N

N

Multi-Resource Allocation for Network Slicing under
Service Level Agreements

Francesca Fossati, Stefano Moretti, Stefano Secci

» To cite this version:

Francesca Fossati, Stefano Moretti, Stefano Secci. Multi-Resource Allocation for Network Slicing
under Service Level Agreements. 2019 10th International Conference on Networks of the Future
(NoF), Oct 2019, Rome, Italy. pp.48-53, 10.1109/NoF47743.2019.9014995 . hal-02496683

HAL Id: hal-02496683
https://hal.science/hal-02496683
Submitted on 3 Mar 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02496683
https://hal.archives-ouvertes.fr

Multi-Resource Allocation for Network Slicing
under Service Level Agreements

Francesca Fossati*T, Stefano Morettif, Stefano Secci*
* Cnam, Cedric, 75003 Paris, France. Email: firstname.lastname @cnam.fr
tSorbonne Université, CNRS LIP6, 75005 Paris, France, Email: francesca.fossati @sorbonne-universite.fr
¥ CNRS UMR7243, PSL, Université Paris-Dauphine, Paris, France. Email: stefano.moretti@lamsade.dauphine.fr

Abstract—Network slicing in 5G aims to provide an end-to-
end partition of the physical network that is optimized for the
service it has to supply. Each slice needs to fulfill a Service Level
Agreement (SLA), that is a contract between the slice provider
and the tenants on the quality of service and reliability, expressed
for a diverse set of physical resources (spectrum, link capacity,
computing power, etc). For the multi-resource allocation problem
in network slicing, we provide two scheduling algorithms that
take into account SLA requirements in terms of minimum and
nominal resource quantity demands. We show that the algorithm
that considers the availability rate of the service, in addition
to providing the minimum capacity, has better performances
in terms of time-fairness. For both scheduling algorithms we
consider a user delaying policy able to take into account SLA
priority and latency requirements.

I. INTRODUCTION

Fifth-generation (5G) communication systems have the ob-
jective to achieve different and heterogeneous services or
verticals belonging to different business domains ([1]), e.g.,
agriculture, transport, industry etc. In particular, the commu-
nity agrees on the categorization of the services in three main
classes depending on the latency, frequency, bitrate and re-
liability requirements: enhanced Mobile BroadBand (eMBB),
Ultra Reliable Low Latency Communications (URLLC) and
massive Machine Type Communications (mMTC).

To support the requirements of this type of services, mono-
lithic telecommunication network architectures are expected to
be replaced by more flexible virtualized network environments
created on top of the physical infrastructure by the network
operator. This end-to-end virtual partition of the physical
network is known as network slicing. The network slice has
to be logically isolated from other slices and it is composed
of a heterogeneous set of resources optimized for the set of
services it has to provide [2].

A 5G network needs to fulfill Service Level Agreements
(SLAs) so that - due to the heterogeneity of the requirements
of each tenant - every single slice respects a specific SLA. An
SLA is a contract between the provider and the customer that
specifies the technical conditions of a service provisioning,
i.e, connection performance, availability, liability etc., and the
price of the services [3], by means of measurable parameters
or metrics [4].

In this paper we provide two multi-resource scheduling
algorithms, able to slice the resources between tenants and
to fulfill their SLA in the challenging case in which at least

one resource is not able to fully cover the tenants demand.
In particular we consider three metrics: the first one is the
guarantee of the minimum service, i.e., the minimum amount
of resource that has to be guaranteed to the tenants; the second
one is the nominal capacity, i.e., the amount of resource
required in normal conditions, while the third one is the
service availability, i.e., the measure, in percentage or units
of time, of the successful service access to the tenant. We
firstly propose an algorithm considering only the minimum
service and the nominal capacity requirements, which we then
refine to consider also service availability and to provide an
allocation fairly distributed on time.

The paper is organized as follows. Section II provides a
background on multi-resource allocation, together with a state
of the art on recent works considering resource allocation in
network slicing. In section III we provide two algorithms to
allocate resources respecting the SLA. Section IV provides a
numerical analysis and comparison of the two algorithms and
finally section V concludes the work.

II. BACKGROUND

The allocation of multiple and heterogeneous computing
and network resources could be solved by allocating resources
individually; however, that would be at the expense of fairness
and global system efficiency [10]. To care about these aspects,
it is necessary to adopt a multi-resource approach [5]. Multi-
resource allocation techniques made surface first in data-center
computing, where the problem of jointly managing processor,
memory and storage resources made first surface. The best
known scheduling algorithm in this field is the one proposing
a Dominant Resource Fair (DRF) allocation to decide the
number of tasks of different types to execute [6].

Other models going beyond DRF were also proposed, as
mentioned hereafter. These models can be extended to any
problem where a set of agents has a demand on different
resource types. In network slicing, agents are tenants or
verticals, demanding for a partition of network and computing
infrastructure. While in [6] the demand is for a task to be
executed and the allocation the number of tasks to run, in
network slicing the demand is the quantity of resource needed
by the tenant and the allocation is a portion of the demand
assigned to the tenant, and that for multiple resources.

Formally we can model a network slice allocation problem
as a pair (R, D) where R is a vector containing the avail-

able quantity of each resource and D is the demand matrix
containing the quantity of each resource demanded by each
tenant. Let N = {1,..,n} be the set of tenants and let
M = {1,..,m} be the set of available resources, then R
is a m-dimensional vector and D a n X m matrix. When
each resource is sufficient to fully satisfy the users, each user
receives exactly what asked for, but if it exists at least one
n

resource j € M such that) d;; > rj, i.e., a resource is not

enough to satisfy all tenanltgldemands, the problem becomes
challenging. Being © = (z1,...,zy), with 0 < a; <1Vi € N,
the vector of the percentage of resources allocated to each
tenant, then the allocation matrix A corresponding to z is
dyy -1 dim - 71
. The allocation has to satisfy (i)
dnl * I dnm *Tn
non-negativity, i.e., each user should receive at least zero,
(i1) demands boundedness, i.e., each user cannot receive more
than its demand and (iii) efficiency, i.e., allocations belong
to the admissible region F s.t. > a;; = Y, xdi; < rj,
Vj € M. The described DRF rﬁév can be 7/c.:e(;\rllsidered as a

generalization of the MMF allocation rule because it aims to
provide a MMF allocation across users dominant shares; it has
additional desirable properties [6]. The DRF allocation is the
solution of the following problem:

maximize x
subject to ds;x; = ds;x;, Vi,j € N (D)

0<a;,<1,¥ie N

dij . .
and x € F, where ds; = max;{ 7} is user ¢ dominant share.

Other well known allocation rules are the asset fairness [6],
aiming at equalizing the resource allocated to each users, the
Nash product that maximizes the product of the percentage
of resource to allocate [6], or the Bottleneck-Based Fairness
(BBF) aiming to equalize the share received on the bottleneck
resource [8] and its variant, the bottleneck max fairness [9].
[5] surveys fair multi-resource allocation rules proposed until
2018. [10] presents a framework to generalize single-resource
allocation rules, while proposing two new multi-resource rules.

Recent works deal with resource allocation in network
slicing. These works address the problem from different points
of view. For example some of them are looking at the
allocation of only one resource, such as the radio one ([11]-
[15]), while others looks at the heterogeneous set of resources
provided by the slice ([16]-[18]). Furthermore the objectives
are various (e.g. fairness [11], [16], maximization of service
provider revenue [18], etc.) and the approaches are different:
centralized, i.e., it exists a resource or slice provider that takes
the decision on the resource to allocate ([11], [12] [16]-[18]),
or distributed ([14], [15]).

Our work differs from the cited ones in that we propose
dynamic algorithms taking into account SLA. We propose
centralized fair multi-resource scheduling algorithms meant to
be run at each time frame, investigating how to ensure fairness
looking at past scheduling outcomes.

IIT. SLA-AWARE MULTI-RESOURCE SCHEDULING

A Service Level Agreement (SLA) is a contract between the
resource provider (in our case the slice provider) and the final
user (in our case the tenant) and it can specify (i) the minimum
guaranteed and nominal capacities for each given resource, (ii)
the amount of time the service is guaranteed, (iii) penalties in
case the service requirements are not met, (iv) latency or jitter,
(v) the service assistance, etc. [3]. Between this specification
the one strictly linked to the resource allocation is (i), while
the ones related to a scheduling process are (ii)-(iv).

In this section we propose algorithms considering the
common way SLA management appears in network slicing
specifications, i.e., including a minimum resource amount
or capacity and a success rate in serving the demand, i.e.,
the availability. Furthermore an algorithm supporting user
delaying in the service queue is proposed in order to satisfy
latency requirements.

In the following, we (a) model the problem (III-A), (b)
establish a users delaying policy (III-B), (c¢) define how to
allocate the resources, under the constraint of guaranteeing
a minimum share of resource (III-C), and (d) propose two
scheduling algorithms (III-D,III-E).

A. Problem statement

Given a time frame ¢, the resource allocation problem is
a tuple (Dy, DI, v, e, Ry) where Dy is the demand matrix,
D7 is the matrix containing the minimum amounts of resource
to allocate to each tenant, R; is the available resource, ~; is
a vector containing the priority index of each tenant, v, is a
vector containing the availability rate of each tenant, i.e., it
contains the percentage of time the tenant was served, with at
least the minimum resource. The priority index -, is linked to
the latency of the service: if the service requires a low latency,
its priority is high and the value of , is low; if not, the priority
is lower and the value of ~; is higher. For instance URLLC
services are characterized by higher priority indexes compared
to eMBB and mMTC services.

Key assumptions are as follows: (i) the demand processing
time is discrete, i.e., the matrices D; and Dj* collect the
information about the users demand in the time frame ¢ — 1
and they are treated in the same moment when the time frame
t starts; (ii) the priority index ; depends only on the service
latency, while in general it can be linked also to the tenant
importance, measurable by how much a tenant is willing to
pay for a service. Note that in the following when we avoid
the subscript ¢ in the notation we are considering a generic
instant of time .

B. User delaying policy
When the slice provider is not able to satisfy the minimum
n

allocation of each tenant (Zl d;;? > rj, for at least one
i=
resource j), it is necessary to introduce a process to eliminate

tenants and put them in hold for the next time slot. The order
on which tenants have to be held needs to take into account
the tenant priority index. Different user delaying policies are

(a) Considering the priority index

y=[121122 v=[872012

i-[E[zle 1] s

(b) Considering the priority index and the availability rate

Fig. 1: Order of users delaying

possible. Here we propose one that takes into account only the
priority index, and one that considers both the user priority
index and the current availability rate of each tenant.

The two policies are depicted in Figure 1. In the first one
only the priority index is used as decision variable. The order
of users to remove is established ordering the users from the
lower to the higher priority ones, and if tenants belong to the
same class of service (i.e. they have the same index) the choice
is done randomly. In Fig. la the vector is giving the position
index of the users and it is clear that firstly tenants with
priority 2 are eliminated, and then are the ones with priority 1.
The second policy is based on the idea that we should firstly
consider the priority index and then look at the value of v.
Higher values of v correspond to higher percentages of time
in which tenants are served in the past. It follows that, inside
the same class of service we should eliminate users from the
one with highest value of availability rate to the one with a
lower value in order to enforce fairness within the same class
of service. In Fig. 1b, for example, the first tenant of the list is
the 5th one because it has priority 2 and it was served 100%
of the times, while the last is the 4th that has high priority
and it was never served until the considered instant of time.

C. Multi-resource allocation with minimum demand

To solve the multi-resource allocation we chose to use the
DRF rule described in Section II, because of its good proper-
ties in terms of fairness. However, to provide an allocation that
guarantees a quantity of resource not inferior to the minimum
demand we need to modify the capacity constraint of the opti-
mization problem!. In this case we can bound the percentage
of resource to allocate to each tenant to be bigger than the

minimal ones calculated as 2" = max;(z]}) = maz; (i;).
It follows that the problem to solve is:
maximize x
subject to = € F,
ds;x; = ds;r;, Vi,j €N
<z, <1,Vie N

2

1Other rules can be used or proposed; it remains important that they are
adapted to guarantee the minimum allocation to each tenant.

Algorithm 1 Allocation considering minimum capacity re-
quirements (MIN-CAP)

Input: R, D, D™ N, M,~y

Output: A

o < ordered vector of users using y
N* <« N
P+ 0
count <1
while it 3 at least one j € M s.t. 3,y d} > 15 do
i* < o(count)
N* < NZX,.
P+ Py
for k=card(P):1 do
if ZieN* dij +dkj < Tj,Vj € M and k € P then
N* < N,
P+ P
end if
end for
count < count + 1
end while
if it 3 at least one j s.t. . n. dij > r; then
a; <+ solution of (2) Vi € N*
else
a; < d; Vi € N*
end if
a; < zeros(m) Vi & N*

As already mentioned, it is possible that the optimization
problem has no solution when there are no enough resources
to satisfy tenants minimal demands. For this reason we intro-
duced the user delaying policy. In the following, we combine
the proposed resource allocation and the delaying policy so
that the two scheduling algorithms are able to satisfy SLA
constraints.

D. Baseline algorithm: minimum capacity (MIN-CAP)

We propose a baseline algorithm called ‘MIN-CAP’, that
uses the first re-order of the users, i.e., the one considering
only the priority index.

The allocation resulting from (2) is calculated after having
checked that the minimum demands for each tenant can be
satisfied. In the case this is not possible, the tenants are, one
at time, delayed using the proposed order. Each time a user
is delayed the algorithm checks if there is one or more than
one user already delayed that can be re-introduced because
its own minimal demand can be satisfied. Obviously the order
used for the re-introduction check follows the reverse order of
the tenants delaying.

The pseudo-code shows the algorithm used at time slot ¢.
The notation is lightened avoiding the subscript ¢.

E. Refined algorithm: considering service availability guar-
antees (REF-MIN-CAP)

The MIN-CAP algorithm does not take into account SLA
requirements on the service availability. For example, if a

Algorithm 2 Refined algorithm (REF-MIN-CAP)

for t = 0:T do
Input: Rt, Dt, Dln7 N7 M, Ve, Vt
Output: A;

We avoid from here the subscript t

o + ordered vector of users using v and v
N*+— N
P+
count <1
while it 3 at least one j € M s.t. Y,y df > 7; do
i* < o(count)
N* < NZ*..
P« Py«
for k=card(P):1 do
if ZiEN* dij —|—dkj < Tj,Vj € M and k € P then
N*«+ N7,
P+ P_k
end if
end for
count < count + 1
end while
update of v
if it 3 at least one j s.t.) . _n. di; > r; then
a; < solution of (2) Vi € N*
else
a; < d; Yi e N*
end if
a; < zeros(m) Vi & N*
t=t+1
end for

tenant is left in a standby state at scheduling time slot ¢ in
order to guarantee the minimum level of service to the other
tenants, it shall likely be served in the time slot ¢t + 1, or not
too late. Thus, we want an algorithm that is time-fair, i.e.,
when the number of time slots 7" is big enough, the waiting
time for each tenant is similar and kept small.

With the refined REF-MIN-CAP algorithm, in order to pro-
vide time-fair allocations we take into account the availability
rate v and we use the same algorithm, changing only the
user delaying policy. In particular we use the second policy
considering both v and 7.

IV. NUMERICAL EVALUATION

We provide two cases for the numerical analysis. In the first
one we compare the two algorithms in the case in which the
priority index of each user is the same. This means that for
the first algorithm the users delaying policy is random, while
for the second one it depends only on the availability rate. We
consider 200 time slots and a slicing problem with 3 resources
meant to represent live memory, vCPU, link capacity, and
5 slices in the scheduling queue; the resource amounts are
respectively fixed to 2000 GB, 150 vCPU and 50 Gbps.

API Name Memory (GB) | vCPUs | Gbps Instance Type
m4.10xlarge 160.00 40.00 10.00 General purpose
m4.16xlarge 256.00 64.00 25.00 General purpose
c5.9xlarge 72.00 36.00 10.00 | Compute optimized
c5.18xlarge 144.00 72.00 25.00 | Compute optimized
c4.8xlarge 60.00 36.00 10.00 | Compute optimized
r4.8xlarge 244.00 32.00 10.00 Memory optimized
r4.16xlarge 488.00 64.00 25.00 Memory optimized
x1.16xlarge 976.00 64.00 10.00 Memory optimized
x1.32xlarge 1952.00 128.00 | 25.00 Memory optimized
xle.16xlarge 1952.00 64.00 10.00 Memory optimized
xle.32xlarge 3904.00 128.00 | 25.00 Memory optimized
p3.8xlarge 244.00 32.00 10.00 | Accelerated comput.
p3.16xlarge 488.00 64.00 25.00 | Accelerated comput.
p2.8xlarge 488.00 32.00 10.00 | Accelerated comput.
p2.16xlarge 732.00 64.00 25.00 | Accelerated comput.
g3.8xlarge 244.00 32.00 10.00 | Accelerated comput.
g3.16xlarge 488.00 64.00 25.00 | Accelerated comput.
fl.16xlarge 976.00 64.00 25.00 | Accelerated comput.
h1.8xlarge 128.00 32.00 10.00 Storage optimized
hl.16xlarge 256.00 64.00 25.00 Storage optimized
d2.8xlarge 244.00 36.00 10.00 Storage optimized
i3.8xlarge 244.00 32.00 10.00 Storage optimized
i3.16xlarge 488.00 64.00 25.00 Storage optimized
TABLE I: Amazon EC2 istances
"] [~71 min-cap i : @ min-cap

o ref-min-cap

50
I

ref-min-cap

40
I

Occurrence (%)

20
I

10
I

Unavailability interval (# time slots)
30
|

H

0

@

0
I

—_—
T T

1 2 3 4
Number of served tenants

(a) Average number of served clients (b) unavailability gap (best served -
worst served)

Fig. 2: Number of served client and unavailability gap

We randomly generate the slice demands using a subset of
Amazon EC2 instances [19] (Table I) so that the congestion
levels (fraction of the global demand not allocated due to
resource scarcity) is heterogeneous. The minimum demand
associated to each tenant is the minimum template available
for each ‘Instance Type’: for example if the tenant demand
instance type is ‘compute optimized’, then its minimum de-
mand is 72 GB, 36 vCPUs, 10 Gbps (c5.9xlarge). We repeat
the simulation 100 times.

We are interested in evaluating the performance of the two
proposed algorithms. Figure 2 shows the average number of
clients that are served at each time slot and the boxplots of
the gap between the number of times the best served and the
worst served tenant are served. From Figure 2a we can notice
that there are no big differences in the number of served client
between the two algorithms. The REF-MIN-CAP one is slightly
better because it increases the number of times 4 tenants are
served. The major differences between the two algorithms are
shown in Figure 2b. It is clear that for REF-MIN-CAP after
200 time slots the number of time tenants are not served is
the same (the gap is between 0 and 2 time slots) while with
MIN-CAP the best served client is served a higher number of
times, with a median value around 25.

8 m Tenant1
2, | A m Tenant 2
% = | @ Tenant 3
2R I | ® Tenant 4
o o Tenant 5
o | | [
£, | |
=10 4 I
$°0 ot adba W\\‘ ‘A I l\ h l‘ Al
2 | oA nall o e AN A A

T T T T T T T
0 20 40 60 80 100 120
Time step
8 m Tenant 1
2, | m Tenant 2
% & G Tenant 3
g & m Tenant 4
ie i @ Tenant 5
o
£Eo |
o
£
577 . i A A . Monn A
= srmrliaaood N Bvocsoa NGRS e IRABOINSBA iaboA A e
°

T T T T T T T
0 20 40 60 80 100 120

Time step

(b) Waiting time of one repetition using REF-MIN-CAP

®] [=~% min-cap
= ref-min-cap
=
‘EJ/(O
oo
i
22
8
8 |
o e
2-3 45 6-7 >7
Waiting time
(c) Waiting time histogram
Fig. 3: Waiting time analysis.
1 | !
[Cmin-cap
- [Iref-min-cap
0.8 o
° _—
©
@ 06]
[0}
2
8
2 04
<3
<
02 H
0 J

mMTC
Type of service

I "
URLLC eMBB Best effort Al

Fig. 4: Service availability for different slices.

Figure 3 shows the results of the waiting time analysis.
Figure 3a and 3b show the waiting time of one simulation
repetition on the 200 time slots. We can notice that MIN-CAP
does not prevent the waiting time from growing excessively
(in our case it can reach 30 time slots). This is due to the
absence of the availability index that considers past service
times. This index, that is present in REF-MIN-CAP, avoids
an excessive growth of the waiting time and in particular,
in our case, the waiting time does not exceed 5 time slots
(Figure 3b). Figure 3c confirms that the waiting time of REF-
MIN-CAP is bounded at 5, while for MIN-CAP, even if with a
low probability, it can take higher values.

In the second numerical case we want to compare the two

Service type Instance type 107

URLLC Accelerated computing | 1

<MBB Compute opt_im_ized 2
Memory optimized

mMTC Storage optimized 3

Best effort General purpose 4

TABLE II: Adopted mapping of EC2 templates to 5G slices.

algorithms when users have different priorities linked to the
latency required by the service. Following what recommended
in [20], the importance of the latency requirement is high
for URLLC services (implying not only very low propagation
delay but also very low coding and processing time), medium
for eMBB services and low for mMTC services. Moreover,
mMTC service are expected to call for in-network storage
and reformatting of exchanged IoT or machine generated data.
Finally, eMBB services are expected to call for an amount
of computing resources proportional to the bit-rate, which is
meant to be an important one, in the order of the Gbps. Given
these qualitative requirements, at first instance, we consider
four levels of priority: three characterizing the three classes
of services proposed for the 5G, and one characterizing the
best effort class. Given the lack of slice templates in current
5G specifications, we propose to derive and differentiate them
using Amazon template instance types in Table I. According
to the service requirement assumptions above, in Table IT we
associate the ‘accelerated computing’ template to URLLC, the
‘storage optimized’ one to mMTC, the ‘compute and memory
optimized’ one to eMBB and the ‘general purpose’ one to the
best effort class; the value of « is an arbitrary one, it just
indicates the priority order.

Hence we randomly generate the slice demands using the
differentiated subset of Amazon EC2 instances [19] (Table I),
including the instance type for class differentiation as per
Table II, with an heterogeneous level of congestion, and
the minimum demand considered for each tenant set as the
minimum template available for each ‘Instance Type’. We
repeat the simulation 100 times.

We plot in Fig. 4 the availability performance, i.e., the
percentage of time a tenant is served when it submits a request.
We do not differentiate among the case where the demand is
a new demand, and the one where a demand comes from a
tenant that is waiting to be served for already some time-
slots. We can clearly see that the best-served tenants are the
ones requiring an URLLC service; however, the REF-MIN-CAP
algorithm shows more balance in the availability performance
also for low priority classes. Non differentiating the service
types (columns All), the REF-MIN-CAP brings a better global
availability with respect to MIN-CAP.

We then consider in Fig. 5 the waiting time of the tenants,
i.e., the time passing from the submission of the demand
and the time in which the service is provided. We do not
plot the outlier values of the boxplot, but we summarize the
information about them in Table III. One can clearly observe
that the second algorithm has better performance because, with
a probability of at least 75%, the tenants are served when they
submit the demand, independently of the type of service they

URLLC eMBB mMTC Best effort All

0

__EI_Ij_H_IZI_

o L L L L L
R &R R &R
<& é-\\o & @Q

o
@ @

Waiting time (# time slots)

Y R R R

2

& c'(p & «
&

&

Fig. 5: Boxplot distribution for the waiting time.

Service Type MIN-CAP ‘ REF-MIN-CAP
Probability | Range | Probability | Range

URLLC 1074 2 0.18 2
eMBB 0.1 [4, 56] 0.2 (2, 45]
mMTC 0.09 [4,15] 0.19 [2,9]
Best effort 0.06 [12,46] 0.2 (2, 16]

TABLE III: Boxplots outliers

require. On the other hand, the first algorithm differentiates the
tenants, serving with a probability of at least 75% the URLLC
tenants in 1 time-slot, and the eMBB and the mMTC tenants
in 1 or 2 time-slot and the best effort in maximum 5 time-slots.
Nonetheless, we need to consider that there is a not negligible
probability that the service time gets high. Analyzing Table III
we notice that for URLLC services, with the REF-MIN-CAP, it
is possible for tenants to wait 2 time slots before being served,
while with the first algorithm the probability that tenants are
delayed is negligible. For all the other types of service, tenants
can wait a long time before being served, but introducing the
considerations about the availability rate in the delay policy,
we can reduce the waiting time. In particular both the lower
bound and the upper bound of the time-slot range decrease
using REF-MIN-CAP. This shows how the second algorithm
tries to enhance the global availability for the tenants, while
providing a scheduling algorithm that is “time-fair”.

We can conclude that REF-MIN-CAP differs from MIN-CAP
in taking into account the tenants service history, by

« avoiding an excessive increase of the waiting time;
o improving the overall availability of the system.

When taking into account services belonging to different
classes, i.e., with different priorities, considering the availabil-
ity rate slightly penalizes tenants with high priority, while it
can improve the satisfaction of the other tenants, decreasing
the waiting time. This behavior can certainly be marginally
modified toward more specific requirements adequately tuning
algorithm parameters.

V. CONCLUSIONS

We presented two centralized scheduling algorithms (MIN-
CAP and REF-MIN-CAP) to allocate resources in network
slicing systems. The algorithms take into account the latency
requirement for different services and the SLA requirement
in terms of minimal demand that has to be allocated to
each tenant. The first baseline algorithm considers only the

tenant priority, while the second one considers also the avail-
ability rate with the aim to produce time-fair allocations.
The simulations show that the second algorithm adequately
counterbalances service availability with time-fairness.

The proposed algorithms, and in particular the second one,
represent starting points to customize network slicing allo-
cation performance toward more specific SLA requirements.
For example, it may be interesting to introduce the notion
of demand expiration time, i.e., a deadline within which the
service must be provided.

ACKNOWLEDGEMENT

This work was partially funded by the ANR MAESTRO-5G
(https://maestroSg.roc.cnam.fr) project (ANR-18-CE25-0012).

REFERENCES

[1] NGMN. “5G white paper”. Next generation mobile networks, 2014.

[2] 5G Americas, “Network Slicing for 5G and Beyond”. White Paper, 2016.

[3] D. Verma, “Service level agreements on IP networks”, Proceedings of
the IEEE 92: 1382-1388, 2004.

[4] M. A. Habibi, et al, “The Structure of Service Level Agreement of
Slice-based 5G Network™. arXiv preprint arXiv:1806.10426, 2018.

[5] P. Poullie, T. Bocek, B. Stiller.“A survey of the state-of-the-art in
fair multi-resource allocations for data centers.” IEEE Transactions on
Network and Service Management, 15.1: 169-183, 2018.

[6] A. Ghodsi, et al., “Dominant resource fairness: fair allocation of multiple
resource types.” USENIX NSDI 2011.

[71 O. Wlodzimierz, et al., “Fair optimization and networks: A survey.” J.
of Applied Mathematics, 2014.

[8] Y. Etsion, T. Ben-Nun and D. G. Feitelson, “ A global scheduling
framework for virtualization environments.” [EEE Int. Symposium on
Parallel and Distributed Processing, 2009

[9] T. Bonald, J. Roberts, “ Multi-resource fairness: Objectives, algorithms
and performance.” ACM SIGMETRICS Performance Evaluation Review
43.1, 2015.

[10] F. Fossati, S. Moretti, F. Perny, S. Secci, “ Multi-resource allocation for
network slicing.” HAL technical report, hal-02008115, 2019.

[11] P. Caballero, et al.,“Multi-tenant radio access network slicing: Statistical
multiplexing of spatial loads.” IEEE/ACM Transactions on Networking
(TON) 25.5: 3044-3058, 2017.

[12] M. Jiang, M. Condoluci, T. Mahmoodi, “Network slicing in 5G: An
auction-based model.” IEEE ICC 2017.

[13] P. Caballero, et al., “Network slicing games: Enabling customization in
multi-tenant networks.” IEEE/ACM Transactions on Networking 27.2:
662 - 675, 2019.

[14] Y. Xiao, et al., “Distributed Resource Allocation for Network Slicing
Over Licensed and Unlicensed Bands.” IEEE Journal on Selected Areas
in Communications 36.10: 2260-2274, 2018.

[15] H. Halabian, “Distributed Resource Allocation Optimization in 5G Vir-
tualized Networks.” IEEE Journal on Selected Areas in Communications
37.3: 627-642, 2019.

[16] M. Leconte, et al, “A resource allocation framework for network slicing.”
IEEE INFOCOM 2018.

[17] W. Guan, et al., “A service-oriented deployment policy of end-to-end
network slicing based on complex network theory.”” IEEE Access 6:
19691-19701, 2018

[18] G. Wang, et al., “Resource Allocation for Network Slices in 5G with
Network Resource Pricing.” IEEE GLOBECOM 2017.

[19] Amazon EC2 instances comparison: https://www.ec2instances.info.

[20] M. Series, “IMT VisionFramework and overall objectives of the future
development of IMT for 2020 and beyond.” Recommendation ITU:
2083-0, 2015.

