J. P. Neoptolemos, J. Kleeff, P. Michl, E. Costello, W. Greenhalf et al., Therapeutic developments in pancreatic cancer: Current and future perspectives, Nat. Rev. Gastroenterol. Hepatol, vol.15, pp.333-348, 2018.

J. Xu, B. Jiang, Y. Chen, F. Z. Qi, J. H. Zhang et al., Optimal adjuvant chemotherapy for resected pancreatic adenocarcinoma: A systematic review and network meta-analysis, Oncotarget, vol.8, pp.81419-81429, 2017.

E. Pons-tostivint, B. Thibault, and J. Guillermet-guibert, Targeting PI3K Signaling in Combination Cancer Therapy, Trends Cancer, vol.3, pp.454-469, 2017.

A. K. Witkiewicz, E. A. Mcmillan, U. Balaji, G. Baek, W. C. Lin et al., Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets, Nat. Commun, vol.6, 2015.

R. Baer, C. Cintas, M. Dufresne, S. Cassant-sourdy, N. Schonhuber et al., Pancreatic cell plasticity and cancer initiation induced by oncogenic Kras is completely dependent on wild-type PI 3-kinase p110alpha, Genes Dev, vol.28, pp.2621-2635, 2014.

R. Baer, C. Cintas, N. Therville, and J. Guillermet-guibert, Implication of PI3K/Akt pathway in pancreatic cancer: When PI3K isoforms matter?, Adv. Biol. Regul, vol.59, pp.19-35, 2015.

S. Eser, N. Reiff, M. Messer, B. Seidler, K. Gottschalk et al., Selective requirement of PI3K/PDK1 signaling for Kras oncogene-driven pancreatic cell plasticity and cancer, Cancer Cell, vol.23, pp.406-420, 2013.

C. Y. Wu, E. S. Carpenter, K. K. Takeuchi, C. J. Halbrook, L. V. Peverley et al., PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice, Gastroenterology, vol.147, 2014.

H. A. Burris, M. J. Iii;-moore, J. Andersen, M. R. Green, M. L. Rothenberg et al., Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: A randomized trial, J. Clin. Oncol, vol.15, pp.174-195, 1997.

A. Adamska, A. Domenichini, and M. Falasca, Pancreatic Ductal Adenocarcinoma: Current and Evolving Therapies, Int. J. Mol. Sci, vol.18, 1338.

S. A. Danovi, H. H. Wong, and N. R. Lemoine, Targeted therapies for pancreatic cancer, Br. Med. Bull, vol.87, pp.97-130, 2008.

M. Barati-bagherabad, F. Afzaljavan, S. Shahidsales, S. M. Hassanian, and A. Avan, Targeted Therapies in Pancreatic Cancer: Promises and Failures, J. Cell. Biochem, 2017.

A. S. Paulson, H. S. Cao, M. A. Tempero, and A. M. Lowy, Therapeutic advances in pancreatic cancer, Gastroenterology, vol.144, pp.1316-1326, 2013.

V. Hoff, D. D. Ramanathan, R. K. Borad, M. J. Laheru, D. A. Smith et al., Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: A phase I/II trial, J. Clin. Oncol, vol.29, pp.4548-4554, 2011.

F. De-vita, J. Ventriglia, A. Febbraro, M. M. Laterza, A. Fabozzi et al., NAB-paclitaxel and gemcitabine in metastatic pancreatic ductal adenocarcinoma (PDAC): From clinical trials to clinical practice, BMC Cancer, vol.16, 2016.

T. Conroy, F. Desseigne, M. Ychou, O. Bouche, R. Guimbaud et al., FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer, N. Engl. J. Med, vol.364, pp.1817-1825, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00598658

K. S. Gunturu, X. Yao, X. Cong, J. R. Thumar, H. S. Hochster et al., FOLFIRINOX for locally advanced and metastatic pancreatic cancer: Single institution retrospective review of efficacy and toxicity, Med. Oncol, 2013.

I. Humphery-smith, A human proteome project with a beginning and an end, Proteomics, vol.4, pp.2519-2521, 2004.

J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse, Electrospray ionization for mass spectrometry of large biomolecules, Science, vol.246, pp.64-71, 1989.

M. Bantscheff, S. Lemeer, M. M. Savitski, and B. Kuster, Quantitative mass spectrometry in proteomics: Critical review update from 2007 to the present, Anal. Bioanal. Chem, vol.404, pp.939-965, 2012.

Y. Yang, V. Franc, A. J. Heck, and . Glycoproteomics, A Balance between High-Throughput and In-Depth Analysis, vol.35, pp.598-609, 2017.

R. E. Heap, M. S. Gant, F. Lamoliatte, J. Peltier, and M. Trost, Mass spectrometry techniques for studying the ubiquitin system, Biochem. Soc. Trans, vol.45, pp.1137-1148, 2017.

A. Hogrebe, L. Von-stechow, D. B. Bekker-jensen, B. T. Weinert, C. D. Kelstrup et al., Benchmarking common quantification strategies for large-scale phosphoproteomics, Nat. Commun, vol.9, 1045.

M. Mueller, L. Martens, and R. Apweiler, Annotating the human proteome: Beyond establishing a parts list, Biochim. Biophys. Acta, vol.1774, pp.175-191, 2007.

J. Castillo, V. Bernard, F. A. Lucas, K. Allenson, M. Capello et al., Surfaceome profiling enables isolation of cancer-specific exosomal cargo in liquid biopsies from pancreatic cancer patients, Ann. Oncol, vol.29, pp.223-229, 2018.

M. Capello, L. E. Bantis, G. Scelo, Y. Zhao, P. Li et al., Sequential Validation of Blood-Based Protein Biomarker Candidates for Early-Stage Pancreatic Cancer, J. Natl. Cancer Inst, vol.109, 2017.

T. Grote, D. R. Siwak, H. A. Fritsche, C. Joy, G. B. Mills et al., Validation of reverse phase protein array for practical screening of potential biomarkers in serum and plasma: Accurate detection of CA19-9 levels in pancreatic cancer, Proteomics, vol.8, pp.3051-3060, 2008.

K. Honda, M. Kobayashi, T. Okusaka, J. A. Rinaudo, Y. Huang et al., Plasma biomarker for detection of early stage pancreatic cancer and risk factors for pancreatic malignancy using antibodies for apolipoprotein-AII isoforms, Sci. Rep, 2015.

M. Ilies, P. K. Sappa, C. A. Iuga, F. Loghin, M. G. Salazar et al., Plasma protein profiling of patients with intraductal papillary mucinous neoplasm of the pancreas as potential precursor lesions of pancreatic cancer, Clin. Chim. Acta, vol.477, pp.127-134, 2018.

L. Ligat, N. Saint-laurent, A. El-mrani, V. Gigoux, T. Saati et al., Pancreatic preneoplastic lesions plasma signatures and biomarkers based on proteome profiling of mouse models, Br. J. Cancer, vol.113, pp.1590-1598, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01926958

T. Crnogorac-jurcevic, R. Gangeswaran, V. Bhakta, G. Capurso, S. Lattimore et al., Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma, Gastroenterology, vol.129, pp.1454-1463, 2005.

F. Fakelman, K. Felix, M. W. Buchler, and J. Werner, New pre-analytical approach for the deep proteome analysis of sera from pancreatitis and pancreas cancer patients, Arch. Physiol. Biochem, vol.116, pp.208-217, 2010.

B. M. Gruner, H. Hahne, P. K. Mazur, M. Trajkovic-arsic, S. Maier et al., MALDI imaging mass spectrometry for in situ proteomic analysis of preneoplastic lesions in pancreatic cancer, PLoS ONE, vol.7, 2012.

C. Jenkinson, V. Elliott, U. Menon, S. Apostolidou, O. E. Fourkala et al., Evaluation in pre-diagnosis samples discounts ICAM-1 and TIMP-1 as biomarkers for earlier diagnosis of pancreatic cancer, J. Proteom, vol.113, pp.400-402, 2015.

C. Jenkinson, V. L. Elliott, A. Evans, L. Oldfield, R. E. Jenkins et al., Decreased Serum Thrombospondin-1 Levels in Pancreatic Cancer Patients Up to 24 Months Prior to Clinical Diagnosis: Association with Diabetes Mellitus, Clin. Cancer Res, vol.22, pp.1734-1743, 2016.

C. Lin, W. C. Wu, G. C. Zhao, D. S. Wang, W. H. Lou et al., ITRAQ-based quantitative proteomics reveals apolipoprotein A-I and transferrin as potential serum markers in CA19-9 negative pancreatic ductal adenocarcinoma, Medicine

S. Mustafa, L. Pan, A. Marzoq, M. Fawaz, L. Sander et al., Comparison of the tumor cell secretome and patient sera for an accurate serum-based diagnosis of pancreatic ductal adenocarcinoma, Oncotarget, vol.8, pp.11963-11976, 2017.

J. Park, E. Lee, K. J. Park, H. D. Park, J. W. Kim et al., Large-scale clinical validation of biomarkers for pancreatic cancer using a mass spectrometry-based proteomics approach, Oncotarget, vol.8, pp.42761-42771, 2017.

M. Saraswat, S. Joenvaara, H. Seppanen, H. Mustonen, C. Haglund et al., Comparative proteomic profiling of the serum differentiates pancreatic cancer from chronic pancreatitis, vol.6, pp.1738-1751, 2017.

S. Takano, K. Sogawa, H. Yoshitomi, T. Shida, K. Mogushi et al., Increased circulating cell signalling phosphoproteins in sera are useful for the detection of pancreatic cancer, Br. J. Cancer, vol.103, pp.223-231, 2010.

A. Y. Wehr, W. T. Hwang, I. A. Blair, and K. H. Yu, Relative quantification of serum proteins from pancreatic ductal adenocarcinoma patients by stable isotope dilution liquid chromatography-mass spectrometry, J. Proteome Res, vol.11, pp.1749-1758, 2012.

R. Chen, S. Pan, K. Cooke, K. W. Moyes, M. P. Bronner et al., Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis, Pancreas, vol.34, pp.70-79, 2007.

K. S. Jabbar, L. Arike, C. S. Verbeke, R. Sadik, and G. C. Hansson, Highly Accurate Identification of Cystic Precursor Lesions of Pancreatic Cancer Through Targeted Mass Spectrometry: A Phase IIc Diagnostic Study, J. Clin. Oncol, vol.36, pp.367-375, 2018.

A. R. Shekouh, C. C. Thompson, W. Prime, F. Campbell, J. Hamlett et al., Application of laser capture microdissection combined with two-dimensional electrophoresis for the discovery of differentially regulated proteins in pancreatic ductal adenocarcinoma, Proteomics, vol.3, 1988.

B. Sitek, B. Sipos, I. Alkatout, G. Poschmann, C. Stephan et al., Analysis of the pancreatic tumor progression by a quantitative proteomic approach and immunhistochemical validation, J. Proteome Res, vol.8, pp.1647-1656, 2009.

D. Britton, Y. Zen, A. Quaglia, S. Selzer, V. Mitra et al., Quantification of pancreatic cancer proteome and phosphorylome: Indicates molecular events likely contributing to cancer and activity of drug targets, PLoS ONE, vol.9, 2014.

Y. J. Huang, M. L. Frazier, N. Zhang, Q. Liu, and C. Wei, Reverse-phase protein array analysis to identify biomarker proteins in human pancreatic cancer, Dig. Dis. Sci, vol.59, pp.968-975, 2014.

P. Y. Chen, M. D. Muzumdar, K. J. Dorans, R. A. Robbins, A. Bhutkar et al., Adaptive and reversible resistance to Kras inhibition in pancreatic cancer cells, Cancer Res, vol.78, pp.985-1002, 2018.

B. M. Gruner, I. Winkelmann, A. Feuchtinger, N. Sun, B. Balluff et al., Modeling Therapy Response and Spatial Tissue Distribution of Erlotinib in Pancreatic Cancer, Mol. Cancer Ther, vol.15, pp.1145-1152, 2016.

C. J. Tape, S. Ling, M. Dimitriadi, K. M. Mcmahon, J. D. Worboys et al., Oncogenic KRAS Regulates Tumor Cell Signaling via Stromal Reciprocation. Cell, vol.165, 1818.

J. Brandi, E. D. Pozza, I. Dando, G. Biondani, E. Robotti et al., Secretome protein signature of human pancreatic cancer stem-like cells, J. Proteom, vol.136, pp.1-12, 2016.

M. Gronborg, T. Z. Kristiansen, A. Iwahori, R. Chang, R. Reddy et al., Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach, Mol. Cell. Proteom, vol.5, pp.157-171, 2006.

J. Brandi, I. Dando, E. D. Pozza, G. Biondani, R. Jenkins et al., Proteomic analysis of pancreatic cancer stem cells: Functional role of fatty acid synthesis and mevalonate pathways, J. Proteom, vol.150, pp.310-322, 2017.

E. S. Humphrey, S. P. Su, A. M. Nagrial, F. Hochgrafe, M. Pajic et al., Resolution of Novel Pancreatic Ductal Adenocarcinoma Subtypes by Global Phosphotyrosine Profiling, Mol. Cell. Proteom, vol.15, pp.2671-2685, 2016.

M. S. Kim, Y. Zhong, S. Yachida, N. V. Rajeshkumar, M. L. Abel et al., Heterogeneity of pancreatic cancer metastases in a single patient revealed by quantitative proteomics, Mol. Cell. Proteom, vol.13, pp.2803-2811, 2014.

X. Wang, J. Niu, J. Li, X. Shen, S. Shen et al., Temporal Effects of Combined Birinapant and Paclitaxel on Pancreatic Cancer Cells Investigated via Large-scale, Ion-Current-Based Quantitative Proteomics (IonStar), Mol. Cell. Proteom, vol.17, pp.655-671, 2018.

B. Domon and R. Aebersold, Options and considerations when selecting a quantitative proteomics strategy, Nat. Biotechnol, vol.28, pp.710-721, 2010.

H. Kosako and K. Nagano, Quantitative phosphoproteomics strategies for understanding protein kinase-mediated signal transduction pathways, Expert Rev. Proteom, vol.8, pp.81-94, 2011.

P. R. Cutillas and C. Jorgensen, Biological signalling activity measurements using mass spectrometry, Biochem. J, vol.434, pp.189-199, 2011.

A. H. Sikkema, W. F. Den-dunnen, S. H. Diks, M. P. Peppelenbosch, and E. S. De-bont, Optimizing targeted cancer therapy: Towards clinical application of systems biology approaches, Crit. Rev. Oncol. Hematol, vol.82, pp.171-186, 2012.

M. J. Moore, D. Goldstein, J. Hamm, A. Figer, J. R. Hecht et al., Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group, J. Clin. Oncol, vol.25, pp.1960-1966, 2007.

P. Rougier, H. Riess, R. Manges, P. Karasek, Y. Humblet et al., Randomised, placebo-controlled, double-blind, parallel-group phase III study evaluating aflibercept in patients receiving first-line treatment with gemcitabine for metastatic pancreatic cancer, Eur. J. Cancer, vol.49, pp.2633-2642, 2013.

I. Amanam and V. Chung, Therapies for Pancreatic Cancer, Cancers, vol.10, 2018.

D. Marco, M. Grassi, E. Durante, S. Vecchiarelli, S. Palloni et al., State of the art biological therapies in pancreatic cancer, World J. Gastrointest. Oncol, vol.8, pp.55-66, 2016.

R. A. Burrell and C. Swanton, Tumour heterogeneity and the evolution of polyclonal drug resistance, Mol. Oncol, vol.8, pp.1095-1111, 2014.

V. Almendro, A. Marusyk, and K. Polyak, Cellular heterogeneity and molecular evolution in cancer, Annu. Rev. Pathol, vol.8, pp.277-302, 2013.

A. P. Makohon-moore, M. Zhang, J. G. Reiter, I. Bozic, B. Allen et al., Limited heterogeneity of known driver gene mutations among the metastases of individual patients with pancreatic cancer, Nat. Genet, vol.49, pp.358-366, 2017.

N. Waddell, M. Pajic, A. M. Patch, D. K. Chang, K. S. Kassahn et al., Whole genomes redefine the mutational landscape of pancreatic cancer, Nature, vol.518, pp.495-501, 2015.

P. Bailey, D. K. Chang, K. Nones, A. L. Johns, A. M. Patch et al., Genomic analyses identify molecular subtypes of pancreatic cancer, Nature, vol.531, pp.47-52, 2016.

S. Sivakumar, I. De-santiago, L. Chlon, and F. Markowetz, Master Regulators of Oncogenic KRAS Response in Pancreatic Cancer: An Integrative Network Biology Analysis, PLoS Med, vol.14, 2017.

E. A. Collisson, A. Sadanandam, P. Olson, W. J. Gibb, M. Truitt et al., Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy, Nat. Med, vol.17, pp.500-503, 2011.

Y. Zhang, . Kwok-shing, P. Ng, M. Kucherlapati, F. Chen et al., A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR Pathway Alterations, Cancer Cell, vol.31, 2017.

C. Cintas and J. Guillermet-guibert, Heterogeneity of Phosphatidylinositol-3-Kinase (PI3K)/AKT/Mammalian Target of Rapamycin Activation in Cancer: Is PI3K Isoform Specificity Important? Front, vol.7, p.330, 2017.

X. Chen, X. Liu, H. Lang, S. Zhang, Y. Luo et al., S100 calcium-binding protein A6 promotes epithelial-mesenchymal transition through beta-catenin in pancreatic cancer cell line, PLoS ONE, vol.10, p.121319, 2015.

J. Zhu, J. He, Y. Liu, D. M. Simeone, and D. M. Lubman, Identification of glycoprotein markers for pancreatic cancer CD24+CD44+ stem-like cells using nano-LC-MS/MS and tissue microarray, J. Proteome Res, vol.11, pp.2272-2281, 2012.

R. Huang, Z. Chen, L. He, N. He, Z. Xi et al., Mass spectrometry-assisted gel-based proteomics in cancer biomarker discovery: Approaches and application, vol.7, pp.3559-3572, 2017.

H. Kim, J. Park, J. I. Wang, and Y. Kim, Recent advances in proteomic profiling of pancreatic ductal adenocarcinoma and the road ahead. Expert Rev, vol.14, pp.963-971, 2017.

S. Pan, T. A. Brentnall, and R. Chen, Proteomics analysis of bodily fluids in pancreatic cancer, Proteomics, vol.15, pp.2705-2715, 2015.

T. Wakabayashi, N. Sawabu, Y. Takemori, Y. Satomura, H. Kidani et al., Diagnostic significance of cancer-associated carbohydrate antigen (CA19-9) concentrations in pancreatic juice: Analysis in pure pancreatic juice collected by endoscopic aspiration and immunohistochemical study in chronic pancreatitis, Pancreas, vol.8, pp.151-159, 1993.

C. Sun, A. H. Rosendahl, D. Ansari, and R. Andersson, Proteome-based biomarkers in pancreatic cancer, World J. Gastroenterol, vol.17, pp.4845-4852, 2011.

J. Kim, W. R. Bamlet, A. L. Oberg, K. G. Chaffee, G. Donahue et al., Detection of early pancreatic ductal adenocarcinoma with thrombospondin-2 and CA19-9 blood markers, Sci. Transl. Med, vol.9, 2017.

S. Nie, A. Lo, J. Wu, J. Zhu, Z. Tan et al., Glycoprotein biomarker panel for pancreatic cancer discovered by quantitative proteomics analysis, J. Proteome Res, vol.13, pp.1873-1884, 2014.

L. C. Gillet, P. Navarro, S. Tate, H. Rost, N. Selevsek et al., Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: A new concept for consistent and accurate proteome analysis, Mol. Cell. Proteom, vol.11, 2012.

L. Krasny, P. Bland, N. Kogata, P. Wai, B. A. Howard et al., SWATH mass spectrometry as a tool for quantitative profiling of the matrisome, J. Proteom, 2018.

P. P. Hsu, S. A. Kang, J. Rameseder, Y. Zhang, K. A. Ottina et al., The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling, Science, vol.332, pp.1317-1322, 2011.

Y. Yu, S. O. Yoon, G. Poulogiannis, Q. Yang, X. M. Ma et al., Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling, Science, vol.332, pp.1322-1326, 2011.

B. Alagesan, G. Contino, A. R. Guimaraes, R. B. Corcoran, V. Deshpande et al., Combined MEK and PI3K inhibition in a mouse model of pancreatic cancer, Clin. Cancer Res, vol.21, pp.396-404, 2015.

M. R. Junttila, V. Devasthali, J. H. Cheng, J. Castillo, C. Metcalfe et al., Modeling targeted inhibition of MEK and PI3 kinase in human pancreatic cancer, Mol. Cancer Ther, vol.14, pp.40-47, 2015.

H. Ying, P. Dey, W. Yao, A. C. Kimmelman, G. F. Draetta et al., Genetics and biology of pancreatic ductal adenocarcinoma, Genes Dev, vol.30, pp.355-385, 2016.

E. Dalla-pozza, M. Manfredi, J. Brandi, A. Buzzi, E. Conte et al., Trichostatin A alters cytoskeleton and energy metabolism of pancreatic adenocarcinoma cells: An in depth proteomic study, J. Cell. Biochem, vol.119, pp.2696-2707, 2018.

R. Hilhorst, L. Houkes, . Van-den, A. Berg, and R. Ruijtenbeek, Peptide microarrays for detailed, high-throughput substrate identification, kinetic characterization, and inhibition studies on protein kinase A, Anal. Biochem, vol.387, pp.150-161, 2009.

H. D. Shukla, Comprehensive Analysis of Cancer-Proteogenome to Identify Biomarkers for the Early Diagnosis and Prognosis of Cancer, vol.5, 2017.

D. Breitkreutz, L. Hlatky, E. Rietman, and J. A. Tuszynski, Molecular signaling network complexity is correlated with cancer patient survivability, Proc. Natl. Acad. Sci, vol.109, pp.9209-9212, 2012.

B. Bournet, A. Vignolle-vidoni, D. Grand, C. Roques, F. Breibach et al., Endoscopic ultrasound-guided fine-needle aspiration plus KRAS and GNAS mutation in malignant intraductal papillary mucinous neoplasm of the pancreas, Endosc. Int. Open, vol.4, pp.1228-1235, 2016.