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From Real to Virtual: An Image-Based Rendering Toolkit to Help Bring the
World Around Us Into Virtual Reality

Grégoire Dupont de Dinechin* Alexis Paljic†

Centre for Robotics, MINES ParisTech, PSL University - Paris, France

ABSTRACT

The release of consumer-grade head-mounted displays has helped
bring virtual reality (VR) to our homes, cultural sites, and work-
places, increasingly making it a part of our everyday lives. In re-
sponse, many content creators have expressed renewed interest in
bringing the people, objects, and places of our daily lives into VR,
helping push the boundaries of our ability to transform photographs
of everyday real-world scenes into convincing VR assets. In this
paper, we present an open-source solution we developed in the Unity
game engine as a way to make this image-based approach to virtual
reality simple and accessible to all, to encourage content creators
of all kinds to capture and render the world around them in VR.
We start by presenting the use cases of image-based virtual reality,
from which we discuss the motivations that led us to work on our
solution. We then provide details on the development of the toolkit,
specifically discussing our implementation of several image-based
rendering (IBR) methods. Finally, we present the results of a prelim-
inary user study focused on interface usability and rendering quality,
and discuss paths for future work.

Index Terms: Computing Methodologies—Computer Graphics—
Graphics Systems and Interfaces—Virtual Reality; Comput-
ing Methodologies—Computer Graphics—Image Manipulation—
Image-Based Rendering;

1 INTRODUCTION

Image-based virtual reality is relevant to a wide variety of use cases,
from visiting digital reproductions of cultural heritage sites to shar-
ing homemade 360° videos in VR with family and friends. Many of
these use cases have been explored by expert researchers but also ca-
sual developers and content creators, making use of low-cost camera
rigs and 3D reconstruction tools to develop small-scale VR experi-
ences in which parts of the real world are rendered virtually [26].
As hospitals start using 360° images for interactive neurosurgery
training [19] and local museums investigate visitors’ expectations
for the integration of VR exhibits [16], it thus seems safe to say that
virtual reality has never been more present in our everyday lives.

However, there appears to currently be no easy way for small-
scale content creation teams to bring the real world into VR with
levels of visual accuracy similar to what is typically demonstrated
by the specialized research community. Several works in the field of
computer graphics have indeed demonstrated advanced methods for
blending photographs together to create seamless, high-resolution
virtual environments [8, 15, 17, 23], a notable example being the
publicly-released Welcome to Light Fields VR experience [17]. Un-
fortunately, the rendering solutions used to create such demonstra-
tions are seldom released for public use, preventing non-expert con-
tent creators from applying these methods to their own photograph
datasets. The transfer of knowledge between the two groups is also
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Figure 1: From unstructured sets of photographs to interactive VR
scenes providing motion parallax and view-dependent highlights. We
present an open toolkit we developed to help casual content creators
render real-world scenes in virtual reality.

further complicated by the fact that they use different development
tools: while graphics researchers most often work from the ground
up with low-level OpenGL and C++, focusing on the quality and
speed of their implementation, most content creators typically prefer
to rely on game engines such as Unity, Godot, or Unreal, which
provide convenient graphical user interfaces (GUIs) for the rapid
creation of interactive content.

Therefore, to help casual content creators learn more about and
apply image-based rendering for the creation of interactive virtual
reality experiences, we discuss in this paper our development of an
open-source IBR-for-VR toolkit. The toolkit aims to provide a sim-
ple, accessible interface, able to handle a wide variety of input data,
that brings together multiple different tools for transforming sets of
photographs into virtual environments that are visually accurate and
can be viewed comfortably in VR. In this paper, we thus aim to give
a clear overview of the methods and applications of image-based
virtual reality, by analyzing target use cases and sharing details on
core components of our toolset, which we illustrate on several on-
line image datasets both in the paper and the complementary video.
Additionally, we provide insight into our design choices and on the
lessons learned during the development of the toolkit, to encourage
readers to extend and improve on our approach. Finally, we present
a first evaluation of the toolkit, in the form of a user study we led in
collaboration with a mineralogy museum to investigate the usability
of the toolset by non-expert users.

2 DESIGNING THE TOOLKIT

Before delving into the implementation, we start by explaining the
motivations and design choices that helped guide our approach.

2.1 Motivations
2.1.1 A growing interest in image-based VR: use cases
Many VR experiences fundamentally rely on - or can be enhanced
by - the use of virtual environments and assets created from sets of
photographs. This field of research and applications is commonly
referred to using the names cinematic virtual reality and image-based
virtual reality. A sizable portion of the related research is dedicated
to studying and demonstrating low-cost alternatives for creating



high-quality image-based VR experiences from casually-captured
photographs and videos [1,6,12,26], to provide local content creators
easy access to the corresponding knowledge and tools.

One notable group of use cases is related to education and train-
ing. For instance, photographs can help create immersive virtual
tours, e.g. of cultural heritage sites [9, 16], apartments, and indus-
trial facilities. Additionally, image-based assets can be used in VR
documentaries, to inform about and create empathy for a given cir-
cumstance [7]: for example, volumetric capture technologies can be
used to place immersed viewers face-to-face with real-world people,
telling their account of living through a specific situation. Further-
more, photographs and videos can be used to create compelling
virtual task training environments, that accurately depict real-world
situations such as high-risk surgical operations [19] and firefighter
interventions in dangerous conditions. Such experiences, in which
multiple generations of trainees can be immersed for no additional
cost and with no exposure to danger, are indeed particularly relevant
when the corresponding live training is costly or dangerous.

Another important field of application is entertainment. Concerts,
theater performances, and sports events can be recorded for live or
delayed viewing in VR, to enable users that could not attend in per-
son to participate in an immersive and interactive way. Additionally,
virtual assets created from photographs of moments and places that
one feels close to can be used for personal reminiscence and shared
for family and friends to explore. Finally, volumetric captures and
video recordings are also commonly used for game development
and interactive VR films [5].

2.1.2 The untapped potential of image-based rendering

Methods for processing and rendering sets of photographs to display
visual information for multiple viewpoints are commonly grouped
under the names novel view synthesis, free-viewpoint rendering, and
image-based rendering. We map out the general shape of image-
based rendering methods in Fig. 2. The defining function of IBR
is to generate novel views from an input set of photographs so that
the captured scene is accurately depicted within a range of potential
viewpoints. The direct application for VR is the creation of 6-DoF
VR experiences, in which viewers can not only look in all directions
but also move around in the scene, i.e. that provide coherent visual
information even as users move with the six degrees-of-freedom
corresponding to translations and rotations.

There are two important ways in which image-based rendering re-
search has the potential to enhance the rendering solutions commonly
used by VR developers. First, recent works have demonstrated meth-
ods that enhance the rendering of 360° images to provide motion
parallax [1, 6, 12, 23], i.e. the sensation that, during head move-
ment, closer objects move faster than ones further away. Indeed,
360° images are most usually rendered on a virtual sphere surround-
ing the immersed viewer, and therefore do not provide this sense
of parallax. In contrast, such works describe methods to restore
a sense of parallax in a small range of head motion, thereby im-
proving viewers’ sense of presence and comfort [6, 23]. Second,
research on view-dependent rendering has shed light on ways to
render specular highlights from the input photographs, i.e. ways
to accurately display, based on the viewer’s current viewpoint, the
bright reflections of light bouncing off the facets of the captured
object [2, 4, 8, 17]. This is a notable improvement over rendering a
3D-reconstructed object solely with a diffuse texture map, which
is the simplest solution accessible to most content creators, yet is
unadapted to rendering objects with specular surfaces and complex
lighting properties. Therefore, having access to these methods could
enable casual developers to provide more comfortable and visually
accurate virtual environments, both of which may help strengthen
the application’s impact: for instance, these methods could be used
to provide VR museums with increasingly faithful virtual replicas,
thereby enhancing visitors’ learning experience [9].
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Figure 2: The standard shape of an image-based rendering method.

Unfortunately, the potential of image-based rendering seems to
be largely untapped in everyday contexts. Based on discussions with
several other research teams, we believe that this is mainly due to
the lack of an easy-to-use interface encouraging content creators to
use and learn more about these methods: no such interface currently
seems to be accessible for public use1. By giving access to simple
tools for rendering specular highlights and providing motion parallax
from sets of photographs, we thus hope to encourage broader use of
these methods for image-based VR content creation.

2.2 Design choices
2.2.1 Game engine implementation
We made the choice of implementing our toolset as a package for a
popular game engine. It is important to acknowledge the limits of
this decision: the usability of the toolkit is conditioned by that of
the game engine itself, and there may be issues of efficiency (e.g.
rendering speed, memory usage) that could have been avoided had
the toolset been built from scratch as standalone software. Nonethe-
less, we believe that implementing our toolset within a game engine
remains the best choice both to efficiently achieve our development
goals and to reach our target audience. Indeed, game engines have a
wide user base, and, in particular, are used by a great majority of VR
content creators. Moreover, they easily enable creating responsive
experiences with interactive 3D objects and provide built-in support
for a wide array of color and geometry data formats. Finally, their
flexible GUIs and shader programming pipelines make them a good
fit for developing our user-oriented IBR interface. Note that our
approach could be implemented equivalently within any commonly-
used game engine. In our case, the main criteria for selecting Unity
were its cross-platform support for many VR head-mounted displays
and its wide adoption by casual content creators.

2.2.2 Extensions to build upon existing tools
By design, our interface naturally complements 3D reconstruction
toolkits: indeed, it enables leveraging the dense geometry (e.g. 3D
meshes and depth maps) estimated by these toolkits to generate
accurate novel views from the original set of photographs. There-
fore, in order to provide a seamless pipeline from input photographs
to rendered views, we decided to make several functionalities of
widely-used 3D reconstruction and mesh processing tools accessi-
ble from within our package’s interface in Unity. Specifically, we
provide a simple GUI to enable end-users to perform sparse and
dense reconstruction from images using Schönberger et al.’s [20,21]

1One discussion did point us towards two European Union projects, CR-
PLAY and EMOTIVE, that aimed to integrate IBR in Unity, in the contexts
respectively of game design and cultural heritage; however, to our knowledge,
the resulting toolsets currently remains unavailable to the general public.



Figure 3: The toolkit’s rendering interface, used to render source data
interactively in VR. On the right, a GUI helps users select a rendering
solution. On the left, the cameras are displayed in the scene, and
the main window displays what is seen by the viewer. This scene is
rendered using the 11 photographs of the fountain-P11 [24] dataset.

COLMAP toolkit. Additionally, we include scripts that extend the
toolkit’s functionalities with the mesh processing and retopology
methods provided by both Blender and Jakob et al.’s [13] Instant
Meshes. This choice of external tools was motivated not only by
the functionalities that they provide but also because all of them are
free and provide downloadable executable files, ensuring that casual
developers can access them with no added difficulty.

Note that these added functionalities are extensions of our toolkit,
not dependencies: our rendering interface can be used to comple-
ment any preferred choice of reconstruction tools, so long as the
generated geometry is in a supported format. This is also notably
true for the camera models estimated for each source image, which
ultimately have to be converted to match the toolkit’s file structure,
but can have been obtained by any preferred means.

2.2.3 Input data and camera model
Given the diversity of use cases and types of source data, we wanted
the toolkit to be able to handle a variety of capture setups, includ-
ing geometric and color information of different shapes and sizes.
Building within Unity helps in this regard, as we thus ensure support
for many common 3D mesh and image formats. On top of this, we
define a custom camera model in the toolkit, to be able to adapt to
input photographs of different resolutions, fields-of-view, and pro-
jection types (perspective but also omnidirectional, since many VR
authors work with 360° images). This model intentionally does not
include radial distortion parameters: because a sparse reconstruction
step is required to estimate the cameras’ positions and orientations
from the input images, we expect this preliminary step to also gener-
ate undistorted images (as is done for example in COLMAP). Any
real camera can still be used to capture the images, as long as the
reconstruction tool can correctly estimate its parameters.

2.2.4 Rendering and acquisition tools
The main part of our interface is the rendering tool (see Fig. 3). There
are two steps to this tool. First, one specifies the directory containing
the source data (e.g. photographs and depth maps), and launches
processing methods to transform this data into the desired scene
representation (e.g. perform sparse reconstruction to estimate the
respective positions and orientations of the cameras, and transform
the depth maps into 3D meshes). This is an offline step, resulting
in the scene representation being stored on disk as a set of assets.

Figure 4: The toolkit’s acquisition interface, used to capture data from
virtual scenes. On the right, a GUI helps users set the parameters of
the capture setup, here a set of 360° cameras arranged on a regular
grid. On the left, the setup is represented, and a window displays the
color image and depth map for the previewed camera.

Stored assets include color data (typically stored as a texture array,
interpreted by the GPU at render time as a single object), geometric
proxies (stored as 3D meshes, instantiated at render time), and
camera setup parameters (stored in text files). Second, one simply
has to choose a blending method from the GUI and launch Unity’s
play mode: this will instantiate the stored representation into the
scene, and render it in real-time using the specified blending method.

Another part of our interface is the acquisition tool (see Fig. 4),
which we designed to help users capture images and geometry from
synthetic 3D scenes. This component can be used to create test
datasets on which to try out rendering methods before capturing the
real source data. To acquire data from the virtual scene, one simply
sets up the cameras in the scene and specifies their parameters in
the GUI, before launching the capture process. Modifiable variables
include the number of acquisition cameras, their parameters, and the
setup’s size along each axis, as well as the type of setup: structured
grid, inside-out sphere, and outside-in sphere.

2.2.5 Scope of the project
We named our package COLIBRI VR1, the Core Open Lab on Image-
Based Rendering Innovation for Virtual Reality. The current ver-
sion of the project only targets still photographs: video is out of
its scope for now, and will be left for future work. Additionally,
we currently only examine rendering solutions based on explicit
geometry: methods based on optical flow [1] and depth-based im-
age warping [3] have not yet been investigated. The contents of
the project are open-source, and it can freely be accessed online.
The code and documentation can currently be found at the address
https://caor-mines-paristech.github.io/colibri-vr.

3 DETAILS ON OUR IMPLEMENTATION

We now provide details on two of the rendering solutions that we
implemented in COLIBRI VR. The first takes as input a global mesh,
the second a set of per-view depth maps. Both aim to provide motion
parallax and render captured specular highlights.

1Many languages use the word {k-c}olibri [koh-lee-bree] to mean hum-
mingbird. We found this to be an appropriate acronym for our IBR-for-VR
toolkit, as it aims to resemble hummingbirds in many ways: fast (i.e. must
render in real-time), beautiful (i.e. must generate high-quality views) and
compact (i.e. must efficiently handle data to avoid memory stress).

https://caor-mines-paristech.github.io/colibri-vr


Figure 5: Views rendered by applying our implementation of unstruc-
tured lumigraph rendering on the 42 photographs of the Terrains [22]
dataset and the 19 photographs of the Aquarium [3] dataset. Moving
to different viewpoints reveals specular highlights.

3.1 View-dependent rendering of a global mesh
3.1.1 Our implementation
A good baseline for image-based rendering is the unstructured lu-
migraph rendering (ULR) algorithm [2]: it efficiently demonstrates
the potential of view-dependent rendering algorithms and has con-
sistently been used by recent works as a reference point for compar-
ison [1, 10, 11, 15]. Therefore, we decided to implement our own
version of ULR using vertex/fragment shaders. Note that the focus
here is not on motion parallax, which is provided by default when
the game engine renders the 3D mesh, but on convincingly rendering
the captured specular highlights.

Our implementation (illustrated in Fig. 5) essentially applies
the ULR vertex and fragment operations described by Buehler et
al. [2]. In the vertex stage, we compute blending weights for each
source camera, and store the weights and indices of the n most
relevant cameras. Then, in the fragment stage, we compute the
output color in each pixel by blending the colors of the n source
images most relevant for this pixel. Relevance is here defined based
on the considerations outlined in the original ULR publication: we
give more weight to cameras closer to the given vertex (to select
higher-resolution information) and in which the vertex is seen from
an angle similar to that of the current viewpoint, while discarding
those in which the vertex is occluded by another object. Because
high framerates are commonly recommended to ensure comfortable
VR viewing [12], we also modify the original algorithm to better
maintain rendering at interactive speeds. Our method thus spreads
the computational load over several frames by updating the blending
weights only for a subset of the mesh’s vertices every frame, using
a sliding window to iterate over the entire set in a small number of
frames, and rendering non-updated vertices with the stored weights
from the last iteration. Therefore, it takes at most m frames to update
the appearance of the entire mesh, where m can be specified by the
user in the GUI (it should remain relatively small for the difference
to hardly be noticeable). The actual number of vertices to process
each frame is dynamically adjusted based on the current framerate.

3.1.2 Obstacles and limitations
We faced several obstacles when implementing this method. We
already described how we overcame the issue of maintaining high
framerates. Another issue was to find a way to efficiently interpolate
the camera blending weights between the vertex and fragment stages,
the built-in interpolators being too few in number to store all of them
when there are large numbers of input images. We overcame this
obstacle by adding an intermediate geometry stage, in which, for
each of the mesh’s triangles, only the n most relevant images are
selected to provide color in the fragment stage: only a small subset

Figure 6: Meshes created from the 360° color image and depth map
of the Snow [6] dataset. Top: the added geometry provides motion
parallax, but creates stretching artifacts when moving away from the
initial viewpoint. Bottom: our toolkit can create depth-based meshes
with smaller triangle counts (middle) than full pixel meshing (left), and
remove stretched triangles at disocclusion boundaries (right).

of weights thus have to be passed in the interpolators. Finally,
unstructured lumigraph rendering typically suffers from noticeable
ghosting artifacts [15, 23], linked to inconsistencies between the
image data and the reconstructed camera setup and 3D mesh. This
remains a limitation in our current implementation.

3.2 Rendering per-view meshes from depth maps
3.2.1 Our implementation
Like global geometry, per-view geometry can be captured or esti-
mated from sets of cameras with overlapping fields-of-view. This
geometric information typically comes in the shape of depth maps,
usually instantiated as 3D meshes during rendering [11, 17, 23].
The goal here is therefore to implement a processing method that
generates 3D meshes from an input set of depth maps, in order to
easily provide motion parallax [14, 23]. Additionally, for scenes
created from multiple images, we want to render the generated set
of per-view meshes in a way that displays specular highlights [17].

To transform input sets of depth maps into per-view meshes,
we implemented a parallel GPU algorithm as a custom compute
shader, inspired by the quadtree-based approach presented by Lee
et al. [14]. The objective here is to create a compact mesh from an
input depth map (see Fig. 6). To do so, the method examines each
zone created by consecutive quadtree division of the depth map and
evaluates the geometric error that would result from approximating
this zone as a set of four triangles. We thus successively add to
the mesh’s triangles, adding larger triangles in zones for which this
creates little error and smaller triangles where more detail is needed.
Extending the original algorithm, we add the orthogonality and
triangle size tests presented by Pajarola et al. [18] to give users the
possibility to exclude triangles that would create visual artifacts (a
stretching effect [6,23], sometimes referred to as rubber sheets [18])
at disocclusion boundaries.

To render this representation, it is best not to use ULR, which was
not designed for rendering per-view meshes and would be inefficient
in doing so. Instead, we implemented a method inspired by the work
of Overbeck et al. [17]: we render each per-view proxy one after the
other, thereby consecutively adding to the rendered image’s color.
Each added color value is scaled by a blending weight, computed
based on considerations similar to those used to compute the weights
of unstructured lumigraph rendering: this blending weight is what
will help render captured specular highlights during head movement.
The total weight of an output pixel is stored in the texture’s alpha
channel, so that the output color values can be normalized after all
per-view proxies have been drawn.



3.2.2 Obstacles and limitations

Correctly blending overlapping per-view meshes takes care. Depth
testing is an issue, because such meshes are expected to closely
overlap in 3D space. The standard z-test cannot be kept, as it may
prematurely discard potentially relevant color values. Disabling the
z-test would also be problematic: it may lead to inaccurate self-
occlusions, because per-view meshes are potentially non-convex. To
solve this, we implemented a soft z-test within the shader, using a
ping-pong buffer system to read and write depth. We also scale the
proxies’ depth values [17] to ensure that those rendered later appear
on top of those rendered first. We unscale these values when finally
writing to the depth buffer, so as not to incorrectly write over objects
that have been drawn before nor prevent future objects from being
drawn correctly. We also chose to implement this method using
command buffers, to have more control over the rendering process:
indeed, command buffers enable us to know the proxies’ rendering
order for the scaling operation, and make it simple to normalize the
output color as a final step after rendering every proxy.

4 EVALUATION AND DISCUSSION

We conclude this paper by providing an initial evaluation of the
toolkit. We also discuss paths for future work.

4.1 Evaluating rendering quality
The visual quality of an IBR method implementation can be ob-
jectively evaluated by the process of virtual rephotography [25]:
value for a specified evaluation metric is obtained by comparing,
for multiple image datasets, each source image in the set with the
corresponding view rendered by the method when observing the
scene from the source camera’s point of view (the source image
itself being excluded before rendering). We currently implement
one such evaluation metric in the toolkit, that helps visualize the
Cb +Cr error [25] when comparing source image and rendered view.
We also provide a list of useful test datasets in the toolkit’s online
documentation, some of which are referred to in this paper’s illustra-
tions [3, 6, 22, 24]. We have not yet used these methods to evaluate
our toolkit, however, as there do not yet seem to exist [25] online
rendering benchmarks with which to compare our implementation.

4.2 Usability by non-experts: rendering minerals in VR
To better assess the usability of our toolkit by casual users, we
conducted a user study in the form of a short practice session.

4.2.1 Protocol

The study consisted in guiding each participant in an end-to-end
practice session on the toolkit, from capturing photographs to view-
ing the scene in a head-mounted display. To do so, users were tasked
first with capturing a specific object using a photo camera, then with
following the toolkit’s documentation to render this object in VR.
They were told to ask the experimenter for guidance only if there
was something they did not understand. After having successfully
rendered their data, participants observed the rendered object in
VR for several dozens of seconds using a HTC Vive head-mounted
display. They then answered a post-test questionnaire consisting
of open-ended and 7-point Likert-type questions related to ease of
use, time spent processing the source data, and visual quality of the
results. Participants also provided oral feedback by interacting with
the experimenters after completion of the protocol.

As a practical backdrop for this study, we partnered with a min-
eralogy museum, interested in displaying mineral collections in
VR. Participants were thus tasked with capturing and rendering a
mineral of their choosing in the museum’s collection (see Fig. 7),
with an emphasis on recreating the mineral’s visual properties (semi-
transparence, highlights, etc.). As a guideline, users were told to
take between 15 and 25 photographs of the selected mineral.

Figure 7: Top: rendered views of minerals captured by participants
during the study. Participants took several photographs of a mineral of
their choice, then followed the toolkit’s documentation to render it and
view it in VR. Bottom: we recorded the duration of the protocol (from
capturing the first photograph to viewing the scene in VR), and asked
participants for an estimation of how long it took them to complete it.
Results are averaged per group, with later groups testing the protocol
on improved iterations of the interface and documentation.

We designed the study to test incremental versions of the toolkit,
in order to obtain diverse suggestions for improvement. Groups of
2 to 3 participants thus performed the protocol and provided feed-
back, based on which we improved the interface and documentation,
thereby creating a new version for the next group to test.

4.2.2 Results and discussion

15 volunteers (3 female, 12 male) aged 24 to 61 (M = 31.40,
SD = 10.20) took part in the study, testing 6 iterations of the project.
Most were either museum staff or university-level students and re-
searchers. None worked in fields directly related to IBR.

Overall, a majority of suggestions concerned how to improve
the documentation, in its content, layout and illustrations, although
it was generally found to already be quite clear (Documentation:
Mdn = 6, M = 5.73, SD = 0.96). As for the interface, it was gener-
ally considered easy to use, although Unity’s layout was perceived
by several users as being initially quite intimidating (Interface:
Mdn = 6, M = 5.53, SD = 1.06). Time-efficiency was consistently
rated quite high and specified as one of the toolkit’s strong points
(Time-efficiency: Mdn = 6, M = 6.07, SD = 0.88). Rendering qual-
ity, on the other hand, was a more divisive matter: multiple users
were very enthusiastic to see their photographs rendered as an in-
teractive object in VR, but several others were disappointed by
the presence of visual artifacts (Rendering: Mdn = 6, M = 5.47,
SD = 1.25). The total time it took participants to process and render
their data using COLIBRI VR drastically fell after the first series of
improvements, before stabilizing at around 18 minutes, which we
believe is a satisfying result for novice users (see Fig. 7). Users’ es-
timations of elapsed time were also generally inferior or close to the
ground truth, which is consistent with the ratings of time-efficiency.

4.3 Paths for future work
Several paths for future work remain. Volumetric video seems to
remain a challenge even for many graphics researchers [17]: our next
steps are therefore likely to focus instead on improving our current



implementation to better handle static scenes, e.g. to achieve higher
levels of performance. A first step towards this goal could be to
replace our current way of storing color data on the GPU (as a static
texture array) with some form of fast dynamic texture streaming [17].
Secondly, to remove stretching artifacts without creating holes and
jagged edges, one notable improvement could be to implement
methods described recently for creating depth-based multi-layered
mesh representations using background inpainting and soft handling
of disocclusions [23]. To go beyond ULR, a future improvement
path could also be to examine learning-based approaches, which
seem to produce compelling results [8, 10]. Finally, we also hope
to soon include a greater number of evaluation metrics [25], lead
additional studies to further investigate the toolkit’s usability and
usefulness, and further demonstrate how the toolset can be used to
create image-based content for a variety of everyday VR use cases.

5 CONCLUSION

In conclusion, we presented in this paper an open-source toolkit
aimed at enabling casual content creators to render real-world scenes
in virtual reality with motion parallax and specular highlights. We
described the design choices that define the toolkit, detailed core
components of our implementation, and presented preliminary eval-
uation results. Paths for future work include improving the toolset’s
technical functionalities, as well as further demonstrating and evalu-
ating it in a variety of typical contexts.
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