
Il a cc
__

__
_1

t+1 Ade
A e e (k)(F int,B F ext) t+ie=1

t+1

(75)

(76)
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Similarly, équation (42b), qualified as local, is also linearized. This step is done at a constant displacement incrément Ade at the pseudo- 

time step t +1 and at the iteration k:

f:e,(i+i) e,(i) bf:e,(l)

int,G Fe _i_int,G + dd
int,G 3F,e,(l)G (1 + 1)2^Adekt+1 + —Ad(

’ dde

0 = F e^G + KGB Adek) + ^Adi:(1 + l)
GGAde

such that:
FLt,G(t) = GV (x)F(x,t)d^ + F(xd,t)lr

Qe
with lrd the length of the discontinuity rd and F(xd, t) the vector of cohesive forces. Therefore:

kgb (t)
dFe»t,G

dde

dFe»t,G ,

(t) = / (x)dF(x,t)B(x)dQ

KGG(t) = *»t,G (t) = / (x) dF(x,t) Gr (x)d^e + (t)lrd

dde

with t the cohesion forces defined as:

Therefore, we have:

t (t) = F(xd,t)= F(x,t)|rd and

d t
- (t)
dde

tu(t)

te(t)

d de

N(xd,t)

M(xd,t)

âtu (t)
dU V '

âtu (t)'
a®

1------

O-iia
Q
)| 05

1____

L*(t) d® (t)
d®e

0 -2^- (t)
d® e

(77)

(78)

(79)

(80)

(81)

(82)

The cohesive models governing the membrane and bending behaviors at the discontinuity line rd are assumed to be uncoupled. Coupling 

is possible if a staggered static condensation strategy is used [25]. The assembly of the local equations (79) and (80) over all elements 

gives:

A[k.

Combining equations (76) and (83) results in:

A

GB Kgg
(k)
t+1

Adek)

(i+i)
Ade

-F. e,(l)
i»t,Gt+1 (83)

t+1

Kbb Kbg
(l)

Ade
(k+1)

— (F?nt,B — Fext)

Kgb Kgg
t+1

Ade
t+1

eF int,G

(k)

t+1

(84)

The resulting system (84) can be solved by performing static condensation at the finite element level. This technique allows to solve 

the enhancement variables at the local level [26]. Once the equilibrium at the discontinuity line is reached, the value of F?nt,G|t+1 is 

canceled. Hence:
(l) (k+1) p 1n

A Kbb Kbg Ade
_

— (F?nt,B — Fext)

e=1 Kgb Kgg
t+1

AHe
t+1

0

(k)

t+1

(85)

The second equation of this system gives:

Kgb |(l) Ade + KGG|(l)Ad,(l) 1 (k + 1)(l)Ad =0
t+1

thus:

Ade|(++1) = —K-Gl(l) Kgb|(l) Ade

(86)

e

d

Q

Q
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The expression of Ade|(++1) is introduced into the first équation of the System (85) to give:

K bb |(1) A de | (fc+1)
t+1

+ Kbg|(1)(-kgGI(1) Kgb |(1) Ade)| (fc+1)
t+1

= -(F?nt,B nji (fc+1)
t+1

(87)

And then:

(Kbb |(1) - Kbg|(1) K-Gl(1) Kgb |(1)) Ade|t+1

K^if) (88)

e e (k + 1)
(Fint,B F ext )|t+1

with Keond the condensed stiffness matrix. The main advantage of the static condensation method is that the total number of degrees of 

freedom at the structure level remains unchanged. This matrix can be updated during iterations with the evolution of the material state. 

This reduces the number of iterations and then shortens the computation time; however, it can sometimes lead to snap-back numerical 

instabilities. In this case, it is necessary to refer to advanced displacement/load control techniques such as the arc length method [27].

4.2. Geometrical transformation

It is necessary to distinguish three systems of axes, see Fig.5. The first one is the global system of axes. It is also known as the 

physical one. The second one is a local system of axes which is defined at the element level whose origin is represented by the first node 

belonging to the element according to the connectivity table. The third system of axis is local and is defined at the discontinuity line level 

which has the advantage of managing the local equilibrium of the element in a scalar way and particularly to check the discontinuity 

activation. Therefore, it is necessary to pay attention to perform transformations between the different systems during the computation in 

a proper way. Furthermore, an additional transformation into the reference finite element is necessary during numerical integration step 

using, for instance, the Gauss method. Details about these geometrical transformations can be found in [28].

3
A.

Global system 
of axes (Physical)

3

of axes (Element)

3

Local system 
of axes (Discontinuity)

Figure 5: The different system of axes.

5. Numerical applications

5.1. Description ofthe numerical setting

In order to study the membrane and bending discontinuity independently and to prove the relevancy of the proposed modeling strategy, 

a square-shaped plate with a size of 1 x 1 m2 is considered, as shown in Fig.6. The thickness of the plate is assumed to be constant and 

equal to 1 m. The structure is discretized into two triangular elements of T3y type. Nodes P2 and P3 are fixed. Nodes P3 and P4 are free 

to move. For the membrane component, the constitutive model used is non-symmetrical: elastic-cohesive in tension and linear elastic in 

compression. However, for the bending component, the constitutive model is symmetrical elastic-cohesive. The material parameters are 

summarized in table (1).
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Young's modulus Poisson's ratio Fracture surface energy Threshold limit

E V Gm & Gf Nu
3 x 1010 0.2 103 & 5 x 103 2.8 x 106

Pa -
N.m-2 N.m-1

Table 1: Material parameters.

5.2. Elementary tests
5.2.1. Pure membrane behavior under cyclic loading

The first test aims to study of the plate under pure tension. It consists in imposing an axial displacement Ux on the nodes P2 and 

P3. Time evolution of the loading is given in Fig.7. The global response of the plate is shown in Fig.8. It shows the cyclic behavior of

Figure 7: The time evolution of the loading.

the membrane component. The discontinuity opens and closes during each cycle. As expected, in compression, the behavior is linear 

elastic. This validates the proper implementation of the enhanced plate model for the membrane component. The crack discontinuity 

vs. traction vector evolution related to the membrane part is shown in Fig.9. The exponential shape of the curve is consistent with the 

traction-separation law used.
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106

Imposed displacement (m) x io-4

Figure 8: Global response: reaction force vs. imposed displacement.

0 x 106

0 1 2 3 4 5 6
Membrane discontinuity (m) x 10'4

Figure 9: Cohesive response: cohesive force vs. discontinuity. The arrows in the figure (in blue) with the associated numbers allow to clarify the loading path.

An element fails when a discontinuity is opened inside it and its maximum value is reached, so that the force is no longer transferred 

between the lips. This state is known as fully softened discontinuity. Fig.10 qualitatively illustrates the evolution of the plate state: before 

discontinuities activation, after their activation and at element failure.

(a) Representation of the structure 
before the activation of the discon- 
tinuities.

(b) Representation of the structure after the 
activation of the discontinuities.

(c) Representation of the structure 
at the fully softened discontinuities.

Figure 10: Evolution of the state of the elements.
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5.2.2. Pure bending behavior under cyclic loading

The second test consists in imposing a pure rotation. The same numerical setting as the one previously presented is considered. A 

rotation is imposed at the degrees of freedom 0y at nodes P2 and P3 according to Fig.11. It is necessary to pay attention to the fact 

that the rotation 0y influences the curvature kx and therefore the moment Mx. A similar effect is observed for 0x and My. The global

_ x10"4

Figure 11: Time evolution of the loading.

response of the plate in pure bending is illustrated in figure (12). The crack opening vs. the traction vector evolution is shown in Fig.13.

x 106

Imposed rotation x ^ o-3

Figure 12: Global response: bending force vs. imposed rotation. The arrows in the figure (in blue) with the associated numbers allow to clarify the loading path.

This result validates the cohesive damage model that is used.

5.2.3. Simultaneous activation ofboth discontinuities
In order to study how the proposed model works when two discontinuities are simultaneously activated, we consider the square plate 

of the previous example and we apply parallel loading, as shown in Fig. 14. On one hand, an axial displacement is applied up to a 

maximum value (5 x 10-4 m) and then is kept constant. Simultaneously, a rotation is cyclically imposed between two opposite values 

(±5 x 10-3). Both loads are applied at P2 and P3 nodes. The results obtained are illustrated in Fig.15. They show that the plate model 

can develop two discontinuities simultaneously without any numerical instabilities. Fig.15a shows the overall response of the membrane 

component and Fig.15b shows the overall behavior of the bending components.
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X 106

Rotational discontinuity X 10-

Figure 13: Cohesive response: cohesive bending vs. rotation discontinuity. The arrows in the figure (in blue) with the associated numbers allow to clarify the loading path.

Figure 14: Time evolution of the loading history.

0 1 2 3 4 5 6
Imposed displacement (m) x ^-4

(a) Membrane response

x106

Imposed rotation x10"3

(b) bending response

Figure 15: Global responses.

5.3. Mesh sensitivity study

A mesh sensitivity study has been performed and the results are shown in this section. A localization band of width L is defined in 

the middle of the plate represented by the light blue area in Fig.16. The localization band refers to the position where discontinuities are 

activated. Outside of this zone, the material behavior remains linear elastic. Regarding the boundary conditions, the vertical side joining
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the nodes P1 and P4 of the plate is embedded and the loads are applied on the vertical side joining the nodes P2 and P3 at the right 

boundary of the plate. Two simulation groups are carried out. The first group consists in imposing an axial displacement according to Ux

(a) L=0.33; ne=6 (b) L=0.20; ne=20 (c) L=0.10; ne=20 (d) L=0.04; ne=20 (e) L=0.02; ne=112

Figure 16: The different mesh sizes where ne is the number of elements.

in order to study the membrane response with respect to mesh size. The second group consists in imposing a rotation according to 0y in 

order to study the bending response as a function of the mesh size. The results from the two simulation groups are shown in figure (17). 

These results show that the proposed model is free of mesh-dependency effects. It can be noticed this result was expected due to the fact 

that the E-FEM is used.

, x106 , x10

(a) Pure membrane responses.

Imposed rotation 

(b) Pure bending responses.
x10-3

Figure 17: Global responses according to mesh size.

5.4. Willam’sTest

The Willam’s test [29] refers to a numerical test that aims to study the numerical robustness of the local integration scheme and to 

investigate the model’s ability to describe induced anisotropy. In [30], the test was used to describe and compare the rotating and fixed 

crack models. Also, in [31] an analysis of different constitutive models is performed in order to assess their performances to deal with 

mixed mode cracking. The test is now widely used to check that no numerical instabilities are encountered in case of a complex 3D 

damage models of concrete [32].

In this work, the realization of the Willam’s test is inspired from the work of [33] and is performed for both the membrane and bending 

components.

As shown in Fig.18, the test is divided into two stages: In the first stage, a uniaxial load strain is applied in the x-direction accompa- 

gnied by lateral Poisson contraction in the y-direction such that the strain increments Aex, Aey and Aexy evolve respectively according 

to the portions 1, —v, 0. When the material reaches the tension threshold, which in this case represents the maximum stress value, the 

discontinuity is activated. Then, in the second stage, a shear loading strain is applied such that the strain increments Aex, Aey and Aexy 

henceforth evolve respectively according to the proportions 1, 1.5, 1, while the out-of-plane degrees of freedom remain unchanged. The 

material parameters are the same as those of the first numerical tests, as shown in table (1).
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Figure 18: Willam’s test configuration.

5.4.1. Membrane behavior

The test was first performed for the membrane behavior. The évolution of the three strain components is illustrated in Fig. 19 to 

ensure that the proportions are respected. Then, the evolution of the three stress components (Nx, Ny and Nxy) associated with the three

Figure 19: Time evolution of the strain components ex, ey and exy.

membrane strains (ex, ey and exy) are shown in Fig.20 as a function of the axial strain (ex). Once the peak level is reached, the shear 

response begins while continuing to apply the loading.

The results shown in Fig.20 show that the Willam test is successful. The stress Ny is linear as shown in Fig.20; this is due to the fact 

that the model does not take into account multi-cracking [33]. In this instance, the normal to the discontinuity line is assumed to be fixed 

for once oriented along the x-axis. In addition, regarding the linearity obtained for the Nxy component in Fig.20, this is due to the fact 

that there is no sliding between the crack surfaces. Accordingly, even if there is no softening in the behaviors of Ny and Nxy, numerical 

robustness is still demonstrated since continuity in the stress-strain relationship as well as softening are well preserved. These effects can 

be achieved by implementing a more complex cohesive law [21]; however, this is not the primary focus of our work, which is to provide 

a digital framework.

A final outcome lies in the rotations of the principal axes of stresses and strains with respect to the physical system of axis and is 

shown in Fig.21. We note that the angles of rotation of the systems of principal axes are not the same for stresses and strains. This means 

that anisotropy is induced since the constitutive models used are initially isotropic and, in this case, the angles are supposed to be the 

same. Therefore, one can conclude that the apparent anisotropy is induced by the development of discontinuity within the element. The 

anisotropy rate can be quantified by the ratio between the two asymptotic values of the angle and is equal to 75-50 x 100 = 33%. If 

we compare this value to what [33] has obtained, i.e. 46%, we notice a difference due to the fact that the initial model used in [33] is
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„ x106

Figure 20: Stresses évolution with respect to strain ex.

intrinsically anisotropic. This explains why anisotropy is more significant in their case.

Figure 21: Evolution of the angle of principal stress and strain direction with respect to strain ex.

5.4.2. Bending behavior

Another novelty characterizing the results shown in this work is the execution of the Willam’s test on the plate bending behavior. 

Thus, instead of applying a load in the membrane part, a load affecting the bending part is applied. The loading protocol has been kept 

unchanged with respect to the case of the membrane part, see Fig.22. The same analysis as the one performed in the previous application

Figure 22: Curvature components evolution with respect to pseudo-time.

has been made. The shear response starts as soon as the bending moment limit value is reached and the rotation discontinuity is activated. 

It is obvious in Fig.23 that the relationship between the bending moment Mx and the bending curvature kx remains continuous with a
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proper softening phase. On the other hand, the bending moment My evolves in a linear elastic way since multi-cracking is not taken into 

account. In addiction, the Mxy increases elastically because the sliding at the discontinuity level is neglected. Finally, the evolution of

„ x106

Curvature kx x10’^

Figure 23: Bending stresses evolution with respect to curvature kx.

the angles of the principal axes for bending moments and curvatures is illustrated in Fig.24. This figure shows that the discontinuity of 

rotation induces an anisotropy. This result shows that anisotropy is also developing in the bending part.

Curvature kx x10’3

Figure 24: Evolution of the angle of principal bending stress and curvature direction with respect to curvature kx.

5.5. Discussion: model limitations and perspectives

The main objective of the paper is to present in a clear, didactic and self-supporting way the theoretical framework of a new thick 

plate model allowing to have two discontinuities of membrane and flexion. The previous elementary test cases were presented to verify 

the concept of the model and to show how the model works on elementary cases.

After verifying the functionality of the model, it is necessary to validate the model against reference results: analytical or experimental 

results. However, the model requires additional development in order to ensure the C0 continuity of the crack path through adjacent finite 

elements. A reflection in that direction still has to be carried out. More precisely, the tracking strategy to be adopted in order to ensure a 

continuation of the crack’s propagation within the elements has to be defined and reveisited with respect to existing ones. In fact, crack 

path strategies are still under discussion within the framework of the Embedded Finite Element Method. To overcome this issue, the 

embedded finite element method can be combined with tracking algorithms to provide a propagation path continuity that allows to raise 

the loss of objectivity that may occur during simulations. Local or global tracking algorithms can be found in literature [34]. What differs 

mainly between the two methods is the way in which the direction of the discontinuity propagation is determined. Local approaches 

allow the reproduction of continuous crack paths by analyzing information from adjacent elements. However, using them in the case of
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multiple crack problems can be difficult and this strategy may lose a high portion of its robustness. In order to overcome the limitations 

of local strategies, global approaches have been developed to be able to model the multi-crack problem robustly [35].

Several developments have been performed to study the crack path continuity within the framework of conventional finite element 

models whose discontinuity is introduced into the displacement field. However, for rotational discontinuities, this has never been studied 

to the best of the authors' knowledge. In addition, since the proposed enhanced model allows the development of two membrane and 

rotation discontinuities, the choice of tracking strategy is more challenging and needs to be studied separately in order to determine which 

approach is the most appropriate. This step is necessary to be able to perform large-scale and self-supporting simulations in which crack 

propagation will occur. After that, more complex cases will be needed to assess the model's ability to reproduce experimental reference 

results that are representative of real engineering structures. Indeed, this is one of our objectives for futher works.

6. Conclusions

In this paper, a theoretical formulation of a Mindlin-Reissner plate with enhanced kinematics is presented. The main purpose of the 

enhancement is to take into account the behavior of a structure up to failure by correctly describing the strain localization that accompanies 

the softening phase. The membrane displacement and rotation fields are enhanced with two discontinuities. The discontinuities are 

incorporated into the element by means of the Embedded Finite Element Method. The compatibility and equilibrium operators associated 

with the two discontinuities are determined. The enhanced kinematic of the model allows to always detect a quantity of dissipated energy 

unlike the classical continuous model (stress vs. strain) with a softening phase. As a result, the model is low mesh-dependent. The 

linearization of the equilibrium equations, the computational procedure are addressed. Several case studies are presented to demonstrate 

the relevancy of the element and its ability to reproduce the behavior until failure independently of the mesh size. The Willam's test is 

also performed to verify the robustness of the integration path and quantify the anisotropy rate related to the formulation. In summary, 

three main novelties characterize the work carried out in the context of this paper. First, the proposed Mindlin-Reissner plate element is 

based on a simplified kinematic assumption that reduces the number of degrees of freedom compared to three-dimensional approaches. 

In addition, it consists of a three-node linear triangular element that is adjusted to overcome the shear locking and therefore requires a 

single integration point in the calculation. The motivation behind this choice is to provide engineers with a fast and efficient modeling 

tool. Second, a double discontinuity (membrane, bending) is introduced and allows the introduction of two distinct or coupled generalized 

cohesive laws (membrane, bending). The Authors have planned to study this point in a future work. Third, the model allows for good 

control of unilateral conditions; indeed, it is able to recover the material’s stiffness in compression previously damaged in tension. On 

the other hand, in order to reproduce the shear failure, it is necessary to enhance the transverse displacement field with a supplementary 

discontinuity variable. This issue is significant and could be addressed in future works. Finally, a very important challenge is the 

extension of this work to the context of multilayerd plates. This allows working with material constitutive models instead of dealing with 

generalized models. The plate can then be made of various materials and each material can be modelled by a specific constitutive model. 

This allows the evolution of damage at the cross-section level to be closely tracked.
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AppendixA. Generalized behaviour of the plate

In order to obtain a generalized form of the plate behavior, the generalized force equations (10) are developed according to the material 

behavior law (15). For membrane forces N, we have:

N — S pdz — Hme + Hmf k

with:

H Hdz and Hm — Hdz a^±d Hmf —
-h -h

zHdz

(A.1)

(A.2)

Hmf takes a zero value in case of a symmetrical section whose axis is taken at the level of the midplane. In the same way, we proceed 

for the bending components:

M — zSpdz — Hmf e + Hf k
=-t

with:
h

Hf — z2Hdz

=-T
Finally, the same step is done for the shear component such as:

h
T — S z dz — HctY 

-2h

with:

(A.3)

(A.4)

(A.5)

Hct Hy dz (A.6)

h2
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