W. Matthes, A. Vollpracht, Y. Villagrán, S. Kamali-bernard, D. Hooton et al., , p.541

N. D. Belie, Ground Granulated Blast-Furnace Slag, Prop. Fresh Hardened Concr. Contain. Suppl. Cem. Mater, pp.1-53, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01809291

J. Bijen, Benefits of slag and fly ash, Constr. Build. Mater, vol.10, pp.309-314, 1996.

, , pp.14-17

A. Ehrenberg, CO2 emissions and energy consumption of granulated blastfurnace slag, Proc

. Manuf and . Process, Iron Steel Slags, Euroslag publication, pp.151-166, 2002.

F. Hogan and J. Meusel, Evaluation for Durability and Strength Development of a Ground 549 Granulated Blast Furnace Slag, Cem. Concr. Aggreg, vol.3, p.40, 1981.

,

H. F. Taylor, Cement chemistry, vol.552, 1997.

P. Van-den-heede and N. D. Belie, Environmental impact and life cycle assessment (LCA) of 554 traditional and 'green' concretes: Literature review and theoretical calculations

. Compos, , vol.34, pp.431-442, 2012.

A. Ehrenberg, D. Israel, A. Kühn, H. M. Ludwig, V. Tigges et al., Hüttensand: 557 Reaktionspotenzial und Herstellung optimierter Zemente Tl.1 (Granulated blast furnace slag: 558 reaction potential and production of optimized cements, Cem. Int, 2008.

N. Robeyst, E. Gruyaert, C. U. Grosse, and N. D. Belie, Monitoring the setting of concrete containing 560 blast-furnace slag by measuring the ultrasonic p-wave velocity, Cem. Concr. Res, vol.38, pp.561-1169, 2008.

H. Smolczyk, Structure des laitiers et hydratation des ciments de laitiers : structure et 563 caractérisation des laitiers, p.565, 1980.

Z. Hochofenzementen and . Kalk--gips, , pp.294-296, 1978.

N. Pronina, S. Krüger, H. Bornhöft, J. Deubener, and A. Ehrenberg, Cooling history of a wet-567 granulated blast furnace slag (GBS), J. Non-Cryst. Solids, vol.499, pp.344-349, 2018.

,

F. Schröder, Slags and slag cements, Proc. 5th Int, p.199, 1969.

R. Tänzer, A. Buchwald, and D. Stephan, Effect of slag chemistry on the hydration of alkali-activated 572 blast-furnace slag, Mater. Struct, vol.48, pp.629-641, 2015.

A. Ehrenberg, Influence of the granulation conditions and performance potential of granulated 575 blast-furnace slag -Part 1: Granulation conditions, ZKG Int, pp.64-71, 2013.

A. Ehrenberg, Influence of the granulation conditions and -performance potential of granulated 577 blastfurnace slag -Part 2: Chemistry and physical properties, ZKG Int, pp.60-67, 2013.

F. Bellmann and J. Stark, Activation of blast furnace slag by a new method, Cem. Concr. Res, vol.39, pp.644-650, 2009.

K. Riding, D. A. Silva, and K. Scrivener, Early age strength enhancement of blended cement systems 581 by CaCl2 and diethanol-isopropanolamine, Cem. Concr. Res, vol.40, pp.935-946, 2010.

,

L. Steger, C. Patapy, B. Salesses, M. Chaouche, and M. Cyr, Acceleration of GGBS Cements by 584 Chloride, New Insights on Early Hydration, 2017.

X. Li, R. Snellings, M. Antoni, N. M. Alderete, M. Ben-haha et al., , vol.586

Y. Weerdt, J. Dhandapani, J. Duchesne, D. Haufe, M. Hooton et al.,

M. Kramar, A. M. Marroccoli, A. Joseph, C. Parashar, J. L. Patapy et al., , p.588

L. Steger, T. Sui, A. Telesca, A. Vollpracht, F. Vargas et al.,

K. L. Zhang and . Scrivener, Reactivity tests for supplementary cementitious materials: RILEM TC 267-590 TRM phase 1, Mater. Struct, p.51, 2018.

R. Snellings and K. L. Scrivener, Rapid screening tests for supplementary cementitious materials: 592 past and future, Mater. Struct, vol.49, pp.3265-3279, 2016.

V. Kocaba, E. Gallucci, and K. L. Scrivener, Methods for determination of degree of reaction of slag in 595 blended cement pastes, Cem. Concr. Res, vol.42, pp.511-525, 2012.

,

F. Avet, R. Snellings, A. Diaz, M. Ben-haha, and K. Scrivener, Development of a new rapid, 598 relevant and reliable (R3) test method to evaluate the pozzolanic reactivity of calcined kaolinitic 599 clays, Cem. Concr. Res, vol.85, pp.1-11, 2016.

S. T. Erdo?an and T. Ç. Koçak, Influence of slag fineness on the strength and heat evolution of 601 multiple-clinker blended cements, Constr. Build. Mater, vol.155, pp.800-810, 2017.

,

K. Tang, J. Khatib, and G. Beattie, Effect of partial replacement of cement with slag on the early-age 604 strength of concrete, Proc. Inst. Civ. Eng. -Struct. Build, vol.170, pp.451-461, 2017.

K. Tang, S. Millard, and G. Beattie, Early-age heat development in GGBS concrete structures

, Inst. Civ. Eng. -Struct. Build, vol.168, pp.541-553, 2015.

S. Ramanathan, H. Moon, M. Croly, C. Chung, and P. Suraneni, Predicting the degree of reaction 609 of supplementary cementitious materials in cementitious pastes using a pozzolanic test

, Build. Mater, vol.204, pp.621-630, 2019.

P. Suraneni and J. Weiss, Examining the pozzolanicity of supplementary cementitious materials 612 using isothermal calorimetry and thermogravimetric analysis, Cem. Concr. Compos, vol.83, pp.613-273, 2017.

Y. Wang and P. Suraneni, Experimental methods to determine the feasibility of steel slags as 615 supplementary cementitious materials, Constr. Build. Mater, vol.204, pp.458-467, 2019.

,

A. Kashani, J. L. Provis, G. G. Qiao, and J. S. Van-deventer, The interrelationship between surface 618 chemistry and rheology in alkali activated slag paste, Constr. Build. Mater, vol.65, pp.583-591, 2014.

P. Drissen, Determination of the glass content in granulated blast furnace slag., Zem. -Kalk -621 Gips, pp.658-661, 1994.

, EN 196-1, Methods of testing cement -Part 1: Determination of strengt

, Heat of hydration, Semi-adiabatic method, Methods of testing cement -Part, vol.9, pp.196-205

A. Ehrenberg, J. Deubener, N. Pronina, and D. Hart, The glass structure of granulated blast furnace 626 slag and its effect on reactivity, Proc. 15th Int, 2019.

A. Ehrenberg, Granulated blast furnace slag -From laboratory into practice, p.628, 2015.

A. Schöler, B. Lothenbach, F. Winnefeld, M. B. Haha, M. Zajac et al., Early hydration of 629 SCM-blended Portland cements: A pore solution and isothermal calorimetry study

. Res, , vol.93, pp.71-82, 2017.

M. Whittaker, M. Zajac, M. Ben-haha, F. Bullerjahn, and L. Black, The role of the alumina content of 632 slag, plus the presence of additional sulfate on the hydration and microstructure of Portland 633 cement-slag blends, Cem. Concr. Res, vol.66, pp.91-101, 2014.

,

P. Z. Wang, R. Trettin, V. Rudert, and T. Spaniol, Influence of Al 2 O 3 content on hydraulic reactivity 636 of granulated blast-furnace slag, and the interaction between Al 2 O 3 and CaO, Adv. Cem. Res, vol.637, pp.1-7, 2004.

W. Wassing, Relationship between the chemical reactivity of granulated blastfurnace slags and 639 the mortar standard compressive strength of the blastfurnace cements produced from them, p.640

, Cem. Int, pp.95-109, 2003.

M. Ben-haha, B. Lothenbach, G. L. Saout, and F. Winnefeld, Influence of slag chemistry on the 642 hydration of alkali-activated blast-furnace slag -Part II: Effect of Al2O3, Cem. Concr. Res, vol.42, pp.74-83, 2012.

A. R. Sakulich, E. Anderson, C. L. Schauer, and M. W. Barsoum, Influence of Si:Al ratio on the 645 microstructural and mechanical properties of a fine-limestone aggregate alkali-activated slag 646 concrete, Mater. Struct, vol.43, pp.1025-1035, 2010.

K. Gong and C. E. White, Impact of chemical variability of ground granulated blast-furnace slag on 648 the phase formation in alkali-activated slag pastes, Cem. Concr. Res, vol.89, pp.310-319, 2016.

,

B. C. Bunker, Molecular mechanisms for corrosion of silica and silicate glasses, J. Non-Cryst

, Solids, vol.179, pp.300-308, 1994.

H. Scholze and . Glass, , 1991.

P. J. Schilling, L. G. Butler, A. Roy, and H. C. Eaton, 29Si and 27Al MAS-NMR of NaOH-Activated Blast-655 Furnace Slag, J. Am. Ceram. Soc, vol.77, pp.2363-2368, 1994.

A. Ehrenberg, Granulated blast furnace slag -State of the art and potentials for the futureCO2 658 emissions and energy consumption of granulated blastfurnace slag, p.659

. Madrid, , pp.277-297, 2011.

C. Cailleteau, F. Angeli, F. Devreux, S. Gin, J. Jestin et al., Insight into silicate-glass 661 corrosion mechanisms, Nat. Mater, vol.7, p.978, 2008.

R. Snellings, Solution-Controlled Dissolution of Supplementary Cementitious Material Glasses at 663 pH 13: The Effect of Solution Composition on Glass Dissolution Rates, J. Am. Ceram. Soc, vol.96, pp.2467-2475, 2013.

R. Snellings, T. Paulhiac, and K. Scrivener, The Effect of Mg on Slag Reactivity in Blended Cements, p.666

, Waste Biomass Valorization, vol.5, pp.369-383, 2014.

M. Ben-haha, B. Lothenbach, G. L. Saout, and F. Winnefeld, Influence of slag chemistry on the 668 hydration of alkali-activated blast-furnace slag -Part I: Effect of MgO, Cem. Concr. Res, vol.41, pp.955-963, 2011.

P. T. Durdzi?ski, M. Ben-haha, M. Zajac, and K. L. Scrivener, , p.671

P. Termkhajornkit, Q. H. Vu, R. Barbarulo, S. Daronnat, and G. Chanvillard, Dependence of 673 compressive strength on phase assemblage in cement pastes: Beyond gel-space ratio -674 Experimental evidence and micromechanical modeling, Cem. Concr. Res, vol.99, pp.1-11, 2014.

,

A. Gruskovnjak, B. Lothenbach, L. Holzer, R. Figi, and F. Winnefeld, Hydration of alkali-activated slag: 677 comparison with ordinary Portland cement, Adv. Cem. Res, vol.18, pp.119-128, 2006.

B. Lothenbach, D. A. Kulik, T. Matschei, M. Balonis, L. Baquerizo et al., , p.680

. Myers, Cemdata18: A chemical thermodynamic database for hydrated Portland cements and 681 alkali-activated materials, Cem. Concr. Res, vol.115, pp.472-506, 2019.

,

R. Snellings, X. Li, F. Avet, K. Scrivener, and . Rapid, Robust, and Relevant (R3) Reactivity Test for 684 Supplementary Cementitious Materials, ACI Mater, J, vol.116, 2019.

,