, funding from the Spanish Government through the MICINN research grant RTI2018-099737-B-100 and the "María de Maetzu" Programme for Units of Excellence in R&D

, References (1) Ball, P. The Smallest Metals, Nature Materials, vol.10, p.175, 2011.

J. D. Jackson, Classical electrodynamics, 1975.

J. Bowlan, A. Liang, and W. A. De-heer, How Metallic are Small Sodium Clusters?, Phys. Rev. Lett, p.43401, 2011.

A. Aguado, A. Largo, A. Vega, and L. C. Balbás, On the electric dipole moments of small sodium clusters from different theoretical approaches, Chemical Physics, vol.399, pp.252-257, 2012.

D. A. Gotz, A. Shayeghi, R. L. Johnston, P. Schwerdtfeger, and R. Schafer, Structural evolution and metallicity of lead clusters, Nanoscale, vol.8, pp.11153-11160, 2016.

A. Liebsch, Surface-plasmon dispersion and size dependence of Mie resonance: Silver versus simple metals, Phys. Rev. B, vol.48, pp.11317-11328, 1993.

L. Serra and A. Rubio, Core Polarization in the Optical Response of Metal Clusters: Generalized Time-Dependent Density-Functional Theory, Phys. Rev. Lett, vol.78, pp.1428-1431, 1997.

E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J. Huntzinger et al., Optical Properties of Noble Metal Clusters as a Function of the Size: Comparison between Experiments and a Semi-Quantal Theory, Theoretical Chemistry Accounts: Theory, Computation, and Modeling, vol.116, p.514, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00141264

H. Weissker and X. López-lozano, Surface plasmons in quantum-sized noble-metal clusters: TDDFT quantum calculations and the classical picture of charge oscillations, Phys. Chem. Chem. Phys, vol.17, pp.28379-28386, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01222107

P. Jena and Q. Sun, Super Atomic Clusters: Design Rules and Potential for Building Blocks of Materials, Chemical Reviews, vol.118, pp.5755-5870, 2018.

J. Wang, M. Yang, J. Jellinek, and G. Wang, Dipole polarizabilities of medium-sized gold clusters, Phys. Rev. A, p.23202, 2006.

K. Jackson, M. Yang, and J. Jellinek, Site-Specific Analysis of Dielectric Properties of Finite Systems. The Journal of Physical Chemistry C, vol.111, pp.17952-17960, 2007.

L. Ma, K. A. Jackson, J. Wang, M. Horoi, and J. Jellinek, Investigating the metallic behavior of Na clusters using site-specific polarizabilities, Phys. Rev. B, p.35429, 2014.

G. Kresse and J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Comput. Mat. Sci, vol.6, p.15, 1996.

G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmentedwave method, Phys. Rev. B, p.1758, 1999.

M. A. Marques, A. Castro, G. F. Bertsch, and A. Rubio, Comp. Phys. Comm, vol.151, p.60, 2003.

A. Castro, M. A. Marques, H. Appel, M. Oliveira, C. Rozzi et al., Phys. Stat. Sol. (b), p.2465, 2006.

E. G. Noya, J. P. Doye, D. J. Wales, and A. Aguado, Geometric magic numbers of sodium clusters: Interpretation of the melting behaviour, Eur. Phys. J. D, vol.43, pp.57-60, 2007.

W. Ekardt, Work function of small metal particles: Self-consistent spherical jelliumbackground model, Phys. Rev. B, vol.29, pp.1558-1564, 1984.

W. Ekardt, Dynamical Polarizability of Small Metal Particles: Self-Consistent Spherical Jellium Background Model, Phys. Rev. Lett, vol.52, pp.1925-1928, 1984.

M. J. Puska, R. M. Nieminen, and M. Manninen, Electronic polarizability of small metal spheres, Phys. Rev. B, pp.3486-3495, 1985.

E. Prodan and P. Nordlander, Structural Tunability of the Plasmon Resonances in Metallic Nanoshells, Nano Letters, vol.3, pp.543-547, 2003.

A. Varas, P. García-gonzález, J. Feist, F. J. García-vidal, and A. Rubio, Quantum plasmonics: from jellium models to ab intitio calculations, Nanophotonics, vol.5, pp.409-426, 2016.

W. A. De-heer, The physics of simple metal clusters: experimental aspects and simple models, Rev. Mod. Phys, vol.65, pp.611-676, 1993.