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ON THE CENTER OF MASS OF THE ELEPHANT RANDOM WALK

BERNARD BERCU AND LUCILE LAULIN

University of Bordeaux, France

Abstract. Our goal is to investigate the asymptotic behavior of the center of mass
of the elephant random walk, which is a discrete-time random walk on integers with a
complete memory of its whole history. In the diffusive and critical regimes, we establish
the almost sure convergence, the law of iterated logarithm and the quadratic strong law
for the center of mass of the elephant random walk. The asymptotic normality, properly
normalized, is also provided. Finally, we prove a strong limit theorem for the center
of mass in the superdiffusive regime. All our analysis relies on asymptotic results for
multi-dimensional martingales.

1. Introduction

Let (Sn) be a standard random walk in Rd. The center of mass Gn of Sn is defined by

(1.1) Gn =
1

n

n∑
k=1

Sk.

The question of the asymptotic behavior of Gn was first raised by Paul Erdös. Very
recently, Lo and Wade [18] extended the results of Grill [14] by studying the asymptotic
behavior of (Gn). More precisely, let Sn = X1 + · · ·+Xn where the increments (Xn) are
independent and identically distributed square integrable random vectors of Rd with mean
µ and covariance matrix Γ. They proved the strong law of large numbers

(1.2) lim
n→∞

1

n
Gn =

1

2
µ a.s.

together with the asymptotic normality,

(1.3)
1√
n

(
Gn −

n

2
µ
) L−→ N(0,

1

3
Γ
)
.

Curiously, no other references are available on the asymptotic behavior of the center of
mass. The proofs of many results on Gn rely on independence and exchangeability of the
increments of the walk. For example, one can observe that

(1.4) Gn =
1

n

n∑
k=1

Sk =
1

n

n∑
k=1

(
n− k + 1

)
Xk

shares the same distribution as

Σn =
1

n

n∑
k=1

kXk.
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A natural question concerns the asymptotic behavior of Gn in other situations where the
increments of the walk are not independent and not identically distributed. Moreover,
geometrical features of the random walk paths of (Sn) is a subject of ongoing interest.
For example, the convex hull Cn = Conv(S1, . . . , Sn) of the n first steps of (Sn) have
recently received renewed attention [16], [26]. More particularly, for the random walk in
R2, the strong law of large numbers and the asymptotic normality of the perimeter and
the diameter of Cn were established in [19], [27].

In this paper, we investigate the asymptotic behavior of the center of mass of the multi-
dimensional elephant random walk. It is a fascinating discrete-time random walk on Zd
where d ≥ 1, which has a complete memory of its whole history. The increments depend on
all the past of the walk and they are not exchangeable. The elephant random walk (ERW)
was introduced by Schütz and Trimper [21] in the early 2000s, in order to investigate
how long-range memory affects the random walk and induces a crossover from a diffusive
to superdiffusive behavior. It was referred to as the ERW in allusion to the traditional
saying that elephants can always remember where they have been before. The elephant
starts at the origin at time zero, S0 = 0. At time n = 1, the elephant moves in one of the
2d directions with the same probability 1/(2d). Afterwards, at time n + 1, the elephant
chooses uniformly at random an integer k among the previous times 1, . . . , n. Then, it
moves exactly in the same direction as that of time k with probability p or in one of the
2d−1 remaining directions with the same probability (1−p)/(2d−1), where the parameter
p ∈ [0, 1] stands for the memory parameter of the ERW [4]. One can observe that the
special case p = 1/(2d) reduces back to the simple random walk on Zd. Therefore, the
position of the elephant at time n+ 1 is given by

(1.5) Sn+1 = Sn +Xn+1

where Xn+1 is the (n + 1)-th increment of the random walk. The ERW shows three
differents regimes depending on the location of its memory parameter p with respect to
the critical value pd lying between 1/(2d) and 3/4,

(1.6) pd =
2d+ 1

4d
.

A wide literature is now available on the ERW in dimension d = 1 where pd = 3/4. A
strong law of large numbers and a central limit theorem for the position Sn, properly
normalized, were established in the diffusive regime p < 3/4 and the critical regime p =
3/4, see [1], [10], [11], [21] and the recent contributions [3], [6], [7], [9], [13], [20], [25]. The
superdiffusive regime p > 3/4 is much harder to handle. Bercu [2] proved that the limit of
the position of the ERW is not Gaussian. Quite recently, Kubota and Takei [17] showed
that the fluctuation of the ERW around its limit in the superdiffusive regime is Gaussian.
Finally, Bercu and Laulin in [4] extended all the results of [2] to the multi-dimensional
ERW where d ≥ 1.

Our strategy for proving asymptotic results for the center of mass of the elephant random
walk (CMERW) is as follows. On the one hand, the behavior of position Sn is closely
related to that of the sequence (Mn) defined, for all n ≥ 0, by Mn = anSn with a1 = 1
and, for all n ≥ 2,

(1.7) an =
n−1∏
k=1

( k

k + a

)
=

Γ(a+ 1)Γ(n)

Γ(n+ a)
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where Γ stands for the Euler Gamma function and a is the fundamental parameter of the
ERW defined by

(1.8) a =
2dp− 1

2d− 1
.

We assume throughout all the paper that a > −1 inasmuch as a = −1 only appears in the
singular case where d = 1 and p = 0. It follows from the very definition of the ERW that
at any time n ≥ 1,

(1.9) E [Xn+1|Fn] =
(
pId −

1− p
2d− 1

Id

) 1

n

n∑
k=1

Xk =
1

n

(2dp− 1

2d− 1

)
Sn =

a

n
Sn a.s.

Hence, we obtain from (1.5) and (1.9) that for any n ≥ 1,

(1.10) E [Sn+1|Fn] =
(

1 +
a

n

)
Sn a.s.

Therefore, we deduce from (1.7) and (1.10) that

(1.11) E [Mn+1|Fn] = an+1

(
1 +

a

n

)
Sn = anSn = Mn a.s.

It means that (Mn) is a locally square-integrable martingale adapted to the filtration (Fn)
where Fn = σ(X1, . . . , Xn). It can be rewritten [4, page 7] in the additive form

(1.12) Mn =

n∑
k=1

akεk

where ε1 = S1 and, for all n ≥ 2,

(1.13) εn = Sn −
(an−1

an

)
Sn−1 = Sn −

(
1 +

a

n− 1

)
Sn−1.

On the other hand, an analogue of equation (1.4) is given by

Gn =
1

n

n∑
k=1

Sk =
1

n

n∑
k=1

1

ak
Mk =

1

n

n∑
k=1

1

ak

k∑
`=1

a`ε` =
1

n

n∑
k=1

akεk

n∑
`=k

1

a`
,

=
1

n

n∑
k=1

ak(bn − bk−1)εk(1.14)

where the sequence (bn) is given by b0 = 0 and, for all n ≥ 1,

(1.15) bn =
n∑
k=1

1

ak
.

In the particular case of the simple random walk on Zd, one can notice that a = 0 so
an = 1/n and bn = n(n+ 1)/2. Hereafter, denoting

(1.16) Nn =

n∑
k=1

akbk−1εk,

it is straightforward to see that E [Nn+1|Fn] = Nn a.s. since E [εn+1|Fn] = 0. Hence, (Nn)
is also a locally square-integrable martingale adapted to the filtration (Fn). We deduce
from (1.14) that

(1.17) Gn =
1

n
(bnMn −Nn).
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Relation (1.17) allows us to establish the asymptotic behavior of the CMERW via an
extensive use of the strong law of large numbers and the central limit theorem for multi-
dimensional martingales [8], [12], [15], [24].

The paper is organized as follows. The main results are given in Section 2. We first
investigate the diffusive regime p < pd and we establish the almost sure convergence, the
law of iterated logarithm and the quadratic strong law for the CMERW. The asymptotic
normality of the CMERW, properly normalized, is also provided. Next, we prove similar
results in the critical regime p = pd. Finally, we establish a strong limit theorem in the
superdiffusive regime p > pd. Our martingale approach is described in Section 3 while all
technical proofs are postponed to Appendices A, B and C.

2. Main results

2.1. The diffusive regime. Our first result deals with the strong law of large numbers
for the CMERW in the diffusive regime where 0 ≤ p < pd. The following strong law for
the CMERW will be deduced as a simple consequence of the strong law for (Sn). We recall
that we assume a > −1 as a = −1 only occurs in the singular case where d = 1 and p = 0.

Theorem 2.1. We have the almost sure convergence

(2.1) lim
n→∞

1

n
Gn = 0 a.s.

More precisely, for any α > 1/2,

(2.2) lim
n→∞

1

nα
Gn = 0 a.s.

Figure 1. The 2-dimensional ERW in blue, the CMERW in black and the convex
hull in red, for n = 106 steps and a diffusive memory parameter p = 1/2.

The almost sure rates of convergence for CMERW are as follows.

Theorem 2.2. We have the quadratic strong law

(2.3) lim
n→∞

1

log n

n∑
k=1

1

k2
GkG

T
k =

2

3(1− 2a)(2− a)d
Id a.s.
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where Id stands for the identity matrix of order d. In particular,

(2.4) lim
n→∞

1

log n

n∑
k=1

‖Gk‖2

k2
=

2

3(1− 2a)(2− a)
a.s.

Moreover, we also have the upper-bound in the law of iterated logarithm

(2.5) lim sup
n→∞

‖Gn‖2

2n log log n
≤
(√

3 +
√

1− 2a
)2

3(a+ 1)2(1− 2a)d
a.s.

Remark 2.1. The law of iterated logarithm for Gn involves the difference between bnMn

and Nn both satisfying a law of iterated logarithm with the same speed. It is not possible
to make the addition of the two limits superior. Consequently, we were only able to obtain
an upper-bound in (2.5). However, it is worth saying that for the simple random walk on
Zd for which a = 0, Strassen’s invariance principle [23] implies that

lim sup
n→∞

‖Gn‖2

2n log logn
=

1

3d
a.s.

which is not very far from the upper-bound (1 +
√

3)2/(3d) given in (2.5).

We are now interested in the asymptotic normality of the CMERW.

Theorem 2.3. We have the joint asymptotic normality

(2.6)
1√
n

(
Sn
Gn

)
L−→ N

(
0,Γd

)
where Γd stands for the covariance matrix

Γd =
1

(1− 2a)d

(
1 1

(2−a)

1
(2−a)

2
3(2−a)

)
⊗ Id.

In particular,

(2.7)
1√
n
Gn
L−→ N

(
0,

2

3(1− 2a)(2− a)d
Id

)
.

Remark 2.2. One can observe from Theorem 3.3 in [4] that the ratio of the asymptotic
variances between the CMERW and the ERW is given by

R(a) =
2

3(2− a)
.

In the diffusive regime, this ratio lies between 2/9 and 4/9 and it is always smaller than
1, as one can see in Figure 1. Moreover, in the special case where the elephant moves in
one of the 2d directions with the same probability p = 1/(2d) < pd, it follows from (1.8)
that the fundamental parameter a = 0. Consequently, we deduce from (2.7) that

1√
n
Gn
L−→ N

(
0,

1

3d
Id

)
.

We find again the asymptotic normality (1.3) where the mean value µ = 0 and the covari-
ance matrix Γ = 1

dId. An alternative approach to prove the asymptotic normality (2.7)
via a functional central limit theorem for the multi-dimensional ERW can be found in [5].
One can observe from Theorem 1 in [1] that (2.7) also holds in the singular case a = −1
which only appears when d = 1 and p = 0.
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2.2. The critical regime. Hereafter, we investigate the critical regime where the memory
parameter p = pd.

Theorem 2.4. We have the almost sure convergence

(2.8) lim
n→∞

1√
n log n

Gn = 0 a.s.

More precisely, for any α > 1/2,

(2.9) lim
n→∞

1√
n(log n)α

Gn = 0 a.s.

Figure 2. The 2-dimensional ERW in blue, the CMERW in black and the convex
hull in red, for n = 106 steps and a critical memory parameter p = 5/8.

The almost sure rates of convergence for the CMERW are as follows.

Theorem 2.5. We have the quadratic strong law

(2.10) lim
n→∞

1

log log n

n∑
k=2

1

(k log k)2
GkG

T
k =

4

9d
Id a.s.

In particular,

(2.11) lim
n→∞

1

log log n

n∑
k=2

‖Gk‖2

(k log k)2
=

4

9
a.s.

Moreover, we also have the law of iterated logarithm

(2.12) lim sup
n→∞

‖Gn‖2

2n log n log log log n
=

4

9d
a.s.

Our next result concerns the asymptotic normality of the CMERW.

Theorem 2.6. We have the joint asymptotic normality

(2.13)
1√
n

(
Sn
Gn

)
L−→ N

(
0,Σd

)
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where Σd stands for the covariance matrix

Σd =
1

d

(
1 2

3
2
3

4
9

)
⊗ Id.

In particular,

(2.14)
1√

n log n
Gn
L−→ N

(
0,

4

9d
Id

)
.

Remark 2.3. In the critical regime, the ratio of the asymptotic variances between the
CMERW and the ERW is 4/9.

2.3. The superdiffusive regime. Finally, we focus our attention on the superdiffusive
regime where p > pd. The almost sure convergence of (Sn), properly normalized by na,
yields the following strong limit theorem for the CMERW.

Theorem 2.7. We have the almost sure convergence

(2.15) lim
n→∞

1

na
Gn = G a.s.

where the limiting value G is a non-degenerate random vector of Rd. Moreover, we also
have the mean square convergence

(2.16) lim
n→∞

E
[∥∥∥ 1

na
Gn −G

∥∥∥2]
= 0.

Remark 2.4. The expected value of G is zero and its covariance matrix is given by

E
[
GGT

]
=

1

d(a+ 1)2(2a− 1)2Γ(2a− 1)
Id.

The distribution of G is far from being known.

Figure 3. The 2-dimensional ERW in blue, the CMERW in black and the convex
hull in red, for n = 106 steps and a superdiffusive memory parameter p = 3/4.
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3. A multi-dimensional martingale approach

We already saw from (1.17) that the CMERW can be rewritten as

Gn =
1

n
(bnMn −Nn).

In order to investigate the asymptotic behavior of (Gn), we introduce the multi-dimensional
martingale (Mn) defined by

(3.1) Mn =

(
Mn

Nn

)
where (Mn) and (Nn) are the two locally square-integrable martingales given by (1.12)
and (1.16). The main difficulty we face here is that the predictable quadratic variation of
(Mn) and (Nn) increase to infinity with two different speeds. A matrix normalization is
necessary to establish the asymptotic behavior of the CMERW. Let (Vn) be the sequence
of positive definite diagonal matrices of order 2d given by

(3.2) Vn =
1

n
√
n

(
bn 0
0 1

)
⊗ Id

where A⊗B stands for the Kronecker product of the matrices A and B.

Lemma 3.1. The sequence (Mn) is a locally square-integrable martingale of R2d. Its
predictable quadratic variation 〈M〉n satisfies in the diffusive regime where a < 1/2,

(3.3) lim
n→∞

Vn〈M〉nV T
n = V a.s.

where the limiting matrix V is given by

(3.4) V =
1

d(a+ 1)2

( 1
1−2a

1
2−a

1
2−a

1
3

)
⊗ Id.

Remark 3.1. Via the same lines as in the proof of Lemma 3.1, we find that in the critical
regime a = 1/2, the sequence of normalization matrices (Vn) has to be replaced by

(3.5) Wn =
1

n
√
n log n

(
bn 0
0 1

)
⊗ Id.

Moreover, the limiting matrix in (3.3) must be changed by

(3.6) W =
4

9d

(
1 0
0 0

)
⊗ Id.

Proof. The increments of the ERW are bounded by 1, that is for any time n ≥ 1, ‖Xn‖ = 1.
Hence, it follows from (1.5) that ‖Sn‖ ≤ n and ‖Gn‖ ≤ n which imply that ‖Mn‖ ≤ nan
and ‖Nn‖ ≤ nanbn + n2. We already saw in Section 1 that (Mn) is a locally square-
integrable martingale. Denote ∆Mn = Mn −Mn−1, and similarly for other processes. It
follows from (1.12), (1.13) and (1.16) that the predictable quadratic variation associated
with (Mn) is the square matrix of order 2d given, for all n ≥ 1, by

(3.7) 〈M〉n=

n∑
k=1

E

[(
∆Mk

∆Nk

)(
∆Mk

∆Nk

)T ∣∣∣Fk−1

]
=

n∑
k=1

a2
k

(
1 bk−1

bk−1 b2k−1

)
⊗ E

[
εkε

T
k

∣∣Fk−1

]
.

Moreover, we deduce from formulas (A.7) and (B.3) in [4] that for all n ≥ 1,

(3.8) E
[
εn+1ε

T
n+1|Fn

]
=

1

d
Id + a

( 1

n
Σn −

1

d
Id

)
−
(a
n

)2
SnS

T
n a.s.
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where Σn is a random positive definite matrix of order d satisfying

(3.9) lim
n→∞

1

n
Σn =

1

d
Id a.s.

Consequently, we obtain from (3.7) together with (3.8) that

(3.10) 〈M〉n =
1

d

n∑
k=1

a2
k

(
1 bk−1

bk−1 b2k−1

)
⊗ Id + a

n−1∑
k=1

a2
k+1

(
1 bk
bk b2k

)
⊗
(1

k
Σk −

1

d
Id

)
− ξn

where

ξn = a2
n−1∑
k=1

(ak+1

k

)2
(

1 bk
bk b2k

)
⊗ SkSTk .

According to Theorem 3.1 in [4], the remainder ξn plays a negligible role as

(3.11) lim
n→∞

Sn
n

= 0 a.s.

Hereafter, it is not hard to see that

Vn

( n∑
k=1

a2
k

(
1 bk−1

bk−1 b2k−1

)
⊗ Id

)
V T
n =

1

n3

(
b2n
∑n

k=1 a
2
k bn

∑n
k=1 a

2
kbk−1

bn
∑n

k=1 a
2
kbk−1

∑n
k=1 a

2
kb

2
k−1

)
⊗ Id.

Furthermore, from a well-known property of the Euler Gamma function, we have

(3.12) lim
n→∞

Γ(n+ a)

Γ(n)na
= 1.

Hence, we obtain from (1.7), (1.15) and (3.12) that

(3.13) lim
n→∞

naan = Γ(a+ 1) and lim
n→∞

bn
na+1

=
1

Γ(a+ 2)
.

Consequently, as soon as a < 1/2, we immediately find from (3.13) that

lim
n→∞

b2n
n3

n∑
k=1

a2
k =

1

(1− 2a)(a+ 1)2
,

lim
n→∞

bn
n3

n∑
k=1

a2
kbk−1 =

1

(2− a)(a+ 1)2
,

lim
n→∞

1

n3

n∑
k=1

a2
kb

2
k−1 =

1

3(a+ 1)2
.

Therefore,

(3.14) lim
n→∞

Vn

( n∑
k=1

a2
k

(
1 bk−1

bk−1 b2k−1

)
⊗ Id

)
V T
n =

1

(a+ 1)2

( 1
1−2a

1
2−a

1
2−a

1
3

)
⊗ Id.

Finally, it follows from the combinaison of (3.9), (3.10), (3.11) and (3.14) that

(3.15) lim
n→∞

Vn〈M〉nV T
n =

1

d(a+ 1)2

( 1
1−2a

1
2−a

1
2−a

1
3

)
⊗ Id. a.s.

which is exactly what we wanted to prove. �
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Appendix A. Two non-standard results on martingales

The proofs of our main results rely on two non-standard central limit theorem and
quadratic strong law for multi-dimensional martingales. A simplified version of Theorem
1 of Touati [24] is as follows.

Theorem A.1. Let (Mn) be a locally square-integrable martingale of Rδ adapted to a
filtration (Fn), with predictable quadratic variation 〈M〉n. Let (Vn) be a sequence of non-
random square matrices of order δ such that ‖Vn‖ decreases to 0 as n goes to infinity.
Assume that there exists a symmetric and positive semi-definite matrix V such that

(H.1) Vn〈M〉nV T
n

P−→
n→∞

V.

Moreover, assume that Lindeberg’s condition is satisfied, that is for all ε > 0,

(H.2)

n∑
k=1

E
[
‖Vn∆Mk‖2I{‖Vn∆Mk‖>ε}

∣∣Fk−1

] P−→
n→∞

0

where ∆Mn =Mn −Mn−1. Then, we have the asymptotic normality

(A.1) VnMn
L−→ N

(
0, V

)
.

The quadratic strong law requires more restrictive assumptions. The following result is a
simplified version of Theorem 2.1 of Chaabane and Maaouia [8] where the normalization
matrices (Vn) are diagonal.

Theorem A.2. Let (Mn) be a locally square-integrable martingale of Rδ adapted to a
filtration (Fn), with predictable quadratic variation 〈M〉n. Let (Vn) be a sequence of non-
random positive definite diagonal matrices of order δ such that its diagonal terms decrease
to zero at polynomial rates. Assume that (H.1) and (H.2) hold almost surely. Moreover,
suppose that there exists β ∈]1, 2] such that

(H.3)

∞∑
n=1

1(
log(detV −1

n )2
)βE[‖Vn∆Mn‖2β

∣∣Fn−1

]
<∞ a.s.

Then, we have the quadratic strong law

(A.2) lim
n→∞

1

log(detV −1
n )2

n∑
k=1

((detVk)
2 − (detVk+1)2

(detVk)2

)
VkMkMT

k V
T
k = V a.s.

Appendix B. Proofs of the almost sure convergence results

B.1. The diffusive regime.

Proof of Theorem 2.1. We already saw from Theorem 3.1 in [4] that

(B.1) lim
n→∞

Sn
n

= 0 a.s.

Consequently, the almost sure convergence (2.1) immediately follows from (B.1) together
with the Toeplitz lemma given e.g. by Lemma 2.2.13 in [12]. Moreover, we also have from
Remark 3.1 in [4] that for any α > 1/2,

lim
n→∞

Sn
nα

= 0 a.s.

Hence, we obtain (2.2) using once again Toeplitz lemma.
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Proof of Theorem 2.2. Our goal is to check that all the hypotheses of Theorem A.2
are satisfied. Thanks to Lemma 3.1, hypothesis (H.1) holds almost surely. In order to
verify that Lindeberg’s condition (H.2) is satisfied, we have from (3.1) together with (1.12),
(1.16) and Vn given by (3.2) that for all 1 ≤ k ≤ n

Vn∆Mk =
ak
n
√
n

(
bnεk
bk−1εk

)
,

which implies that

(B.2) ‖Vn∆Mk‖2 ≤
2a2

kb
2
n

n3
‖εk‖2.

Consequently, we obtain that for all ε > 0,

n∑
k=1

E
[
‖Vn∆Mk‖2I{‖Vn∆Mk‖>ε}

∣∣Fk−1

]
≤ 1

ε2

n∑
k=1

E
[
‖Vn∆Mk‖4

∣∣Fk−1

]
,

≤ 4b4n
ε2n6

n∑
k=1

a4
kE
[
‖εk‖4

∣∣Fk−1

]
,

≤ 4b4n
ε2n6

sup
1≤k≤n

E
[
‖εk‖4

∣∣Fk−1

] n∑
k=1

a4
k.(B.3)

However, it follows from the right-hand side of formula (4.11) in [4] that

(B.4) sup
1≤k≤n

E
[
‖εk‖4

∣∣Fk−1

]
≤ 4

3
a.s.

Therefore, we infer from (B.3) that for all ε > 0,

(B.5)
n∑
k=1

E
[
‖Vn∆Mk‖2I{‖Vn∆Mk‖>ε}

∣∣Fk−1

]
≤ 16 b4n

3 ε2n6

n∑
k=1

a4
k a.s.

Moreover, we have from (3.13) that

(B.6) b4n

n∑
k=1

a4
k = O(n5).

Consequently, (B.5) together with (B.6) ensure that Lindeberg’s condition (H.2) holds
almost surely, that is for all ε > 0,

(B.7) lim
n→∞

n∑
k=1

E
[
‖Vn∆Mk‖2I{‖Vn∆Mk‖>ε}

∣∣Fk−1

]
= 0 a.s.

We will now check that condition (H.3) is satisfied in the special case β = 2, that is

(B.8)

∞∑
n=1

1(
log(detV −1

n )2
)2E[‖Vn∆Mn‖4

∣∣Fn−1

]
<∞ a.s.

We have from (3.2) that

(B.9) detV −1
n =

(n3/2

bn

)d
.
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Hence, we find from (3.13) and (B.9) that

(B.10) lim
n→∞

log(detV −1
n )2

log n
= d(1− 2a).

Consequently, we can replace log(detV −1
n )2 by log n in (B.8). Hereafter, we obtain from

(B.2) and (B.4) that

∞∑
n=2

1

(log n)2
E
[
‖Vn∆Mn‖4

∣∣Fn−1

]
= O

( ∞∑
n=1

1

(log n)2

a4
nb

4
n

n6
E
[
‖εn‖4

∣∣Fn−1

])
,

= O
( ∞∑
n=1

1

(log n)2

a4
nb

4
n

n6

)
.(B.11)

However, we have from (3.13) that

(B.12) lim
n→∞

a4
nb

4
n

n4
=

1

(a+ 1)4
.

Therefore, (B.11) together with (B.12) immediately lead to (B.8). We are now in a position
to apply the quadratic strong law given by Theorem A.2. We have from (A.2) and (B.10)
that

(B.13) lim
n→∞

1

log n

n∑
k=1

((detVk)
2 − (detVk+1)2

(detVk)2

)
VkMkMT

k V
T
k = d(1− 2a)V a.s.

where the limiting matrix V is given by (3.4). However, it follows from (1.14), (3.1) and
(3.2) that

(B.14)
1√
n
Gn = vTVnMn where v =

(
1
−1

)
⊗ Id.

Consequently, we deduce from (B.13) and (B.14) that

(B.15) lim
n→∞

1

log n

n∑
k=1

((detVk)
2 − (detVk+1)2

(detVk)2

)1

k
GkG

T
k = d(1− 2a)vTV v a.s.

Furthermore, we obtain from (B.9) and (3.13) that

lim
n→∞

n
((detVn)2 − (detVn+1)2

(detVn)2

)
= d(1− 2a).

Hence, (B.15) clearly leads to convergence (2.3),

(B.16) lim
n→∞

1

log n

n∑
k=1

1

k2
GkG

T
k = vTV v =

2

3(1− 2a)(2− a)d
Id a.s.

By taking the trace on both sides of (B.16), we also obtain that

(B.17) lim
n→∞

1

log n

n∑
k=1

‖Gk‖2

k2
=

2

3(1− 2a)(2− a)
a.s.

Finally, we shall proceed to the proof of the upper-bound (2.5) in the law of iterated
logarithm. Denote

(B.18) τn =

n∑
k=1

a2
kb

2
k−1.
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We already saw from (B.12) that a4
nb

4
n−1τ

−2
n is equivalent to 9n−2. It implies that

(B.19)
+∞∑
n=1

a4
nb

4
n−1

τ2
n

<∞.

Moreover, we have from (3.9), (3.10), (3.11) and (B.18) that

lim
n→∞

1

τn
〈N〉n =

1

d
Id a.s.

Consequently, we deduce from the law of iterated logarithm for martingales due to Stout
[22], see also Corollary 6.4.25 in [12], that (Nn) satisfies for any vector u ∈ Rd,

lim sup
n→∞

( 1

2τn log log τn

)1/2
〈u,Nn〉 = − lim inf

n→∞

( 1

2τn log log τn

)1/2
〈u,Nn〉

=
1√
d
‖u‖ a.s.(B.20)

However, since τn is equivalent to n3/3(a+ 1)2, (B.20) immediately lead to

lim sup
n→∞

( 1

2n log logn

)1/2 1

n
〈u,Nn〉 = − lim inf

n→∞

( 1

2n log log n

)1/2 1

n
〈u,Nn〉

=
1√

3d(a+ 1)
‖u‖ a.s.(B.21)

Furthermore, it was already shown by formula (5.17) in [4] that for any vector u ∈ Rd,

lim sup
n→∞

( n2a

2n log logn

)1/2
〈u,Mn〉 = − lim inf

n→∞

( n2a

2n log log n

)1/2
〈u,Mn〉

=
Γ(a+ 1)√
d(1− 2a)

‖u‖ a.s.(B.22)

Therefore, we deduce from (1.17) and (3.13) together with (B.21) and (B.22) that for any
vector u of Rd,

lim sup
n→∞

( 1

2n log logn

)1/2
〈u,Gn〉 = lim sup

n→∞

( 1

2n log logn

)1/2 1

n
〈u, bnMn −Nn〉

≤ lim sup
n→∞

( 1

2n log logn

)1/2 1

n
〈u, bnMn〉+ lim sup

n→∞

( 1

2n log logn

)1/2 1

n
〈u,−Nn〉

≤ lim sup
n→∞

( 1

2n log logn

)1/2 1

n
〈u, bnMn〉 − lim inf

n→∞

( 1

2n log log n

)1/2 1

n
〈u,Nn〉

≤ ‖u‖√
d(a+ 1)

( 1√
1− 2a

+
1√
3

)
a.s.(B.23)

By the same token, we also find that for any vector u of Rd,

lim inf
n→∞

( 1

2n log logn

)1/2
〈u,Gn〉 = lim inf

n→∞

( 1

2n log log n

)1/2 1

n
〈u, bnMn −Nn〉

≥ − ‖u‖√
d(a+ 1)

( 1√
1− 2a

+
1√
3

)
a.s.(B.24)

Consequently, we obtain from (B.23) and (B.24) that for any vector u of Rd,

(B.25) lim sup
n→∞

( 1

2n log logn

)
〈u,Gn〉2 ≤

‖u‖2

d(a+ 1)2

( 1√
1− 2a

+
1√
3

)2
a.s.
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One can observe that the upper-bound in (B.25) is close to the optimal bound

(vu)TV vu =
2‖u‖2

3(1− 2a)(2− a)d
.

Finally, by taking all rational points on the unit sphere Sd−1 in Rd, the bound in (B.25)
holds simultaneously for all of them, which implies that

lim sup
n→∞

‖Gn‖2

2n log log n
≤ sup
u∈Qd∩Sd−1

lim sup
n→∞

〈u,Gn〉2

2n log log n
≤
(√

3 +
√

1− 2a
)2

3(a+ 1)2(1− 2a)d
a.s.

completing the proof of Theorem 2.2.

B.2. The critical regime.

Proof of Theorem 2.4. We have from Theorem 3.4 in [4] that

(B.26) lim
n→∞

1√
n log n

Sn = 0 a.s.

Hence, (2.8) clearly follows from (B.26) together with the Toeplitz lemma. Moreover, we
also have from Remark 3.3 in [4] that for any α > 1/2,

lim
n→∞

Sn√
n(log n)α

= 0 a.s.

Hence, we obtain (2.9) using once again Toeplitz lemma.

Proof of Theorem 2.5. The proof of the quadratic strong law (2.10) is left to the reader
as it follows essentially the same lines as that of (2.3). The only minor change is that the
matrix Vn has to be replaced by the matrix Wn defined in (3.6). We shall now proceed
to the proof of the law of iterated logarithm given by (2.12). On the one hand, it follows
from (B.21) with a = 1/2 that for any vector u ∈ Rd,

lim sup
n→∞

( 1

2n log log n

)1/2 1

n
〈u,Nn〉 = − lim inf

n→∞

( 1

2n log log n

)1/2 1

n
〈u,Nn〉

=
2

3
√

3d
‖u‖ a.s.

which immediately leads to

lim sup
n→∞

( 1

2n log n log log log n

)1/2 1

n
〈u,Nn〉 = 0 a.s.

On the other hand, we obtain from the law of iterated logarithm for Sn given in Theorem
3.5 of [4] that for any vector u ∈ Rd,

lim sup
n→∞

( 1

2n log n log log log n

)1/2
〈u,Gn〉
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= lim sup
n→∞

( 1

2n log n log log log n

)1/2 1

n
〈u, bnMn −Nn〉

= lim sup
n→∞

( 1

2n log n log log log n

)1/2 1

n
〈u, bnMn〉

= lim sup
n→∞

( 1

2n log n log log log n

)1/2 1

n
〈u, anbnSn〉

= lim sup
n→∞

( 1

2n log n log log log n

)1/2 2

3
〈u, Sn〉

= − lim inf
n→∞

( 1

2n log n log log log n

)1/2 2

3
〈u, Sn〉

=
2

3
√
d
‖u‖ a.s.(B.27)

Hence, we clearly deduce from (B.27) that for any vector u ∈ Rd,

(B.28) lim sup
n→∞

1

2n log n log log log n
〈u,Gn〉2 =

4

9d
‖u‖2 a.s.

By taking all rational points on the unit sphere Sd−1 in Rd, the bound in (B.28) holds
simultaneously for all of them, which implies that

lim sup
n→∞

‖Gn‖2

2n log n log log log n
≤ sup
u∈Qd∩Sd−1

lim sup
n→∞

〈u,Gn〉2

2n log n log log log n
=

4

9d
a.s.

In addition, for any single u ∈ Sd−1, we also obtain the reverse inequality

lim sup
n→∞

‖Gn‖2

2n log n log log log n
≥ lim sup

n→∞

〈u,Gn〉2

2n log n log log log n
=

4

9d
a.s.

It immediately leads to (2.12) which achieves the proof of Theorem 2.5.

B.3. The superdiffusive regime.

Proof of Theorem 2.7. It follows from Theorem 3.7 in [4] that

(B.29) lim
n→∞

1

na
Sn = L a.s.

where the limiting value L is a non-degenerate random vector of Rd. Hence, (B.29) together
with the Toeplitz lemma imply (2.15) where the limiting value

G =
1

a+ 1
L.

Moreover, we have from (1.17) that

E
[∥∥∥ 1

na
Gn −G

∥∥∥2]
= E

[∥∥∥ 1

na+1
(bnMn −Nn)−G

∥∥∥2]
,

≤ 2E
[∥∥∥anbn
na+1

Sn −G
∥∥∥2]

+ 2E
[∥∥∥ 1

na+1
Nn

∥∥∥2]
.

On the one hand, we already saw from (3.13) that

lim
n→∞

anbn
n

=
1

a+ 1
.
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Consequently, we deduce from the mean square convergence (3.12) in [4] that

(B.30) lim
n→∞

E
[∥∥∥anbn
na+1

Sn −G
∥∥∥2]

= 0.

On the other hand, E[‖Nn‖2] = E[Tr〈Nn〉)] ≤ τn where τn is given by (B.18). Since τn is
equivalent to n3/3(a+ 1)2 and a > 1/2, it is not hard to see that

(B.31) lim
n→∞

E
[∥∥∥ 1

na+1
Nn

∥∥∥2]
= 0.

Finally, we obtain (2.16) from (B.30) and (B.31), completing the proof of Theorem 2.7.

Appendix C. Proofs of the asymptotic normality results

C.1. The diffusive regime.

Proof of Theorem 2.3. On the one hand, it follows from (B.14) that

1√
n

(
Sn
Gn

)
= UTn VnMn where Un =

(
un 1
0 −1

)
⊗ Id

with un = n/anbn. On the other hand, we deduce from (3.3) and (B.7) that the two
conditions (H.1) and (H.2) of Theorem A.1 are satisfied. In addition, (3.13) ensures that

lim
n→∞

Un = U where U =

(
a+ 1 1

0 −1

)
⊗ Id.

Consequently, we obtain that

1√
n

(
Sn
Gn

)
L−→ N

(
0,Γd

)
.

The asymptotic covariance matrix Γd = UTV U where V is given by (3.4). It clearly leads
to (2.6) as

UTV U =
1

(1− 2a)d

(
1 1

(2−a)

1
(2−a)

2
3(2−a)

)
⊗ Id.

C.2. The critical regime.

Proof of Theorem 2.6. The proof follows exactly the same lines as that of Theorem 2.3
replacing Vn by Wn. The details are left to the reader.
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[10] C. F. Coletti, R. Gava, and G. M. Schütz. Central limit theorem and related results for the elephant

random walk. J. Math. Phys., 58(5):053303, 8, 2017.
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