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ON THE HYDROSTATIC APPROXIMATION OF THE NAVIER-STOKES
EQUATIONS IN A THIN STRIP

MARIUS PAICU, PING ZHANG, AND ZHIFEI ZHANG

ABSTRACT. In this paper, we first prove the global well-posedness of a scaled anisotropic
Navier-Stokes system and the hydrostatic Navier-Stokes system in a 2-D striped domain with
small analytic data in the tangential variable. Then we justify the limit from the anisotropic
Navier-Stokes system to the hydrostatic Navier-Stokes system with analytic data.

Keywords: Incompressible Navier-Stokes Equations, Hydrostatic approximation,
Radius of analyticity.

AMS Subject Classification (2000): 35Q30, 76D03

1. INTRODUCTION

This paper is concerned with the study of the Navier-Stokes system in a thin-striped do-
main and the hydrostatic approximation of these equations when the depth of the domain
and the viscosity converge to zero simultaneously in a related way. This is a classical model
in geophysical fluid dynamics where the vertical dimension of the domain is very small com-
pared with the horizontal dimension of the domain. In this case, the rescaled viscosity is
not isotropic and we have to use the anisotropic Navier-Stokes system with a “turbulent”
viscosity. The formal limit thus obtained is the hydrostatic Navier-Stokes equations which
are currently used as a standard model to describes the atmospheric flows and also oceanic
flows in oceanography (see [23, 24]).

The other motivation of this paper comes from the boundary layer theory obtained by
vanishing viscosity limit of Navier-Stokes system with Dirichlet boundary condition. The
governing equation to describe the motion of the fluid in this thin boundary layer was derived
by Prandtl [25] in 1904 in order to explain the disparity between the boundary conditions
verified by ideal fluid and viscous fluid with vanishing viscosity. Heuristically, these boundary
layers are of amplitude O(1) and of thickness O(y/v) where v = £? is the viscosity of the
fluid. In order to focus only on the boundary layer, we shall consider here the Navier-Stokes
equations in a thin strip, {(w,y) cR?: 0<y<e }, which is consistent with the physical
parameters in geophysical flows.

When we consider Dirichlet boundary conditions on the top and the bottom of a 2-D striped
domain, we are able to prove the global well-posedness of both the anisotropic Navier-Stokes
system and the hydrostatic/Prandtl approximate equations when the initial data is small and
analytic in the tangential variable. This should be regarded as a global Cauchy-Kowalevskaya
theorem for small analytic data, which originates from [5]. The proof of this type of results
requires the control of the loss of the radius of the analyticity of the solution and the estimate
of the solution itself simultaneously. Taking the advantage of the Poincaré inequality in the
strip, we are able to control the analyticity of the solution globally in time. We also rigorously
prove the convergence of the anisotropic Navier-Stokes system to the hydrostatic/Prandtl
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2 MARIUS PAICU, PING ZHANG, AND ZHIFEI ZHANG

equations in the natural framework of the analytic data in the tangential variable. We now
present a precise description of the problem that we shall investigate.

. . . . . . . . . . def
We consider two-dimensional incompressible Navier-Stokes equations in a thin strip: &° =

{(z,y) eR*: 0<y<e},
(11) WU +U-VU —2AU+VP =0 in Sx]0, 0],
' divU =0,

where U(t,x,y) denotes the velocity of the fluid and P(¢,x,y) denotes the scalar pressure
function which guarantees the divergence free condition of the velocity field U. We comple-
ment the system (1.1) with the non-slip boundary condition

U|y:0 = U|y:€ =0,
and the initial condition
Uli=o = (uo (x, g),evo(x, g)) =U5 in S°
As in [2, 16], we write

13 y £ y 1= y
(1.2) Ut,z,y) = (u (t,w, g),av (t,x,g)> and P(t,z,y) =p (t,x,g).

Let § 4 {(z,y) € R?: 0 <y < 1}. Then the system (1.1) becomes the following scaled
anisotropic Navier-Stokes system:

O + u Ot + v uE — e20%u° — 8§u€ + 0;p° =0 in §x]0, 0o,

% (Opv° + uF 0,0 + v 0" — 20707 — 851)5) + 9yp° =0,

Opu’ + 0yv° =0,

(uEa ,Ua) ’t=0 = (U(], UO) )

together with the boundary condition

(1.4) (u®,v) ly=0 = (u%,v%) [y=1 = 0.

Formally taking e — 0 in the system (1.3), we obtain the hydrostatic Navier-Stokes/Prandtl
equations:

(1.3)

Oru + u0yu + voyu — 8§u + 0,p =0 in Sx]0,00],
Oyp =0

Ozu+ Oyv = 0,

ult=0 = uo,

(1.5)

together with the boundary condition
(16) (U,U) |y=0 = (u,v) |y=1 =0.

The goal of this paper is to justify the limit from the system (1.3) to the system (1.5).
The first step is to establish the well-posedness of the two systems. Similar to the Prandtl
equation, the nonlinear term vdyu in (1.5) will lead to one derivative loss in the x variable
in the process of energy estimates. Thus, it is natural to work with analytic data in order to
overcome this difficulty if we don’t impose extra structural assumptions on the initial data
[10, 26]. Indeed, for the data which is analytic in x,y variables, Sammartino and Caflisch
[27] established the local well-posedness result of (1.5) in the upper half space. Later, the
analyticity in y variable was removed by Lombardo, Cannone and Sammartino in [17]. The
main argument used in [27, 17] is to apply the abstract Cauchy-Kowalewskaya (CK) theorem.
We also mention a well-posedness result of Prandtl system for a class of data with Gevrey
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regularity [11]. Lately, for a class of convex data, Gérard-Varet, Masmoudi and Vicol [12]
proved the well-posedness of the system (1.5) in the Gevrey class.

Our result complete the result of [17] in the sense that we obtain the global well-posedness
for the hydrostatic Navier-Stokes equations in bi-dimensional strip with small analytic data.
We also prove the convergence of the rescaled 2D Navier-Stokes equations (1.3) to the hydro-
static equations (1.5) in the analytic spaces. We remark that Kukavica et al [15] proved the
local existence of analytic solutions for the hydrostatic Euler equations, and in [14], the au-
thors derived the hydrostatic Euler equations as the zero viscosity limit for analytic solutions
of the primitive equations.

Now let us state our main results.

The first result is the global well-posedness of the system (1.3) with small analytic data in z
variable. The global well-posedness and the global analyticity of the solutionis to the classical
2-D Navier-Stokes system are well-known (see [9] for instance). However, the main interesting
point here is that the smallness of data is independent of € and there holds the global uniform

estimate (1.8) with respect to the parameter . Moreover, all our results are valid in the multi-
d
dimensional case, by changing the space B2 (see (2.1)) into the corresponding space B T

where d is the dimension of the space, with the obvious change in the definition and in the
proofs.

Theorem 1.1. Let a > 0. We assume that the initial data satisfies
(L.7) [e#1P=! (uo, evo)|| 53 < coa

for some cqy sufficiently small. Then the system (1.3) has a unique global solution (u,v) so
that

(1 8) Heﬁt(u%’gvi)“Lm(R.;_ Bj +|’eﬁta (u\lj,é‘U\y)HLz R+ B?)
+5H€ U’\I”EU\I/)HLQ R+ BQ) S CHea|DEI(u07€UO)HB%,

where (ug,, vy,) will be given by (3.1) and the constant 8 is determined by Poincaré inequality
on the strip S (see (3.6)), and the functional spaces will be presented in Section 2.

The second result is the global well-posedness of the hydrostatic Navier-Stokes system (1.5)
with small analytic data in x variable. We remark that similar global result seems open for
the Prandtl equation, where only a lower bound of the lifespan to the solution was obtained
(see [13, 28]).

Theorem 1.2. Let a > 0. We assume that the initial data satisfies

(1.9) He“‘DﬂuoHB% <ca

for some c; sufficiently small and there holds the compatibility condition fol updy = 0. Then
the system (1.5) has a unique global solution u so that

(1.10) leMug |- +[le™ Dyug |- by < CllePluol| 3

Loo(R+;B8Y) L2(R+;B2

where ug will be determined by (4.3). Furthermore, if e*P=lyg € Bg, e“‘DI‘ayuo € B> and
coa
S T el

(1.11) [ePlug)|
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for some co sufficiently small, then exists a positive constant C' so that for A = 02(1 +
Heawz'uOH 3) and1 < s < §, one has
B2 2

Bs?
< C(leP1ayuo| 3 + [le P o]l 13).

%t | foo gty + 1€ Dyuallza @) < Clle P ug|

le™ (Dpu)all;

(1.12)
+ [l O ua |-

I2(R+:B3) Too(R+;83)

The main idea to prove the above two theorems is to control the new unknown uy defined
by (3.1), where u is the horizontal velocity and wg is a weighted function of u in the dual
Fourier variable with an exponential function of (a — An(t))|{|, which is equivalent to the
analyticity of the solution in the horizontal variable. By the classical Cauchy-Kowalewskaya
theorem, one expects the radius of the analyticity of the solutions decay in time and so the
exponent, which corresponds to the width of the analyticity strip, is allowed to vary with
time. Using energy estimates on the equation satisfied by uy and the control of the quantity
which describes “the loss of the analyticity radius”, we shall show that the analyticity strip
persists globally in time. Consequently, our result is a global Cauchy-Kowalewskaya type
theorem.

The third result is concerning the convergence from the scaled anisotropic Navier-Stokes
system (1.3) to the hydrostatic Navier-Stokes system (1.5), which corresponds to [27] for
the vanishing viscosity of the analytical solutions of Navier-Stokes system in the half space.
Compared with [27], here we proved the convergence globally in time.

Theorem 1.3. Let a > 0 and (uj,v) satisfy (1.7). Let wuy satisfy e®Paly, B3 N
Bg,ea‘D’J'@yuo € B%, and there holds (1.11) for some co sufficiently small and the com-
patibility condition fol ugdy = 0. Then we have

1 2
s 2B e b + 19y (b 2B gy 1)+ eNw0bs 0By )

(1.13) o E
< C’(He "Huf — w0, e(vf —v0)) || 51 + Ms).

def def . . .
Here w!' = 4 —u, w? = v — v and vy is determined from wuy via Oyug + Oyvo = 0 and

voly=0 = voly=1 = 0, and (wg, cwd) will be given by (5.3).

We remark that without the smallness conditions (1.7) and (1.11), we can prove the con-
vergence of the system (1.3) to the system (1.5) on a fixed time interval [0,T] for T < T,
where T™* is the lifetime of the solution of the hydrostatic Navier-Stokes equation with the
large initial data wug.

We end this introduction by the notations that will be used in all that follows. For a < b,
we mean that there is a uniform constant C, which may be different on different lines, such
that a < Cb. We denote by (a|b);2 the L*(S) inner product of @ and b. We designate
by L%(L{(L%)) the space LP(]0,T[; L9(R,; L™ (Ry))). Finally, we denote by (dj)rez (resp.
(di(t))kez) to be a generic element of £1(Z) so that Y, ., di =1 (vesp. >z di(t) = 1).

2. LITTLEWOOD-PALEY THEORY AND FUNCTIONAL FRAMEWORK

In this work, since the solution is analytic in z and Sobolev in y, we have to establish the
product laws in anisotropic regularity spaces. On the other hand, in order to prove a version
of global Cauchy-Kowalewskaya type theorem, we need to control simultaneously the analytic
radius and the estimate of the solution itself. For these purposes, it seems more convenient
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to introduce the Littlewood-Paley decomposition in the horizontal variable x. Let us recall
from [1] that

(2.1) Aa=F e "eha),  Sia=F ' (x(27"[€Na),

where Fa and a denote the partial Fourier transform of the distribution a with respect to x
variable, that is, a(§,y) = Frme(a)(&,y), and x(7), ¢(7) are smooth functions such that

3 8 .
Supp goC{TER/ ZS|T’S§} and \V/T>O,Zg0(27]7'):1,
JEZ
4 ,
Supp x C {7’ eR/ |7 < g} and  x(7)+ Zg0(2_]7') =1.
Jj=0
Let us also recall the functional spaces we are going to use.

Definition 2.1. Let s in R. For u in S} (S), which means that u belongs to S'(S) and
satisfies limy_, oo || SHul| o = 0, we set

[ullss dzefH(2k8HAEUHLQ)keZHﬂ(Z)‘

e For s < %, we define B*(S) d:ef{u € S(S) | ullps < oo}
e Ifk is a positive integer and if% +k<s< % + k, then we define B*(S) as the subset

of distributions u in S},(S) such that O¥u belongs to B*~*(S).

In order to obtain a better description of the regularizing effect of the diffusion equation,
we need to use Chemin-Lerner type spaces L)(B%(S)).

Definition 2.2. Let p € [1, +o0] and T €]0, +oco]. We define EZ:’F(BS(S)) as the completion
of C([0,T7; S(S)) by the norm

s Al e, )
lallzs, ) = D ; 1A% a2

keZ
with the usual change if p = oco.
In order to overcome the difficulty that one can not use Gronwall type argument in the

framework of Chemin-Lerner space, we need to use the time-weighted Chemin-Lerner norm,
which was introduced by the first two authors in [20].

Definition 2.3. Let f(t) € L}

IOC(R+) be a nonnegative function. We define

t 1
def k h P
(22) lallzy ey 2 S0 2( [ 7€) 18ka(e) I )"
’ kezZ 0
For the convenience of the readers, we recall the following anisotropic Bernstein type lemma
from [7, 19].

Lemma 2.1. Let By, be a ball of Ry, and Cy, a ring of Ry; let 1 < ps < p; <ocand1 < g < oo.
Then there holds:

If the support of @ is included in 2¥By,, then
< o (-2)

If the support of @ is included in 2*C,,, then

||8?@HL§1(L3) |’aHL£2(L3)'

HaHLil(L?,) S 2_kNH3éVaHL§1(L3)-
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In the following context, we shall constantly use Bony’s decomposition (see [4]) for the
horizontal variable:

(2.3) fag=Trg+T)f+ R"(f,9),

where

T} defZSk \fALg, and RM(f.9) €3 ARFA
k

with A}l;gd—ef Z Abg.

k- <1

3. GLOBAL WELL-POSEDNESS OF THE SYSTEM (1.3)

In this section, we establish the global well-posedness of the scaled anisotropic Navier-
Stokes system (1.3) with small analytic data.

Proof of Theorem 1.1. As in [5, 6, 8, 21, 22, 28], for any locally bounded function ¥ on
Rt x R, we define

(3.1) uy(t,x

de: f —~
) S F (0T (L e ).

We introduce a key quantity 7(t) to describe the evolution of the analytic band of u®
(3.2) { i(t) = el (O] g + 19,15 0]y
n|t=0 = 0.

Here the phase function W is defined by
(3.3) U(t,€) = (a—An(t))g]

In the rest of this section, we shall prove that under the assumption of (1.7), there holds
the a priori estimate (1.8) for smooth enough solutions of (1.3), and neglect the regularization
procedure. For simplicity, we shall neglect the script €. Then in view of (1.3) and (3.1), we
observe that (ug,vy) verifies

def

Avuy + M(t)|Delug + (udpu)y + (v9yu)y, — e202uy — douy + ppy = 0,

g2 (6‘,51)\1, + A (t)| Dz vy + (u0,v) g + (vOyv)y, — e20%vy — 831)\1/) + Oypy =0,
Opuy + Oyvy =0 for (t,z,y) € Ry x S,

(ww, v9) ly=0 = (uw,vy) [y=1 = 0,

(3.4)

where |D;| denotes the Fourier multiplier with symbol |].
By applying the dyadic operator Ai‘ to (3.4) and then taking the L? inner product of the
resulting equation with (Aku\p, A};v\p) , we find

1d .
5 g7 1Ak, c0w) (8)] |2 + N (1D A} (wy €v0) | Af(uw, vw))

(3.5) +52Ha Ay, con)|[7z + (|0, Ak (wa, o0
(Ah (u0pu)y |Aku\IJ)L2 - (A}IQ (Uayu)\y |A2u\11)L2
—€ (Az (u0yv) g |Akvq,)L2 —&? (AZ1 (vOyY)y |A£U\p)
where we used the fact that 0, uy + 9yve = 0, so that
(VA Py | Ak(u\p,vq,))LQ =0.

L27
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While due to (uy,vw) |y=0 = (uw,vv) |y=1 = 0, by applying Poincaré inequality, we have
1 2
(3.6) 1Ak (ww, cv0)ll7z < 5|0y Ax(uw, eve)| -
Then by using Lemma 2.1 and by multiplying (3.5) by €% and then integrating the resulting
inequality over [0, t], we achieve

1 / t . ’
e Al (g, c0n) |3 1 + 22" /0 it ™ Ab(u, cou)(¢)]52 dt

LY ga
+ 2/0 eZﬁt (HAgayu\IfH%Q + 082(2216(”A2u\1,”%2 + 52||AQU\I/”%2) + HA}];ayU\I/”%2)> dt’
t
2 / !
(3.7 < Heawz‘A};(uo,Evo)HLz + / ‘(eﬁt AR (udpu)g ™ AEU\P)B‘ dt'
0
. t
+ / (% A} (v0,u)g 6% Abuy) | dt + <2 / (™ AR (udp0)g [ Afvg) ;| d
0 0

t
+ 62/0 ‘(eﬁt/A},; (v9yV)y, ]eﬁt,A}gv\y)Lz‘ dt’.

In what follows, we shall always assume that ¢ < T* with 7™ being determined by

(3.8) 7 def sup{ t >0, n(t) <a/A}.

So that by virtue of (3.3), for any ¢ < T, there holds the following convex inequality
(3.9) U(t,&) <U(t,&—n)+¥(,n) for VEneR.

The estimate of (3.7) relies on the following lemmas. The first two lemmas concern the
estimate of the horizontal component of the velocity. The first one is the energy estimate in
analytic framework for the convection term w0, u.

Lemma 3.1. For any s €]0,1] and t < T*, there holds

t
&t A &t A 206—2ks|| Rt/ 2
(3.10) / }(e Al (udyw)y | e Akw\p)p‘ dt’ < dp27° e w\p||Zz gt
0 taw B2
The next lemma is concerned with the analytical energy estimate for the term vdyu, which
is the term responsible for the loss of one derivative in the tangential direction. It is the
estimate of this term that the analyticity in the tangential variable is crucially used.

Lemma 3.2. For any s €]0,1] and t < T*, there holds

t
(3.11) / (™ AR (vdyu)y | e Ahug) o] dt < dF27 2| e ug |2,
0

s+1.y°
Lo B2

The last lemma will be useful to control the vertical component of the velocity field in the

analytic spaces.

Lemma 3.3. Fort < T, there holds

t
(3.12) 62/ ‘(eﬁtlA},;(vayv)\p | eﬁt/Al,;U\p)LQ’ dt' < di2_kH€ﬁt,(u\p,€U\p)H%2 (B)"
0

t,m(t)
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Let us admit the above lemmas for the time being and continue our proof. Indeed, thanks
to Lemmas 3.1-3.3, we deduce from (3.7) that

1 , t ,
S A, 209 [ 12y + A2" /0 ()] AR (uw, eva)(t)]32 dt

2

< HealDw‘A}é(uO, £v0) Hig + CdiQ_k Heﬁt, (uw,evy) sz?'r}(t)(Bl)‘

t
C ’
45 [ (1850w cvw) Bz + 2| Ay, cvn) ) df
0

By multiplying the above inequality by 2F and then taking square root of the resulting
inequality, and finally by summing up the resulting ones over Z, we find that for ¢t < T™

Heﬁt'(qu,avq;)HZ sty t Ve (ug, cvg) HLz W@t cHeﬁtlay(wp,61}\1/)||Z$(B%)
R/ a| Ds | |/ _
+celle (U\p,e’iv\p)HZ?(B%) < e (“0757)0)“3% +Clle (uw,sw)||L§W)(Bl).

Taking A = C? in the above inequality leads to
o + e 9, (uy, eve)|

€™ (ug, cvy)]|~

I (B7) 12(8%)

(3.13) +C€He /(U\p evy)|~, 3. < He“lD’fl(uo EUQ)H 1 fort < T
) L3(B2) = ’ B2 a

Then for ¢t < T*, we deduce from (3.2) that
t
n(t) = /0 (ellwus ()], + 18,05 ()] ,y)
t 1 t 1
—2/t 2 / ’ 2 b
<([ e ar) ([ e omi Ol + 1V 05 0)ll3) )

SCHCM, (e0zuy, Oyuy) HZ?(B%)
<Ol (ug, ev0) | 5

In particular, if we take ¢ in (1.7) to be so small that

14 alDe| e
(3.14) C’He (up, EUO)H 3 2)\
we deduce by a continuous argument that 7% determined by (3.8) equals +oo and (1.8) holds.
This completes the proof of Theorem 1.1. O

Now let us present the proof of Lemmas 3.1 to 3.3. Indeed, we observe that it amounts
to prove these lemmas for & = 0. Without loss of generality, we may assume that © > 0 and
v > 0 (and similar assumption for the proof of the product law in the rest of this paper, one
may check [6] for detail).

Proof of Lemma 3.1. We first get, by applying Bony’s decomposition (2.3) for the horizontal
variable to ud,w, that

udpw = Tpdpw + T4 u+ R"(u, 0yw).

Accordingly, we shall handle the following three terms:
e Estimate of fo (ANTL0w)y | Apwy) ,, dtf
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Considering the support properties to the Fourier transform of the terms in 70w, we
infer

t
[ 1@ty | Alwa) ol

S > /HSk’ vy (¢) || oo | AR Oz wy ()| 2 | Afwe (¢) | 2 dt

\kz' k|<4

However, it follows from Lemma 2.1 and Poincaré inequality that

k
1A ww (1)l o S22 || Afuw (6) 2 (120

1 1
(3.15) <25 || Abuy (¢ )12 | ARy ()]|2,
<25 || AR uy (B)|| > S d;j (1)1 0yuw ()] 41
so that
1Sk e ()| S 10yww (B)]] 535
which implies that
t
/ |(AR(TROxw)w | Afwe) | dt!
0
< ot / 9w (Ol .y AL wa (1) 2| A () ]2 .

= k|<4

Applying Hélder inequality and using Definition 2.3 gives

1

/\ (AR(Tho,w)y | Afwy) ' 5 3 2 / 10,100 ()] 33 | A (1) )
K —k|<4

1

< ([ 10yus )3 1w (s )
(k—k")(s—%
B”z( Z dk/ 2)>

Lo |k —k| <4

<dk2 2k3”w HZ

Sdg27 e lwg |2

s+l .
2 (B 2)

e Estimate of fg (AMTY u)w | Afwy),, dt!
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Again considering the support properties to the Fourier transform of the terms in ngwu
and thanks to (3.15), we have

t
/ [(AR(TS ) | A};W)L?} dt’

S ) / 155 —10zww () || e (12 | AR ww () | L2 () | AR ()| 2 dt’

|m k<4
IR / Ao (OB 00w0 (8) | ge (12 Dy ()] || A ()] .2
|M k<4
K ! h N2 / ’ %
s> dkfzw(/o ISk 1Bwa ()13 12 1y () 5, ')
|k’ k| <4

1

([ 18k Oy ()] )

Yet we observe from Definition 2.3 and s < 1 that

[SIE

t
([ 15k 20000l sz 10,0001 5 )

t 1
S X 2 ([ 1At o, u )] @)

<k —2
V4
< 3wl
0<k/— ®)
<ok'(1- 8) wy ||~ 1.

So that it comes out

/| (ANTS u)w |Akwq,)L2‘dt <d227 2k ||y !!2 el
L2, (B°42)

e Estimate of fg (A};(Rh(ua O,w))w | A}liw‘l’)p dt'

Again considering the support properties to the Fourier transform of the terms in R"(u, d,w),
we get, by applying lemma 2.1 and (3.15), that

/ (AL(R" (u, Daw0))w | Awg) | de’

£y / 1A () 2 1y 1A Dpng () | 2| Al () | 2
k'>k—3

DS N AN S RIS TS
k'>k—3
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Applying Holder inequality and using Definition 2.3 yields

18R ) | Aw) o

1

k s

2t 3 oF ([ Iabun a0 )] )
k’>k 3

1
/ A (1) 10,0 ()] 33 )

2k 2 (k—EK')s
<2l Ly ( 3 a2 )
Ll kK'>k—3
<d2272kus H2
~Yk Wi~ sl
L} 0y (B7F2)

where we used the fact that s > 0 in the last step.

By summing up the above estimates, we conclude the proof of (3.10). O

Remark 3.1. In the particular case when w = u in (3.10), (3.10) holds for any s > 0, that
18

(3.16) /\ VAo | N D) | S 2 ey

It follows from the proof of Lemma 3.1 that we only need to prove

(3.17) / |(AMTE W | Afug) .| dt' S d22‘2’“|\u\11||2 B+ for any s > 0.
tn(t)

Indeed in view of (3.15), we infer
t
[l 0w | M) | a

S / 1Sk 10w (t') || oo || AR (') || L2 | Ay () | 2 dt’
|k’ —k| <4

S 2’“/ 10y ww ()] g3 AT ww ()] 2 | A (¢) ] 2 dt’
k' —k| <4
1

< 3 ([ Iakus o)l i)’
|k’ — k\<4
1

< ([ 18k (100 ) )
which leads to (3.17).

Proof of Lemma 3.2. We first get, by applying Bony’s decomposition (2.3) for the horizontal
variable to vOyu, that

vOyu = TPOyu + Tgyuv + R (v, 0,u).
Accordingly, we shall handle the following three terms:
e Estimate of fg (AMNTPOyu)w | Apuy),, dt!
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We first observe that
t

[ 1840y | ) 2|
0

/”Sk’ 10w ()| 2o || AR Oyuw ()] 22 | AR (¢)]| 2 dt’

\k:’ k|<d
S Y dw2 / 155 —10w ()22 10y (1) 43 | ARuw (1) 12 dF'.
Ik —k|<4
Due to dyu 4+ dyv = 0 and (1.4), we write v(t,z,y) = — [ yu(t,2,y’) dy’. Then we deduce

from Lemma 2.1 that

1
|AkvaOllie < [ Rsun(t, ) d
(3.18) fk ) N
<% [ 18kt lig dy' S 2% Ak un (0]

from which and s < 1, we infer
t %
([ 15k roa®)liE 100 ()] )
1
< 3 ([ 18t 10 ) a)°

(3.19) (<k'~

< £(1—s) B
Z 20l e,
L<k’'—

<2k’(175) woll- '
~ ” ‘I/HLiﬁ(t)(Ber%)

Consequently, by virtue of Definition 2.3, we obtain
t
[ l@baogs | atu) |

Kt 3
S > a2 5 ([ Ish o)~ 10ty )’
|k —k|<4 0
1

< ([ 18k 10y ) )

<d22—2k5u 2
[ C—

e Estimate of f(f (A};(Tgyuv)\p | Afug) ,, dit!
Notice that

t
/ |(A£(T5 ) | Afug) | dt!

Y /”Sk’ 10w ()| Lo (22) | ARvw () 22 (oo | Ak ()| 2 dt'
\k;’ k<4
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which together with (3.18) ensures that
t
[ 1888 00 | ) o

S D 2’“/ 19y (#)[] 43 | AR w ()| 2| A ()| 2 dt”

|k’ k|<4

1
< 5 ([ 1Akl o)l i)’

|k’ k|<4
1
2
< ([ 18k 1oy )y )
Then thanks to Definition 2.3, we arrive at

t
hh h I < 20—2ks 2
/OKAk(Tayuv)\If | Akullf)p‘dt Sdi2 [ ”L2 )(Bs+2)

o Estimate of [ (AR(R™(v, dyu))y | Ajuw) o dt’

We get, by applying lemma 2.1 and (3.18), that

/ |(A1,;(Rh(v,8yu))\p \ AI,;u\p)LQ’ dt'

Py / 1A% 0w () 22 (1g0) | AR Oy () | 2 | A ()] 2 d

k'>k—3
k
2t 3 27 [ Iabua @10 ()l 18ua @)l i
k'>k—3
1
k ,
28 5 25 ([ Iabus )0 ()l o)’
k'>k—3

1

< ([ 18k (0 )

which together with Definition 2.3 and s > 0 ensures that

/\ (AR(R" (v, 0yu)w | Afug) | dt’ <cz,€2—2’“||uq,||2 ( S dyathks )
Linw® k' >k—3
SAR2 2 |lug 12 1
i (B72)
By summing up the above estimates, we achieve (3.11). O

Proof of Lemma 3.3. We first get, by applying Bony’s decomposition (2.3) for the horizontal
variable to v0,v, that

vOyv = TPOyv + Tg‘yvv + R"(v, 9v).

Let us handle the following three terms:
e Estimate of fo (ANTPOyv) g | Afvw),, dtf
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Due to 0yv = —0u, one has
t
g / |(AR(TRO)w | Afvg),,]| dt

> /!Sk/ 10w (t') | Lo | AR Byvw (1) | 2| Ajvw (¢) | 2 dt!

K —k|<4
o 3 2 [ ishn Ol O ()l Ik )
\k:’ k<4
1
3 ([ sk Ot (] )
\k’ k| <4

1
< ([ 18k ) a0 ()l )
Yet we get, by a similar derivation of (3.19), that
! h INTE / N2 K
(] 15k oo ®Eelnua(®lly i) S a2 vl |y
Hence we deduce from Definition 2.3 that
t
e ‘(Ag(Tglayv)‘If | AEU\P)Lz‘ dt' < di27k||u\lf||f,2 ) (31)€||U\I/HZ2 o (BY)*
0 ,7(t) t,7(t)

e Estimate of fg (A}Q(Tgyvv)w ‘ AEU‘I’)B dt!
Notice that

t
/ [(ARTS,0)w | Afow) 2| dff

S 5 [ ISt I8 Eoa 0]l Ao )]

\k’ k<4

which together with (3.15) ensures that
t
LIk | Aa) ] e

< o* / 0y ()] I AR v (8) | 2 | Al ()] 2
= |<4

1

k/ 5

< 2 /||Ak,w B0y ()13
(k= k|<4

1
/ AL (¢ [y (1) ')

Then thanks to Definition 2.3, we arrive at
t
hh h —k
/0 [(AR(T5,,0)w | Afve) 2| dt’ Sdi2 HU‘I’”%f (o (BY)’
s

e Estimate of fg (AR(R(v,0,v))w | Apvy) , dt!
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Due to d,u + dyv = 0, we get, by applying lemma 2.1 and (3.18), that
t
/ [(AR(RY (0, 0,0)) | Alvg) ] d#

S [ el B e ()] s e )

k'>k—3
ES 2 [ iabua )0 ()l 18k )
k'>k—3
1
<2t 3 2 ([ 18k @Iy )
k'>k—3

1
< ([ 18t sl @)l )

which together with Definition 2.3 and s > 0 ensures that

t
/o [(ALE @, 00w | Auw) o] dt' S G2 JoulZy
n

By summing up the above estimates, we obtain (3.12). This concludes the proof of Lemma
3.3. O
4. GLOBAL WELL-POSEDNESS OF THE SYSTEM (1.5)

In this section, we study the global well-posedness of the hydrostatic approximate equations
(1.5) with small analytic data.
Due to the compatibility condition 0, fol updy = 0, we deduce from d,u + 9yv = 0 that

1
a;r/ u<t7x7y)dy =0,
0

which together with the fact: u(t,z,y) — 0 as |z| — 400, ensures that

1
(4.1) /0 u(t,z,y)dy = 0.

Then by integrating the equation dyu + u0dyu + vOyu — 8514 + 0,p =0 for y € [0,1] and using
the fact that dyp = 0, we obtain

1
(4.2) Oxp = Oyu(t,x,1) — Oyu(t, z,0) — ;633/ u2(t, x,y) dy.
0

We now define

(4.3) ua(t, z,y) d:ef}'giz( G u(t, &, y)) with  ®(¢, &) def(

—A0(1)) ¢,

where the quantity 0(¢) describes the evolution of the analytic band of u, which is determined
by
(4.4) o(t) = 10yua (t) ;3 with 6] = 0.

We remark that as in the previous section, the damping obtained by the Poincaré inequal-

ity in the strip helps to obtain this global control of §(¢) which describes the “loss of the
analyticity”.
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Proof of Theorem 1.2. In view of (1.5) and (4.3), we observe that ug verifies
(4.5) Oyue + A(t)| Dalue + (udsu)e + (vOyu)e — Opue + Ozpe = 0,

where |D;| denotes the Fourier multiplier with symbol |].
By applying Ag to (4.5) and taking L? inner product of the resulting equation with Ag'[up,
we find
1d

(4.6) §deAku¢( )||%2 + A9(|Dx\A Ug | Akwb)Lz + HAhayU\I/H%2
- (AZ (uaru) |Aku<1>)L2 - (Az (Uayu) ’AkUQ)Lz - (A}];axp<1>|A}];u‘I>)L2
Thanks to (1.6) and d,u + 0yv = 0, we get, by using integration by parts, that
(A}l;aa:p@’Azu‘b)Lz = - (A2p<1>‘A}clamu<I>)L2
:(AgpélA}I;ayuD)Lz = _(A}I;ayp<b|A2U<I>)L2 =0.

Then by using Lemma 2.1, (3.6) and by multiplying (4.6) by e>* and then integrating the
resulting inequality over [0, t], we achieve

1, a b / 1, g
e Albuall o +32° [0 Mua(t) o it + F1e™ A0, ua
t
2 / /
(4.7) gHeale‘AguoHLg + / ’(eﬁt Al (udpu) g [ Abug LQ‘ dt’
0

t
+ / ’(eﬁt/Ag (vOyu) |€ﬁt/A2Uq>)L2| dt'.
0

In what follows, we shall always assume that t < T* with T* being determined by

(4.8) T Csup{ t>0, 0(t) <a/A).

So that by virtue of (4.3), for any ¢ < T*, there holds the following convex inequality
(4.9) (t,8) < O(t,§ —n) + O(t,n) for VEneR
Then we deduce from Lemma 3.1 that for any s €]0,1] and ¢ <T*
t
/ ’(eﬁt/A},;(uaxu)cp | eﬁt,A}éu@)LQ} dt’ < d2272k9 || e ug ||2
0

s+
L2 50 (B2

Whereas it follows from Lemma 3.2 that for any s €]0, 1] and ¢ < T*

t
/ |(eﬁt AL (wdyu)e | N AII%“‘P)LJ dt’ < di27?||e™ uq’”%z
0

s+1y°
t,é(t)(B 2)

Inserting the above estimates into (4.7) gives rise to
PN k & L &t An
e Alua 2 g+ X2 /0 ) e ua(#) 3 de + 5 1% AbD a2 g0

Dg| Ab,, |2 20—2ks|| At 2
< e Ao [ + CaR2TH e ualZ, oy
t ()

Then for any s €]0,1], by multiplying the above inequality by 22** and then taking square

root of the resulting inequality, and finally by summing up the resulting ones over Z, we
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obtain

/ /
€™ wallzx ey + VAl vall,

!
+ Heﬁt ayu‘1>||z2(gs)
t,6(t) ¢

(B°+3)

< JlePelug| g, + Clle™ us|l -,

5+l °
t,6(t) (B7"2)

Taking A = C? in the above inequality leads to

for s€]0,1] and ¢ <T*

(4.10) e U | Fe (50 + | Oyuazase) < | eP=lug|| 5.

In particular, we deduce from (4.10) for s = 3 and (4.4) that

t
016) = [ 1oyt 0

t 1, et 1
§</ e—2ﬁt’ dt/) 2 </ ||eﬁt aqu>(t,)||2 . dt/) 2
0 0 B2
At/ D,

<Clle ayu‘b”/?f(zs%) < CHe“' ‘UOHB%'
Then if we take ¢; in (1.9) to be so small that

a|De| <&
(4.11) Clle ™ uol| 14 < 51
we deduce by a continuous argument that 7* determined by (4.8) equals +o0o0 and (1.10)
holds. Then Theorem 1.2 is proved provided that we present the proof of (1.12), which relies
on the the following propositions. The first proposition states the propagation of any B*®
regularity on the solution of the hydrostatic Navier-Stokes equations.

Proposition 4.1. Under the assumption of (1.11), for any s > 0, there exists a positive
constant C' so that for A = 02(1 + He“'D”|u0HB%), there holds

R R Dy
(4.12) e | Foe gt 50y + €V Dytialigar oy < ClleP o],

The second proposition allow to control two derivatives in the normal direction 8§u in any
B?, despite de difficulties raised by the boundary conditions. This will be useful in the section
last section when we prove the global convergence in the Theorem 1.3.

Proposition 4.2. Under the assumption of (1.11), for any s > 0, there exists a positive
constant C so that for A = 02(1 + He“'D“f|u0HB%), there holds

(4.13) €™ Dytte e oy +1e™ e 2 e
. SC(”@G|Dz|ayuOHBS + Hea‘Dz‘uOHBS 4 Hea|Dz|uO‘

Bs+1) .

We admit the above propositions for the time being and continue our proof of Theorem
1.2.

As a matter of fact, it remains to present the estimate of ||e§t(8tu)¢>|lz2(R 83y Indeed, by

applying A},; to (1.5) and then taking L? inner product of resulting equation with eQﬁtA},;(ﬁtu)q),
we obtain

|V AL (Dyu)y 22 = (ApS2us | AL(Gu)a) ;.

_ 2t (A%(u@xublA}ﬁ(@u)@)Lz _ 2t (Ag(vayu)q)\AE(@tu)@)Lz,
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Using the fact that (9yu)e = dyug + 0(t)|Dy|us, we remark that

M (AR ua| AR (Oru)e) 1 e AkDyuglF2 + 0(1)2"| ™ ARDyuall?2)

(2dt

from which, we deduce that

€% A} (B} | za) + 1™ AkDyua | p-(u) < O (10,1

[ Al udat)o | 2 + [l AL @O0 212 )
This gives rise to

i) [ @rw)a | 1y g, + 1™ Dyual . 3, < O ([leP10yu0]
+ Heﬁt/ uax’u,)cpH + Heﬁt Ua U HL2 62))

L2(B2
Yet it follows from the law of product in anisotropic Besov space and Poincaré inequality
that

% a1y 5, Sl g, | By
t

Ly B?)‘ L2 (83)’

Heﬁt/(vayU%DHZ?(B%) NHU@HE?(B%)HeﬁtlaywbHLQ(B Fllwelz %)Heﬁtlayuq’uzf(ﬁ)'

Inserting the above estimates into (4.14) and then using (1.9), (1.10) and Proposition 4.1, we
achieve

8t At Dy D
e <8tu)q>HZf(B%) + le 8yuq>“if°(3%) < e |8yu0HB% + e luOHB%
This completes the proof of Theorem 1.2. O
Now let us present the proof of the above two propositions.

Proof of Proposition 4.1. We first deduce from Remark 3.1 that for any s > 0

h < J20—2ks 2
(4.15) /\ (8% (B} |6} ue) | d S 2 sl

While it follows from the proof of Lemma 3.2 that

/ (AN 0+ B (0. 0,00l Aluo) o dt' S B2 a2,
LY oo

In view of (3.18), we have

|Abvs(8)lz= S di(t)2%jus(8)]2 3||a ol

[ NI
M\»—‘
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so that there holds

t
/ (AT 0,u)p | Abug) | dF

Y /”Sk’ 10 (1) ]| oo || AR Dyuia (1) | 2| Afruas (1) L2 di’
\k’ k|<4

1
S 3 2ol 18 0ualizn ([ 1)y 18ua ) d)
|k’ —k|<4

(4.16)

1
< J29—2ks 2 ~
Sdi2 HUCDHL;”(B% !\3yU¢>!!Lg(Bs)|!U<1>\|z2 (t>(Bs+%)-

As a result, it comes out

/1 A (w0 w)o|Aue) 12| AP S B2 uallz, iy

(4.17) Fuaw
X | |usl|~ 1+ ||u E Oy || 72 125 )
(loallza ety + ol g I0vuolzzon

By virtue of (4.15) and (4.17), we deduce from (4.7) that
1 /
2” e Aku‘1’HL°°(L2 + 2" / o(t ||eﬁt Aku<1>( )”L2 dt' + - H o Ahaywbeﬁ (L2)

Hea|Dx|Ahu0HL2 + Cd22 2ks”eﬁt U<I>||

s+
t G(t)(B 7)

ﬁ/
(1 uallyy sy, + ol

ﬁ/
6(t) (B%)He tayuq’Hf?(BS))’
t

from which, we infer

! ’
1™ | foe 50y + VAl o, + e yualza ey < C’(He“'Dz‘uoHBS

t,0(t )(BS+§
’ ’ 1
+ [l us | - aiy T IIU<1>||4 3 €0, w2 e ug |2 1 )
L3 5B +3) = (B3) L} (B*) t,é(t)(BS-‘—%)
Applying Young’s inequality yields
1 ,
Cllual2 ||€ﬁt 9 pr N [ ||2
Lg=(B Li(8°) te(t)(8+2)
1 ’ 1 !/
At ot
< CH“@H%?O(B%)He U<1>||Lfe(t>(gs+%,—) +5le™ Oyuallzzps)-
Therefore if we take
2
(4.18) A>C*1+ ||u<puzgo(8%)),
we obtain
St/ £t D,
(4.19) e U<I>‘|Z§>O(Bs) + le 8y“¢”ig([3s) = CHBCL‘ |

which in particular implies that under the condition (4.18), there holds

luelly g3, < Clle”™luoll 53
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Then by taking A = C?(1+ He“'D’“‘uo H (4.18) holds. Therefore under the condition (1.11),
both (4.11) and (4.18) hold and thus (4 19) holds for any ¢ > 0, which leads to (4.12). This
completes the proof of the proposition. O

Proof of Proposition 4.2. Due to 0yu + 0yv = 0, we get, by applying 9, to (1.5), that
01 0yu + u0yO0yu + vagu - aju + 0;0yp = 0,

from which, using that —8§u + O,p is vanishing on the boundary, we get, by using a similar
derivation of (4.7), that

1, ar . , 1, an
Slle™ Ajdyual|7 e 12) + 22" /0 O(t) e Apdyua(t) |12 dt' + S lle™ ApDjual7 1)
1 Lo ,
(4.20) g§||ea|leAgayu0H;+ /0 (™ AR (udy0yu) g €™ ALDyus) o] dt!

t t
+ /0 !(eﬁt Al (U@Su)(p |t A},;Oyucp)m‘ dt’ + /0 }(eﬁt AlD, pe|e A28§U¢)L2| dt'.
It follows from the proof of Lemma 3.1 that for any s > 0

t
h (h h h ks
/0\(Ak(Tu8w8yu+R (u, 0:0yu)) o |AROyua ) 1 | dt' < dz27"(|0yus |-, B, @)

While we deduce from Lemma 2.1 and Definition 2.3 that

t
Sk 00 | A40,00)

Y / 15k —180:0yua (t') || oo (12 | AT ()| 22 (1) | AR Dy (¢) | 2 A’
|k’ k<4

< > 2 / 10y (¢)]] 3 1A% Byus (t') 12| Ak Dyua (t')| 12 dt’
(4.21) <

1
< 3 ([ 1eltl 3 18RO )
|k’ k|<4
: )
([ 10yn )1, 18RO, ua ()]

<d22 2k35||au ||2

s+
t G(t)(B 7)

As a result, it comes out that for any s > 0,

t
(4.22) /0 | (AR (u0z0yu)e| ARDyus) | dt' < df2~*" | Dyuall2,

sHAyc
t,é(t)(B 2)
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On the other hand, we deduce from Lemma 2.1 and (3.18) that for any s > 0

/ (AL (R (v, 02u)) | AL, u) | di’

<o / 1AR v ()| 12 (o) | Al g ua (8| 2 | AR Dy () 2 A
K >k—3
DY / lu (t' ||23||3 U<I>(75')H21HA R Oua (8| 12| AR Oyua (t') | L2 d’
k' >k—3
k 2 ! / h INTEIE, 3
25 ol g ARG ualczn ([ 10pat) 3 1% 0,ua (0] o)
(%) 0
k' >k—3
1
20—2ks 2 2
St sl 10l Omel s, g
And the proof of (4.16) ensures that
t
/ |(ANTYOu)e | AROyus) | dt’
0
< J29—2ks 2 2
S LA R P

Finally, by using integration by parts, we have

t t
kT 0) o Ak ue) ot < [T (N (T5,0000) o AL 10)

t
+ [ AR 0) o k00 ] .

Due to d,u + dyv = 0, we deduce from a similar derivation of (4.21) that

t
/ (A} (Tg uayv)(bmgayuq))m\ dt

Y / 158 1 0yua ()| Lpo(£2) | AR Drtia () 22 (o) | AR Dy (¢') | 2 i’
|k’ k|<4

t
S 3 2 [ 10,un®)lgy AL Oy un(t) 22 ARy (¢) 12
k' —k|<4

<d22—2ks”a U<I>||2

s+
L2 40y B by

21
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While we observe that
t
/0 ‘(AIIQ (Tg uv)cp!Ai‘a;“@)Lz\ dt

S / 15— 10y ua ()| oo (22) | Ao ()| 22 (1) | AR ua (t') | 2 !
k' —k|<4

S 2’“'/ 101 (¢)]] 43 AR us (t)] 12| AROyua (t') | 12 d¥
k' —k|<4

—2k
Sdi2? SHayWPHZ%(B%)HU¢HL§O(BS+1)H8§U<I>HE§(Bs)-
This gives rise to

/ |(AR( T W) ol AROyua) | dt’ gdzz—%(ua uel,
Lt G(t)(B 2)
+ ||ay ‘I)||~2 82)” ‘I>||L°° Bs+1 ||a uq)HLQ(B ))

By summarizing the above estimates, we obtain

t
/ { (A};(uagu)q> |Al,;ayucp)L2 | dt’
0

1
4.23 <d22_2k8(u 2 Oyua ||~ O2up |72, s
(4.23) SR (uoll?_ gy 19ally | i 10 vl 7y
Flogual? oy 10l s lus e 5 us | 7y s )
Lt,é(t)(B

To handle the last term in (4.20), we denote

I (1) dof

Then in view of (4.2), we write

(eﬁtAh zpq>( )‘eﬁtAhaQ ( ))L2'

1) = [ Ao (AL0,u(t.2, 1)~ AL,ult.,0) do
R
= [ (eMAkOyus(t,z,1) — 0 2
= r(Oyua(t,z,1) — Oyus(t,,0)))" dx
R

1
_% / (ef‘t / ALdy(u?)e dy) AR Oyua(t, x, 1) — Oyual(t, x,0)) dr,
R 0

from which, we infer
14(0)] < O™ A0y ua (1) g2y + eV b0 () (1) 1))
Applying the Bony decomposition yields for any s > 0,
le™ Agax(lﬂ)q’HLf(L},(Lﬁ)) <[je* Agax(uz)éﬂLg(m)
k27 ual| 2 (oo €™ U | Foo oy

k
Sdi2” SHa U‘PHLQBZ)HG u@||zt00(35+1)~
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While notice that
1
/ A},;@yu(t, x,y)dy =0,
0
for any fixed (t,z), there exists YJ*(t, ) so that AMd,ue(t, z, Y (t, ) = 0. Then we have
h 2 Y h / 2 /
(Aboueto) = [ 0, (Mbdualtny)) dy
Y()k(tvx)

S2||A28yu¢(tv z,) HL?, ”A28§u¢(t7 Z, ) ”L?,?
which implies
e ARy g2, < 2 ApDyua (1) 2 |e™ ARO2ua (1) 12
As a result, it comes out
t
]. / /
/O (0] dt' <7 ApoRuslls ) + Clle™ Akdyual2s 2
+ Cdp27*" |0y ual>

(4.24) I BY)
<Cd22 2ks(||eﬁt o U<I>”

He uq)Hftoo(BS+1)

ﬁ/
250y 1110y Uq>\l2 N U Fo gorny)

1 /
+ ZHeﬁt AOjus | Tz 12y
By inserting (4.22), (4.23) and (4.24) into (4.20) and then repeating the last step of the
proof of Proposition 4.1, we obtain

||eR y'UAI)HLoo(Bs) + \/>||€ﬁt ayUCI)H~

L L0()

(Bs-!—g) + ||eﬁt aQU‘PHL2 )

Dy A/t R
<||e g+ C(le “Oallzs ey + I Oz
t,
! ’
+ ”8yu‘1>”L2(Bg Heﬁt U<I>||Ztoo(33+1) + ”eﬁt 82U<I’||L2 (B%)
1 1

X ([Jual* e 9 upl|2 + ||0yu 2 e g2 )

(H <I>HL?O(B%)” Yy q)HLte(w(BHl) | <I>H 5 H <I>HLt (B +1))

Applying Young’s inequality yields
At At
1% Oyua | poe 50y + VAN Byussll,

t,9( )

2 At
oo+ O ualE g )1 Do,

R
(B°+3) +[le ta2u‘I’HL2 (Bs)

< et

s+1
TOLCRD

8t 92

At
8qu> Hz%(Bs)’

1
1% Osal gy + 10yl 5, [ vl seon) + 3 e
from which, (1.9), (1.10) and Proposition 4.1, we infer

[Csa yu<I>HLoo B T VAl Oyu¢||~t e(t)(BS+1) + lle™ aQu@HZf(BS)

< [lert?

|Dg| At
o+ (1 [Pl 2y I Byualy, o,

a|Dy| a|Dyg|

Bs+1> .

+ [|e" P uo]| 5. + [l uo]
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Taking \ = 02(1 + He"'D“uOHB%) in the above inequality leads to (4.13). This completes the
proof of Proposition 4.2. O

5. THE CONVERGENCE TO THE HYDROSTATIC NAVIER-STOKES SYSTEM

In this section, we justify the limit from the scaled anisotropic Navier-Stokes system to the
hydrostatic Navier-Stokes system in a 2-D striped domain. As in the first sections, the main
idea will be to obtain a control of the difference between the two solutions in analytic spaces,
by using energy estimates with exponential weights in the Fourier variable. As previously,
the exponent of the exponential weight is depending on time but shall take into account
now the “loss of the analyticity” for both solutions, of the rescaled Navier-Stokes system and
respectively of the hydrostatic Navier-Stokes equations.

To this end, we introduce

1 def o def def
u® —u, ’LUE:’UE—U, ge = p° —p.

Then (w},w?,q.) verifies

atwi — 202w} — 92wl + 9yq- = RL in §x]0, 00],
(at’LU 282 2 —82 2) _’_ang _ R?,

(5.1) 8w + Oyw? :0
(wIZU)|y0:(w w)|y1—0
(wl w)’t 0_( uO?”O UO),

where vy is determined from wg via Oug + dyvg = 0 and vg|y—o = vo|y=1 = 0, and
Rl = 202u — (uf0,u° — udyu) — (v O,u° — vOyu),

5.2
(5:2) Rg = —¢? (8{0 — 52830 — 63’0 4+ ufo,0° + Uaayva),

Let us define

(5.3) uo(t, z,y) ¥4

S (PO g y)) and O(16) T (a— p(t)) €],
where p > \ will be determined later, and ((t) is given by

t
)= [ 10,5 20:03) ()] gy + 100 () ) -

Similar notation for (w!)g and so on.
It is easy to observe that if we take ¢g in (1.7) and ¢; in (1.9) small enough, then O(¢) > 0
and

©(t, &) < min (V(£,£), 2(t,€)) -
Thanks to Theorem 1.2, we deduce that

(5-4) + llusll; +10yuall - +1(Gw)all; < M,

3]
HU‘I’HEOO (R+;B2) Lo (R+;B3NB3) L2r+;BEnB3) I2r+B3) =

where ug and ug are determined respectively by (3.1) and (4.3) and M > 1 is a constant
independent of €.

In what follows, we shall neglect the subscript € in (w}, w?).
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Proof of Theorem 1.3. In view of (5.1), we get, by using a similar derivation of (3.7), that
t
Ak, 0B gz + 12 [ CONARwb, B )O3 ot

t
+/ (1A% (e, ewd)(t) |72 + 2% | AR (we, cwd) (F)[72) dt’
0

SHeawzlA};(ug — ug, e(vg — UO))HEQ

t t
+ [ 1bRbIab) [0k REIA}0) 2|
0 0

(5.5)

We now claim that

h < g2 —k 1
/‘ (ARRS|ARwY) | dt' < d32 (a\layU@HZ?(Bg)Hew@Hzg(Bg)

(5.6) ]
+loll} g 10l g Neblize, oy + 10815 (s):

and
¢
/0 ‘(A};R%]A};w%)p‘dt’rscp {H we, cwd HL2 (Bl)+g2“(ayw%,sﬁxw2@)\lzg

< (I@el sy 1, + 10,105y 8 +er|aueu~ &h)

2

(B7)

(5.7)
20,2 2 € 5

+ e%llwg ||+ ( wg ||+ + ||u
” eHLig’(t)(Bl) H ®||L$,¢(t>(81) || GHL?(B%

1
2 2
Floll2_ g (0Bl + Wyl ) }-

)HaquJHEg(Bz)

By virtue of (5.4), (5.6) and (5.7), we infer

Z/ ‘ AhR kw@)LQ‘dt’ 5di2_k(M5H(561(wé,5w%),58yw%)Hz%(B%)

+ M2 |9y (wh, cwd H~ H(wevwe 72
t,¢(t)

s 2
+ M25”5we”if s B +(we, Ew%)HEf é(t)(lﬁl))’

(8Y)

from which and (5.5), we deduce that

1 2
I(w, 6we)IILOO sh) TH 2| (wb, cwd)ll» 2 et 19y (we, ew)ll 7, 51,

< C||ePs! (u§ — g, (v§ — o)) .3

T el (wh, cud) 53

2(83)

(5.8) —i—C(\/iH(ea (wg, ewd), 0w )H;(m)

1
+ M|, (wb, 5“’%)”%3(8%) I, 6we)Hifc‘(w(Bl)

3 1 1
+ Mies||ewd |2 + [ (wbsewd)zz )
Lim)(lgl) H ’ HL?,C’(Q(Bl)
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Applying Young’s inequality gives rise to
I 0B oty + b 0Bz ) + 10,2
+ (b Bl 3,
< C(Hea\Dzl (ug — uo, e(vg — UO))HB% + M (e + H(w1@,5w9 HLQC( )(Bl)))'
Taking u = C2M? leads to (1.11). This completes the proof of the theorem.
Now let us present the proof of (5.6) and (5.7).
Proof of (5.6). According (5.2), we write
Rl = 202u — (uf0,w" + w'dpu) — (v Iyw' + w?oyu).
We first observe that

h a2 / 26—k 1
(5.9) / (AL Fue|Ajws) .| dt' < Cdi2 elldyuellz, 43, lleweliza p3,-

e The estimate of fo |(AR(udw! + wlazu)@|A£wé)L2} dt’.
It follows from Lemma 3.1 that

t
(5.10) 1@t olaub) ] at S B2,

By applying Bony’s decomposition (2.3) for the horizontal variable to w'd,u, we obtain
wdpu = TP Opu + Tg»_cuw1 + RM(w!, Oyu).

Notice that

)

AR Oatio (E) 2 (160) S die (8) [uo ()17 5 19yue ()]

Nl

1
2
B

we infer

/ |(AMTE 0xu)e | Apwd) .| dt’

< / 1B w0 () e 1) | A Dyt () 2 oy | ALy () 2
k' —k|<4

1
Y dk'HueH HSk’ 1woll 2 (e (£2)) /Ha ue(t')| 43 | ARw (t ’)H%zdt')Q
|k/ k|<4

1
<d227¥||ue||? dywg ||~ wg ||+ .
Seall eHng)ll bl st 1B o
While observing that

h 3¢ Ah 5 AR 3
1Sy _10zue(t)| Lo < Z 22 [[Afue(t)] 7. [|Adyue ()7,
<k —2

Sdw (128 0,ue ()] 44
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we deduce

t
|kt | Afub) | d

Y /HSk’ 10z (1) || oo || AR wd ()| L2 | Afwd ()| L2 At
|k —k|<4

1
S 5 ([ 1Ak o)l )

\k’ k<4
1
2
/ | AR (1) 32 10,u0 ()] 5y dt')
SE2H b2,
L2 ¢ B

Along the same line, we have
/ } Ah Rh(w Oru)e | Akw@)m{ dt’

E
25 5 [ 1Ak b BE e ()| S (2

k'>k—3
1
Y ([ Iabub )0t )
k'>k—3
:
/HAkw@ )72l185ue ()]l 4 dt’)
Sd%2_k” @H (Bl)'

t ()

As a result, it comes out

/ I Ah w'd,u)e | Akw@)Lg‘dt'
(5.11)

—k
SR bz, oy (Hublize,, on + el g 1oy

e The estimate of fot |(AR(F O, wh)e|ARw) .| dt'.
We write

Uaaywl = w28yw1 + vaywl.

We first deduce from Lemma 3.2 that

¢
(5.12) /0 |(AR(w?Oywh)e| Afwd) o | dt! < d%Q‘kHwéH%QC( [(BY)

27

Whereas by applying Bony’s decomposition (2.3) for the horizontal variable to vd,w!, we

find

va,wt = Tq?@ywl + Tgywlv + R"(v, Aywt).
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It follows from (3.15) that

3¢ 1 1
1S3 _1ve ()l S D 22 | Afue(t)|7.A00,ue(t)] 3,
0<k'—2

K 1
Sdw (827 Jue(t')| 4 19yue (t)]

1>
2

[ NI

from which, we infer
/ |(AR(TROywh)e | Afws), .| dt’

< ¥ / 1S5 yve (1) | = | A By ()| 2 | AL (#)] 2

\k’ k|<4

% 1 ! 3
Y 22Huellz?o(gg)IIAZ‘/@ywé(t’)\Lg(m(/o Hf?yU@(t’)HB%HAEwé(t’)Hizdt/)

1
<d227|lue||? Dyws ||~ we |z :
S22 9”L§’°(B%)” Y GHL?(B%)H GHLf,c’(w(Bl)

Whereas thanks to (3.18), we get
t
@k e | Afub) | o

Y / 15k 18y we () Lo (22 1 AT 00 ()| 22 (160) [ AR wE ()| 2 At
\k:’ k<4

S D dwlSp0ywbll e L2)||u@||2 / 1Ak we (1)17:10yue ()] 5y dt’
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1
<J29~k 2 RTINS 1 )
S S P CA S SN T2 P
Along the same line, we obtain

t
Ik 0,06 | Alub) |

52 /HAk/UG( )HL"O(L2)”AI<:’8 w@( HLZHAkwe( /)HLth/
k' >k—3
k 1 1
525 3 lwell} iy 13ROIz / |Abw ) 32110,ue(t)]l 53 ¢ )
k' >k—3 t

1
<d?27*||ue||? dywe |- wellz '
Sdp27|| GHL?"(B%)H Y eHL,?(B%‘)H GHLic‘m(Bl)

As a consequence, we arrive at

)

t 1
5.13 By, w B 'S di27" lue? ol 7

e The estimate of fg |(AR(w?dyu)e| Afw) 1o dt'.

1
2
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By applying Bony’s decomposition (2.3) for the horizontal variable to w?d,u, we write
w2dyu = TP dyu + Télyuw2 + R"(w?, d,u).
In view of (3.19), we have
([ 1Sk 1wd@)E<l0yue )5y dt')* S du2 lwblz ),
0 B2 t,C(t)( )

so that we get, by applying Hoélder’s inequality, that

/ | Ak 28 U)@ | Akw@)LQ‘ dt/

S 3 2 [ IShaB Ol ()l I3kb () s i
\k’ k|<4

< 3 2 ([ 1B Ol lue (@)l i)’

\k’ k|<4

1

2

< ([ 1AL O 1oyu0 )]

B2 ub g
Lf((t)(Bl)

While thanks to (3.18), we find
t
LAk | Alub) |

S DI o e S P N YN O
\k’ k|<4

Y Qk/ 10y ue (t) 43 A% we ()| 2 [ Afws ()| 2 dt
\k’ k| <4
<d227F|wg |2 }
2t bl

Along the same line, we obtain

t
/ |(AR(R"(w?, 0yu)e | Ajws) 2| dt

k
2 ) / AR wd ()] 2 (oo 1A% Dyue (1) | 2| Ajwd (8] g2 d
k'>k—3

ES 2 [ AR )l e 0l Ak () o
k'>k—3
Sdp2 M |lw % :
L ey B

This gives rise to

t
(5.14) J l(@kame | Afub) ol ar < B2 M bl
t,¢(t

By summing up (5.9-5.14), we conclude the proof of (5.6).

29
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Proof of (5.7). We first observe from 9,u + 0,v = 0 and Poincaré inequality that

/ [(AkOr)olAkwd) |t S22 |Oru)el 3 100Bl s g1

(5.15) / |(AR(O20)o|Afwd) ., |dt' Se*di27 |0, u@||~ 5
o [ (O @melbR) ol <2 N0yl g8 Bl 3,

e The estimate of fo | (AR (w00 Vol ARwg) .| dt'.
We write

w0 = uFdpw? + usd,v.

It follows from Lemma 3.1 that

t
(5.16) 1@k tutrol At ol @t S B2 H bl
t t

By applying Bony’s decomposition for the horizontal variable to u®0,v gives
uFdpv = T + TgwuE + R(wf, 0,v).
Due to ) .
b 1 1
15k 1w ()l S Ilu ()11 24 19y ()11 2y

and (3.18), we have

/} (AR(T0,0)e | Afwd) .| dt’
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k! 2 h h 2
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1
<29 F|1us |2 ~ 12 '
BBy I0me zzqm bl
While again thanks to (3.18), we find
K
1S} —10zve (1) | e S 27 10yue(t') 52,
which leads to

t
[ 1@t acsa | hud) ] ot

Y / 15— 10zve (¢') || oo | AT ug (1) | 2 | Afwd ()| 2 dt’
\kz' k<4

t 1
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1
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Along the same line, we obtain
t
/ (BB, D))o | Aud) o] dt

Py / 1A% (#)| 2 (o) | A Orve () | 2 | Ay ()| 2 A
K >k—3

; t :
2 3 ¥ sl I8kl ([ 10614 IARB W) )
k'>k—3

1
—k 5
Sdi2 "t |lugl

- 2~
LgO(B%)Hayu@HL%(BQ)Hw@HLf,g(t)(Bl)'

This gives rise to

1
h u I < J29=k|, |12 _ 20
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e The estimate of fo |(AR(v7 0, v%)e|ARwg) ;.| dt'.
We first note that

v Oyv° = vIyw? + w?dyw? + vIyv + w2 dyv.
We first deduce Lemma 3.3 that

t
52/0 ‘(AE(wQ(‘)ywz)@ | A};w%)Lz‘ dt' < diZ*kH(wé,aw%)H%?é( (B1)"

t)
It follows from (5.13) that
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And (5.11) ensures that
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Summing up (5.15-5.18) gives rise to (5.7). O
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