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Abstract

In this paper, we consider admixture models which are two-component mixture distributions having
one known component. This is the case when a gold standard reference component is well known,
and when a population contains such a component plus another one with different features. When
two populations are drawn from such models, we propose a penalized χ2-type testing procedure
allowing a pairwise comparison of the unknown components, i.e. to test the equality of their
residual features densities, under a symmetry condition. A numerical study is carried out from a
large range of simulation setups to illustrate the asymptotic properties of our test. Moreover the
testing procedure is applied on a real-world case: galaxy velocities datasets, where stars heliocentric
velocities mixed with the Milky Way are compared.

Keywords:
admixture, Chi-squared test, contamination, finite mixture model, galaxy data, semiparametric
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1. Introduction

Let us consider the two-component mixture model with probability density function (pdf) h
defined by

h(x) = (1− p)g(x) + pf(x), x ∈ R, (1)

where g is a known pdf, and the unknown parameters are the mixture proportion p ∈]0, 1[ and
the pdf f . This model, sometimes so-called admixture or contamination model, has been widely
investigated in the last decades, see for instance Bordes and Vandekherkove [2], Matias and Nguyen
[17], Cai and Jin [4] or Celisse and Robin [5] among others. Numerous applications of model (1) can
be found in topics such as: i) genetics regarding the analysis of gene expressions from microarray
experiments as in Broët et al. [3]; ii) the false discovery rate problem (used to assess and control
multiple error rates as in Efron and Tibshirani [7]), see McLachlan et al. [14]; iii) astronomy, in
which this model arises when observing variables such as metallicity and radial velocity of stars
as considered in Walker et al. [22]; iv) biology to model trees diameters, see Podlaski and Roesch
[19]; v) kinetics to model plasma data, see Klingenberg et al. [9].
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In this paper, the data of interest is made of two i.i.d. samples X = (X1, . . . , Xn1) and
Y = (Y1, . . . , Yn2) of size n1 and n2 with respective probability density functions:{

h1(x) = (1− p1)g1(x) + p1f1(x), x ∈ R,
h2(x) = (1− p2)g2(x) + p2f2(x), x ∈ R,

(2)

where p1, p2 are the unknown mixture proportions and f1, f2 are the unknown component densities
with respect to a given reference measure ν. Given the above model, our goal is now to answer
the following statistical problem:

H0 : f1 is equal to f2 against H1 : f1 is different from f2 , (3)

without assigning any specific parametric family to the unknown components fi’s. The main shape
constraint used throughout this paper is, similarly to Bordes and Vandekerkhove [2], the fact that
the fi’s are symmetric with respect to (w.r.t.) a non-null location parameter, i.e. there exists
µi ∈ R∗ such that fi(x+ µi) = fi(−x+ µi), i = 1, 2, for all x ∈ R.

This problem is a natural extension of a recent work by Pommeret and Vandekherkove [20]
to the two sample case. Basically our test procedure consists in expanding the two unknown
densities in an orthogonal polynomial basis, and then in comparing, with an ad hoc method, their
coefficients up to a parsimonious rank selected according to a data-driven technique detailed later
on in the paper.

Our method can be used in many areas as soon as the unkwown densities are supposed to be
symmetric w.r.t. a location parameter, including the Gaussian case, but also Uniform and Laplace,
among others. As a practical illustration of our work, we analyze kinematic datasets from two
Milky Way dwarf spheroidal (dSph) satellites: Carina and Sextans, see for instance Walker et al.
[22]. More specifically, we consider the heliocentric velocities (HV) of stars in these satellites, which
are the velocities defined with respect to the solar system. These measurements are mixed with
the HV of stars in the Milky Way. Since the Milky Way is largely observed, see Robin et al. [21],
we can assume that, as required in our model (2), its velocity distribution is perfectly known. One
interesting problem is then to compare the HV distributions of both satellites Carina and Sextans
through such mixture models with a common Milky Way known component. We are therefore
left with a two sample admixture components comparison problem with a common known and
well documented component g, i.e. g1 = g2 = g in (2). Moreover, since the fi’s distributions are
generally considered as Gaussian in the astronomical literature, we can therefore also reasonably
assume that their (technically required) symmetry with respect to a location parameter holds.

The remainder of the paper is organized as follows. In Section 2, we introduce the testing prob-
lem and describe our methodology. In Section 3, we state the assumptions and asymptotic results
under the null hypothesis, along with the test divergence under the alternative. Section 4 provides
details about the adequate polynomial decomposition depending on the nature of the distributions
support. In Section 5, we implement a simulation-based study to evaluate the empirical level and
power of the test. Finally, Section 6 is devoted to a real-world application based on a kinematic
dataset with galactical heliocentric velocities comparisons. A discussion closes the paper, when
proofs and additional exploratory simulations involving the Patra and Sen [18] estimator approach
are relegated in Appendix.
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2. Testing problem

Our test procedure is based on the expansion coefficients comparison of the two probability
density functions h1 and h2, defined in (2), in an orthonormal polynomial basis. Such an approach
was originally introduced by Neyman [16] and extended in a data-driven context by Ledwina [12].
Our test procedure will permit to asymptotically detect any departure between two expansion
coefficients, screened pairwise, along the indices. As exhibited in Kallenberg and Ledwina (1995)
(see also the more recent study in Ghattas et al. [8]), Neyman tests detect very well any departure
from the null, from the first coefficient associated to the first element of the orthogonal basis,
namely its first projection, to the k-th one. In addition, the nonparametric estimation of f1 and f2
can also be obtained by such a projection procedure (up to an inversion step). It is then natural
to compare their coefficients in the spirit of the smooth Neyman type test.

Remark 1. For technical reasons, we assume in the sequel that

n1/(n1 + n2)→ a ∈]0, 1[ as n1, n2 → +∞. (4)

This condition is not restrictive and is obviously fulfilled when dealing with real-world datasets,
which corresponds to finite sample applications.

Let Q = {Qk; k ∈ N} be an orthonormal basis of the L2(ν) space, where ν is the reference
measure for the densities expressed in (2). We write Q = {Qk; k ∈ N}, where Q0 = 1 and∫

R
Qj(x)Qk(x)ν(dx) = δjk,

with δjk = 1 if j = k and 0 otherwise.
We assume that the following integrability conditions are satisfied∫

R
h21(x)ν(dx) <∞ and

∫
R
h22(x)ν(dx) <∞.

Then, for all x ∈ supp(ν), we have for i = 1, 2

hi(x) =
∑
k≥0

hi,kQk(x) with hi,k =

∫
R
Qk(x)hi(x)ν(dx),

gi(x) =
∑
k≥0

gi,kQk(x) with gi,k =

∫
R
Qk(x)gi(x)ν(dx),

fi(x) =
∑
k≥0

fi,kQk(x) with fi,k =

∫
R
Qk(x)fi(x)ν(dx),

and, from (2), we deduce that
hi,k = (1− pi)gi,k + pifi,k.

Note that there is no restriction on the support of f1 and f2, excepted that it must be known. The
null hypothesis can be rewritten as f1,k = f2,k, for all k ≥ 1. Or equivalently

H0 : p2(h1,k − (1− p1)g1,k) = p1(h2,k − (1− p2)g2,k), k ≥ 1. (5)
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Since the pdfs g1 and g2 are known, the coefficients gi,k, i = 1, 2, are automatically known. For all
k ≥ 1, the coefficients hi,k can be estimated empirically by:

ĥ1,k =
1

n1

n1∑
j=1

Qk(Xj) and ĥ2,k =
1

n2

n2∑
j=1

Qk(Yj). (6)

The estimation of the proportions pi, for i = 1, 2, involved in model (2) will depend on some
technical conditions. In fact, the following assumptions allow to semiparametrically identify model
(2) and to estimate the parameters p1 and p2 of crucial importance in our testing method, see
expression (8) hereafter.

(A1) The regularity and identifiability conditions required in Bordes and Vandekerkhove [2] and
Bordes et al. [1] are satisfied. Regarding specifically the identifiability conditions we will
suppose either:

a) The densities gi and fi, for i = 1, 2, are respectively supposed to be odd and symmetric
w.r.t. a non-null location parameter µi, i.e. there exists µi ∈ R∗ such that for all x ∈ R,
fi(x+ µi) := fSi (x) = fSi (−x), with 2-nd order moments supposed to satisfy

m(gi) 6= m(fSi ) + µi
2± k

3k
, for k ∈ {1, 2, · · · } and i = 1, 2, (7)

where m(f) generically denotes the second order moment according to the f density.

b) The densities gi and fi, for i = 1, 2, are respectively supposed to be strictly positive over
R, and symmetric about a non-null location parameter µi, i.e. there exists µi ∈ R∗ such that
for all x ∈ R, fi(x+ µi) := fSi (x) = fSi (−x), both having first order moments and satisfying
the following tail conditions:

for all β ∈ R : lim
x→+∞

fSi (x− β)

gi(x)
= 0, or lim

x→−∞

fSi (x− β)

gi(x)
= 0, i = 1, 2.

The central role of the above conditions in the semiparametric literature are detailed in the
recent and very well documented survey by Xiang et al. [24].

Remark 2. The parameters p1 and p2 can also be consistently estimated by the Patra and Sen [18]
estimator without any specific symmetry assumption. However, we do not have the

√
n-consistency

of these estimators, see Theorem 4 in Patra and Sen [18]. This last point makes the use of the
Patra and Sen estimator theoretically inadequate for our testing procedure, but it could possibly
turn out to be interesting in practice to address also asymmetric cases. In Appendix C.1.2 and
Appendix C.2.2, we numerically investigate this alternative methodology based on various schemes
using Monte-Carlo simulations.

Henceforth, we will denote by p̂ the Bordes and Vandekerkhove [2] estimator of p under (A1).
Hence, to answer the H0 testing problem (3), we consider the following double-sourced differences

R̂k := p̂2(ĥ1,k − (1− p̂1)g1,k)− p̂1(ĥ2,k − (1− p̂2)g2,k), k ≥ 1, (8)
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allowing to detect any possible departure from the null hypothesis.
The basic idea to construct our test statistic is to combine the standard central limit theorem
satisfied by the empirical estimators ĥ1,k and ĥ2,k, with the asymptotic normality of p̂1 and p̂2
proved in [2]. To overcome the complex dependence between the estimators of (p1, p2) and the
estimators of the coefficients associated to h1 and h2, we split each sample into two independent
sub-samples of size n′1, n

′′
1 for X and n′2, n

′′
2 for Y , with n′1 +n′′1 = n1 and n′2 +n′′2 = n2, respectively.

For simplicity we fix n′1 = n′′1 = n1/2 and n′2 = n′′2 = n2/2. Then, we use the first sub-samples to
estimate the coefficients of h1 and h2, and the second sub-samples to estimate the proportions p1
and p2. We detail this construction in Appendix B. For all k ≥ 1, we obtain convergent estimators
ŵk of the asymptotic variance of

√
ñR̂k, where ñ = (n1n2)/(n1 +n2). Then for all k ≥ 1, we define

Ûk = (R̂1, . . . , R̂k), and

T̂k = ñÛkD̂
−1
k Û>k , (9)

where D̂k is a diagonal matrix of normalization having the form diag(d̂1, . . . , d̂k), with

d̂j = max (ŵj, e(n1, n2)) , 1 ≤ j ≤ k, (10)

where e(n1, n2) is a trimming term satisfying e(n1, n2)→ 0 as n1, n2 tend to infinity, and added to

avoid instability in the evaluation of D̂−1k .
Following Ledwina [12] and Kallenberg and Ledwina [10], we suggest a data-driven procedure

to select automatically the number of coefficients needed to answer the testing problem. Formally,
we introduce the following penalized rule to select the rank k of the statistic T̂k:

S(n1, n2) = min

{
argmax

1≤k≤d(n1,n2)

(
s(n1, n2)T̂k − βkpen(n1, n2)

)}
, (11)

where d(n1, n2)→ +∞ as n1, n2 → +∞, pen(n1, n2) is a penalty term such that pen(n1, n2)→ +∞
as n1, n2 → +∞, the βk’s are penalization factors, and s(n1, n2) is a normalization factor. In
practice, we will consider βk = k, k ≥ 1, and pen(n1, n2) = log(n1n2/(n1 + n2)), n1, n2 ≥ 1. The

rate s(n1, n2) depends on the almost sure oa.s.(n
−1/4+α
i ), α > 0, i = 1, 2, convergence rate of the

estimators of p1 and p2 (it appears in the proof of Lemma 1). Accordingly, we fix

s(n1, n2) =

(
n1n2

n1 + n2

)s−1
, with 0 < s < 1/2. (12)

Finally the data-driven test statistic under consideration is T (n1, n2) = T̂S(n1,n2).

3. Additional assumptions and main results

To test consistently (3), based on the statistic T (n1, n2), we will suppose the following conditions
to hold.

(A2) The coefficient order upper bound d(n1, n2) involved in (11) satisfies

d(n1, n2) = o(log(n1n2/(n1 + n2))e(n1, n2)).
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(A3) There exist nonnegative constants M1,M2 such that for all k ≥ 1, under H0

1

k

k∑
j=1

E(Q2
j(X)) < M1, and

1

k

k∑
j=1

E(Q2
j(Y )) < M2.

Remark 3. Note that assumption (A3) is for example satisfied in the Gaussian case as stated
in Pommeret and Vandekerkhove [20], see Lemma 1 p. 4754 along with its proof in Appendix B,
when the Qj’s are the N (0, 1)-orthogonal Hermite polynomials.

The next two results state respectively the asymptotic behavior of the selected rank S(n1, n2)
and the test statistic T (n1, n2). For related proofs, see Appendix A.

Lemma 1. If (A1) is satisfied, and if (A2) and (A3) hold, then, under H0, S(n1, n2) converges
in probability towards 1 as n1, n2 → +∞.

From Lemma 1, T (n1, n2) and T̂1, see definition (9), have the same limiting distribution. More-
over, under assumption (A1), the estimators p̂1 and p̂2 are asymptotically Gaussian under the null
hypothesis. Thus, we deduce the limit distribution of the test statistic from the previous lemma.

Lemma 2. If assumptions of Lemma 1 are satisfied, then, under H0, T̂1 converges in law towards
a χ2-distribution with one degree of freedom as n1, n2 → +∞.

Theorem 1. Assume that (A1-3) hold, then, under H0, T (n1, n2) converges in law towards a
χ2-distribution with one degree of freedom as n1, n2 → +∞.

We consider now the collection of H1-type alternatives defined as follows: there exists q ∈ N∗
such that

H1(q) : f1,j = f2,j, j = 1, . . . , q − 1, and f1,q 6= f2,q,

which describes a departure between f1 and f2 at the q-th order coefficient. If we let

δ(k) := p2(h1,k − (1− p1)g1,k)− p1(h2,k − (1− p2)g2,k), k ≥ 1, (13)

then the alternative hypothesis H1(q) tells that δ(q) is the first non null coefficient along this series.
We can now state the following proposition that describes the asymptotic drift of the test statistic
under H1(q).

Proposition 1. Assume that (A1-3) hold. Then, under H1(q), S(n1, n2)→ s ≥ q and T (n1, n2)→
+∞ as n1, n2 → +∞, that is, for all ε > 0, P(T (n1, n2) < ε)→ 0.

Remark 4. Let us point out that all the asymptotic results provided in this section are still valid
when the cumulative distribution functions (cdfs) G1 and G2 associated respectively to g1 and g2 are
not exactly known but can be estimated using separate (independent from X and Y ) i.i.d. samples
U = (U1, . . . , UN1) and V = (V1, . . . , VN2) drawn from g1 and g2. In fact since the estimation
method proposed by Bordes and Vandekerkhove [2] is essentially based on almost sure uniform

6



control of convergence of the empirical cdf, all their proofs can be revisited by substituting the cdfs
G1 and G2 by their smoothed empirical versions G̃1 and G̃2 without impacting their asymptotic
results provided that N1/(N1 + N2) → A ∈]0, 1[ as N1, N2 → +∞ and n1 = o(N1) along with
n2 = o(N2). Similarly, the required moments associated to the probability density functions g1 and
g2 can be empirically estimated by

ĝ1,k =
1

N1

N1∑
j=1

Qk(Uj) and ĝ2,k =
1

N2

N2∑
j=1

Qk(Vj), (14)

with negligible bias, compared to the ones associated to ĥ1,k and ĥ2,k. Therefore the use of these
empirical estimators in the proofs (instead of g1 and g2) still ensures the asymptotic validity of our
results.

4. Choice of the reference measure and test construction

4.1. Choice of the adequate reference measure

In this section, we propose to advice on the most relevant reference measure ν to be used for
the computation of coefficients hi,k, gi,k and fi,k, i = 1, 2 and k ≥ 0, given in Section 2 depending
on the model setup. Note that we will use some of the reference measures described below in the
supplementary simulations provided in Appendix C.1.2 and Appendix C.2.2 in which the Patra
and Sen [18] estimator of p is used despite the fact that it is not

√
n-consistent.

i) Real line support: the Gaussian measure. When the support of both unknown mixture
components is the real line, we can choose for ν the standard normal distribution. The set {Qk, k ∈
N} = {Hk, k ∈ N} is constructed from the orthonormal Hermite polynomials, defined for all x ∈ R
by:

H0 = 1, H1(x) = x,
√
k + 1Hk+1(x) = xHk(x)−

√
kHk−1(x), k ≥ 1. (15)

ii) Real line support: the Lebesgue measure. When the support is the real line, another choice
for ν is the Lebesgue measure on R. In that case we can choose {Qk, k ∈ N} = {Hk, k ∈ N} the
set of orthogonal Hermite functions, defined for all x ∈ R by:

Hk(x) = Hk(x)
√
fN (0,1)(x), k ≥ 0.

where Hk is the k-th Hermite polynomial defined in (15).
iii) Positive real line support: the Gamma measure. When the support of both unknown

mixture components is the positive real line, we can chose for ν a gamma distribution Γ(1, α),
with α > −1. The set {Qk, k ∈ N} is then constructed from the orthogonal Laguerre polynomials
defined for all x ∈ R by:

Lα0 (x) = 1, Lα1 (x) = −x+ α + 1,

−xLαk (x) = (k + 1)Lαk+1(x)− (2k + α + 1)Lαk (x) + (k + α)Lαk−1(x), k ≥ 1.
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iv) Discrete support: the Poisson measure. If the common support is the set of integers then
the choice of ν can be the Poisson distribution with mean α > 0 and with associated orthogonal
Charlier polynomials defined by:

Cα0 = 1, Cα1 (x) = (α− x)/α, xCαn (x) = −αCαn+1(x) + (n+ α)Cαn (x)− nCαn−1(x), k ≥ 1.

v) Bounded support. If the supports are a bounded interval ]a, b[, a < b, we can use a uniform
measure for ν and its associated Legendre polynomials. For instance, when ]a, b[=] − 1, 1[ these
polynomials are defined for all x ∈ R by:

L0 = 1, L1(x) = x, (k + 1)Lk+1(x) = (2k + 1)xLk(x)− kLk−1(x), k ≥ 1.

vi) Wavelets. Another approach is to consider an orthogonal basis of wavelets, say {φi, ψi,j; i, j ∈
Z}, see Daubechies [6]. Note here that the measure ν is the Lebesgue one. Hence, the density
expansions would take the following generic form:

f =
∑
i∈Z

〈f, φi〉φi +
∑

i∈N,j∈Z

〈f, ψij〉ψij,

with a double sum, which turns out to be heavier to implement in practice.

4.2. Construction of the test statistic

Under the null hypothesis H0, Theorem 1 gives the asymptotic distribution of the test statistic.
The computation of the test statistic first requires the choice of d(n1, n2), e(n1, n2) and s(n1, n2).
A previous study (see Pommeret and Vandekherkove [20]) showed that the empirical levels and
powers were overall weakly sensitive to d(n1, n2) if taken large enough. From that preliminary
study, and based on our simulations, we recommend to make the following distinction:

• In case of large enough sample sizes, that is if n1p̂1 > 30 and n2p̂2 > 30, we decided to set
d(n1, n2) equal to 10. The trimming e(n1, n2) is set equal to (log(max(n1, n2)))

−1. The power
of the normalization s(n1, n2) = (n1n2/(n1 + n2))

s−1 is fixed close enough to −1/2, with s
equal to 2/5, which seemed to provide good empirical levels.

• In case of small sample sizes or low proportions, that is, if n1p̂1 < 30 and/or n2p̂2 < 30, the
test will be used only with a small value of d (the number of polynomials), for instance d = 3.
In that case, the estimators are too unstable to evaluate consistently the expansion factors
beyond the third degree. Hence, the test consists in the densities comparison up to their
third degree in the polynomial expansions. If the null hypothesis is rejected, the densities
are considered as different. However, when the null hypothesis is not rejected, it only means
that f1 and f2 are to be declared to have the same expectation, variance and skewness (but
can be different densities in reality).
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5. Monte Carlo simulations

Recall first that the samples X and Y are drawn respectively from mixture densities h1 and
h2, defined in (2), where p1, p2 are the unknown mixing proportions and f1, f2 are the unknown
component densities with respect to a given reference measure ν. Hereafter, simulations are per-
formed to evaluate the empirical level of the test when the densities f1 and f2 are symmetric. This
level corresponds to the H0 rejection probability when H0 is true (f1 = f2). In practice, this level
is expected to reach 5% asymptotically, since one compares our test statistic to the 95-percentile
of the χ2-distribution (see Theorem 1). We also assess the power of the test, i.e. the probability
to reject H0 given that H0 is false, which informs on the test ability to detect departures from the
null hypothesis.

Usually, statisticians first investigate on low levels of the test under different setups before
analyzing its power. To have a deeper understanding on the strengths and weaknesses of our
test, various simulation schemes are considered including finite mixture models with different
component distributions and weights. Also, to check whether the test quality remains acceptable
under various settings, we make the parameters of the component distributions vary. Basically, we
introduce two opposite situations. In the former, the two component densities fi and gi are in close
proximity; whereas they are far apart in the latter. For each case of the simulation study, the test
is performed one hundred times to evaluate the empirical level (or power). We also fix n = n1 = n2

for conciseness when presenting the results, acknowledging that the case where n1 6= n2 naturally
arises with real datasets (see Section 6).

5.1. Empirical levels

Our objective is first to check whether the results significantly differ when changing the compo-
nent weights and the component distributions of the mixture models. Regarding the weights, we
focus on values ranging from 10% to 70%. Such weights are usual in most applications, where the
unknown mixture component can be prevalent or not. The challenge is that the test remains effec-
tive although the pi’s (unknown component proportions) are low, meaning that few observations
would be assigned to them.

Let us start with two-component mixtures of Gaussian distributions and remind that, under
the null hypothesis, f = f1 = f2. The test is conducted in the following cases: a) g1 = g2 with
g1 far from (ff) f ; b) g1 = g2 with g1 close to (ct) f ; c) g1 6= g2 with g1 ff g2 and g1, g2 ff f ; d)
g1 6= g2 with g1 ct f and g2 ff f (the case where g1 6= g2 with g1 ct g2 is similar to b)). As an
illustration, Fig. 1 depicts densities obtained from each of the aforementioned situations. Note
that it is sometimes not obvious that hi follows a typical “bumpy” mixture distribution (due to
component proximity, see cases b) and d)), which is all the more interesting when testing H0.

Tab. 1 summarizes the empirical level of the test depending on the situation. The results are
overall satisfactory since the empirical levels are roughly equal to 5% whatever the context. The
worst cases, i.e. empirical levels significantly higher than 5%, correspond to situations where at
least one unknown mixture component has a low weight. It is indeed difficult to get accurate
estimates of the mixture weights in such cases, which obviously impacts the quality of the test
because very few observations relate to the unknown component density to be tested. Despite being
sensitive to the component weights, our test procedure does not seem to be highly sensitive to the
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Case c) Case d)

Case a) Case b)

0 5 0 5

0.0

0.2

0.4

0.0

0.2

0.4

Figure 1: Under H0. Densities of X (solid) and Y (dashed) in : a) g1 = g2 with g1 far from (ff) f ; b) g1 = g2 with
g1 close to (ct) f ; c) g1 6= g2 with g1 ff g2 and g1, g2 ff f ; d) g1 6= g2 with g1 ct f and g2 ff f .

number of observations itself. Finally let us notice that the empirical levels tend, as expected, to
overall asymptotically decrease.

Tab. 2 shows the obtained results with other types of distributions for f ; namely Student,
Laplace or Uniform. Our goal here is to check whether the use of different unknown distributions
in the mixture models (2) has a noticeable impact on the quality of our procedure. For one
given distribution, Tab. 2 stores the worst case (in terms of empirical level) associated to the
aforementioned situations a), b), c) and d). Whatever the distribution considered, the worst

Table 1: Empirical level (in %) of the test with two-component Gaussian mixtures in settings a), b), c), and d), see
also Fig. 1. Corresponding mixture parameters are stored in Tab. C.5, see Appendix C.1.

Case a) Case b) Case c) Case d)

p2 p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 4 8 2 2 6 4 5 7 7 7 5 3
n = 1, 000 p1 0.25 3 7 6 5 3 6 2 7 4 6 3 9

0.7 4 3 5 5 3 9 5 5 6 13 6 6

0.1 11 6 6 6 6 8 1 4 5 7 5 7
n = 4, 000 p1 0.25 7 5 5 4 7 7 1 8 4 1 6 4

0.7 5 3 4 3 6 3 7 6 5 8 6 5

0.1 5 6 9 4 7 7 8 3 5 9 3 5
n = 10, 000 p1 0.25 3 4 4 6 3 3 4 8 7 4 3 9

0.7 4 3 4 8 3 5 5 7 1 7 6 4
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Table 2: Empirical level (in %) of the test corresponding to case d), identified as the situation providing the worst
results whatever the distribution of f . Parameters are given in Tab. C.6 of Appendix C.1.

Student Laplace Uniform

p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 11 14 6 12 10 6 6 10 9
n = 1, 000 p1 0.25 9 8 4 8 7 9 9 8 7

0.7 13 6 8 8 11 7 10 4 5

0.1 6 3 4 9 5 3 5 2 5
n = 4, 000 p1 0.25 8 7 2 8 6 4 3 3 4

0.7 6 5 1 10 7 6 6 5 3

0.1 7 4 6 6 5 9 5 6 3
n = 10, 000 p1 0.25 4 1 4 5 3 6 4 2 6

0.7 8 2 5 5 6 3 3 5 4

case stands for case d). In such a situation (see the corresponding density of X in Fig. 1), the
mixture weight p1 is probably hard to estimate correctly. However, contrary to case b), there is
no “compensation effect” since p2 is very likely to be well estimated (the mixture components
in Y are well separated). This asymmetric behaviour when estimating the weights p1 and p2
deteriorates the quality of the test. This trend tends to vanish when increasing the sample size,
which shows the asymptotic detection efficiency of our method on a challenging case. Moreover,
let us notice that as long as the sample sizes n1, n2 are large enough, the type of distribution
considered in the mixture densities (2) has a poor impact on the quality of our testing procedure
(other distributions, not presented here, were also tested with similar results). Nevertheless, some
bad results happen when the sample size is too small, which can be likely connected to the choice
of the distribution parameters themselves (see Tab. C.6 in Appendix C.1). More precisely, high
variances of the component distributions seem to cause troubles when estimating the weights p1
and p2. Again, this concern tends to naturally disappear when increasing the sample size, thanks
to the strong consistency of the semiparametric estimators used in our procedure, see Bordes and
Vandekerkhove [2].

5.2. Empirical powers

We now evaluate the ability of our test to detect departures from the null hypothesis. As a
starting point, consider the situations where f1 and f2 belong to the same distribution family, but
have different moments. In the following, the difference can originate from the expectation (case
e)) or the variance. When the variances of f1 and f2 differ, we are interested in two frameworks:
either the difference is big (case f)) or small (case g)). Lastly, we analyse the behaviour of the test
when f1 and f2 belong to different distribution families with same two first order moments (case
h)).

Similarly to Section 5.1, Tab. 3 provides the empirical power of our testing procedure related
to Gaussian mixtures in the four aforementioned cases. As it can be noticed, the power of the test
is very strongly influenced by the number of observations and is much more sensitive to the sam-
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Table 3: Empirical power of the test in two-component Gaussian mixtures in various settings. Mixture parameters
are listed in Tab. C.9 of Appendix C.2).

Case e) Case f) Case g) Case h)
E[f1] 6= E[f2] V(f1) 6= V(f2) V(f1) ' V(f2) N (µ, σ) vs L(θ, ν)

p2 p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 51 62 70 41 59 72 13 6 12 4 2 8
n = 1, 000 p1 0.25 69 93 100 62 97 100 9 18 34 2 6 6

0.7 83 100 100 83 100 100 14 41 97 3 5 5

0.1 100 99 100 96 100 100 17 21 39 1 7 2
n = 4, 000 p1 0.25 100 100 100 100 100 100 28 69 93 2 6 3

0.7 100 100 100 100 100 100 36 96 100 1 3 5

0.1 100 100 100 100 100 100 31 58 68 3 5 5
n = 10, 000 p1 0.25 100 100 100 100 100 100 63 98 100 8 5 4

0.7 100 100 100 100 100 100 88 100 100 8 10 4

ple sizes than when considering empirical level performances. Indeed, detecting some differences
between f1 and f2 sometimes requires a lot of data and is more conservative. Concretely, as soon
as the difference lies in the skewness, the kurtosis, or higher order moments of the distributions,
it becomes very hard to get high powers (except when the size of the data becomes huge). As an
example, our trials show that at least 25, 000 observations are needed to reach acceptable powers
(70%) in case h) of Tab. 3 (with p1 = p2 = 0.1 and other parameters listed in Tab. C.9 of Appendix
C.2). Of course, for the same reason, the weights also play a key role. Indeed, they somehow rep-
resent the exposure of the unknown component densities with a clear impact on our results since
basically the bigger the weights are, the higher the power of the test is. Thanks to Tab. 4, we also
realize that the type of distribution under study for f1 and f2 is not as much impacting as the

Table 4: Empirical power (n = 1, 000); depending on the distributions for f1 and f2, the weights and the order of
the moment differentiating f1 from f2. The case e) is not considered in the Student case since the mean is fixed
(equal to zero). Parameters are stored in Tab. C.10, see Appendix C.2.

Case e) Case f) Case g) Case h)

p2 p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 - - - 45 47 72 7 17 15 8 5 6
Student p1 0.25 - - - 64 93 96 10 21 28 7 4 6

0.7 - - - 76 100 100 13 39 94 9 5 9

0.1 48 57 64 41 48 69 12 8 16 4 5 5
Laplace p1 0.25 61 88 100 67 89 97 14 29 33 7 8 6

0.7 78 97 100 71 93 100 17 49 95 5 8 9

0.1 59 66 79 52 69 79 12 7 13 4 7 6
Uniform p1 0.25 75 94 99 72 100 100 15 34 41 9 8 6

0.7 88 100 100 86 100 100 22 53 100 7 10 4
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sample size or the unknown component weight.
Apart from these statements, our simulations also enable to verify empirically Proposition 1.

Under the alternative hypothesis, the selected order of the test statistic should be greater than or
equal to the moment order differentiating them. Among the 100 times the test was performed (with
n = 5, 000), more than 80% of the tests have selected the right order following the penalization
rule (11); i.e. k = 1 in case e), k = 2 in case f) or g), and k ≥ 3 in case h). Let us mention that
more than 90% of the tests selected the first rank (k = 1) in the decomposition when testing under
the null hypothesis, which corroborates our theoretical results.

Finally, additional simulations are presented in the appendices, illustrating that our test strat-
egy can be generalized to other frameworks with practical interest. However, the reader has to
keep in mind that the symmetry assumption is not satisfied in such cases, which means that the
use of the Patra and Sen estimates for the pi’s make these applications theoretically non valid.

6. Application on Galaxies dataset

We consider two datasets from the SIMBAD Astronomical Database (Observatoire Astronomique
de Strasbourg). They gather records of stars heliocentric velocities measurements coming from two
dwarf spheroidal (dSph) galaxies: Carina and Sextans. These dSph galaxies are low luminosity
galaxies that are companions of the Milky Way and thus are respectively contaminated with Milky
Way stars in the field of view.

Hence, the Carina and Sextans measurements at our disposal are mixed with Milky Way stars
heliocentric velocity measurements across the stellar landscape. In that sense, the distribution of
these measurements can be viewed as an admixture/contamination model (1). Since the Milky Way
is very largely observed, see Robin et al. [21], it is commonly accepted that its heliocentric velocity
(HV) can be expressed as random variable with known probability density function g = g1 = g2
as in (2). Therefore, we can assume that our two samples are drawn from (2), where f1 and
f2 stand respectively for the unknown density of the Carina and Sextans galaxy. Fig. 2 shows
the probability density estimations of the heliocentric velocity measurements associated to Milky
Way and its companions Carina and Sextans. It is based on N = 170, 601 observations without

Carina Sextans Milky−Way

−200 0 200 400 −200 0 200 400 −200 0 200 400

0.000

0.003

0.006

0.009

Heliocentric Velocities (HV)

Figure 2: The probability density estimations of the heliocentric velocities of the Carina (contaminated), Sextans
(contaminated) and Milky Way galaxies.
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Figure 3: Decontaminated density estimations of the heliocentric velocities of the Carina (dashed) and Sextans
(solid) galaxies using Bordes and Vandekerkhove [2] with (p̂1, p̂2) = (0.44, 0.56).

contamination for Milky Way obtained by Magellan telescope [23], n1 = 2, 400 contaminated
observations from Carina and n2 = 1, 488 contaminated observations from Sextans. It is similar
to Fig. 1 shown in [23] where Gaussian assumptions on the densities were used. Such assumptions
are not necessary required for our method, and only the knowledge of the moments of the Milky
Way HV allows us to implement our test. Note that given the above sample sizes, the technical
condition n1 = o(N) along with n2 = o(N) required to ensure the validity of our testing method,
as discussed in Remark 4, is fully satisfied in this application.

Next, we aim to test if both Carina and Sextans heliocentric velocities have the same distribu-
tion, i.e. f1 = f2. Using the semiparametric estimation procedure in Bordes and Vandekherkove
[2] we obtain p̂1 = 0.4446 and p̂2 = 0.5693, which means that 44.46% of the Carina HV and
56.93% of the Sextans HV are captured through these datasets. Note that these proportions may
vary depending on the position of the data reception. Here they are captured simultaneously and
therefore comparable, with the same source of contamination which is from Milky Way. Also, we
should note that the estimated proportions differ from the one reported, for example, in Tab. 6 of
Patra and Sen [18]. Indeed, the dataset used is larger and was not obtained from the same tele-
scopes. In addition, the corresponding location estimators for Carina and Sextans are respectively:
µ̂1 = 224.5 and µ̂2 = 226.4. Our testing procedure selects the first rank, that is S(n1, n2) = 1, and

provides a test statistic value T̂1 = 0.02567 with a p-value equal to 0.87. This means that there
is no reason to reject the null hypothesis, or more practically, that we can reasonably decide that
the Carina and Sextans HV distributions are similar. Note that this conclusion can be visually
validated by looking at the decontaminated Carina and Sextans HV densities (see Fig. 3), obtained

from the plug-in f̂ inversion formula in Bordes and Vandekerkhove [2] Section 2, where only very
slight bumps on the left side tail do not fit exactly. These tiny differences are possibly artefacts due
to the aforementioned inversion formula using the approximate p̂i’s and kernel density estimates
ĥi’s instead of the true pi’s and hi’s.
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Discussion

In this work we both theoretically and numerically addressed the two-sample comparison test-
ing problem for two-component mixture models having one known component. More precisely, we
proposed a penalized χ2-type testing procedure allowing a pairwise comparison of the unknown
components under a symmetry assumption. We implemented our methodology, with satisfactory
results, on a large range of situations, as summarized in Tab. 1-C.11, including Gaussian distri-
butions as well as Laplace, Student or Uniform distributions. We then used our testing procedure
on heliocentric velocity comparison for Carina and Sextan galaxies. This real dataset application
successfully demonstrates the utility and interpretability of our testing procedure validated by the
features comparison of the decontaminated densities, see Fig. 3. The testing procedure requires a
splitting technique in order to evaluate the variance of the test statistic, which reduces the sample
size by half. However, this splitting technique can turn out to be very challenging when it comes
to handle small size samples as it can worsen the underlying weights and moments estimations.
To overcome this issue, we think that the use of a bootstrap technique adapted to M -estimators
is a promising lead of research (beyond the scope of this paper).

When the symmetry condition (A1) cannot be assumed, a possible alternative could be to use
the estimators of p1 and p2 introduced by Patra and Sen [18] which are proved to not be

√
n-

consistent (contrarily to the ones we use for the symmetric case) but seem to provide reasonable
results since their use in our testing procedure leads to empirical levels pretty close to 5% across
our additional set of simulations, see Appendix C.1.2 and Appendix C.2.2.

We think that this work could be extended in many interesting ways. First we could consider
the case where the two samples are paired, with n1 = n2, as in Ghattas et al. [8]. We could
probably adapt our testing procedure to obtain results similar to those in Proposition 1 when
Theorem 1 could be extended to the paired case by considering the central limit theorem applied
on the sequence of random variables (Q1(Xj)−Q1(Yj))j≥1. This would be particularly interesting
for paired time-varying models. Another interesting problem would be the K-sample version of
this procedure, which would enable us to deal with time series applications. Moreover, extensions
to censored and truncated data would also be of particular interest, especially for insurance appli-
cations where it is customary to be confronted with incomplete observations. Finally we started
to incorporate our testing procedure in a R package project and plan to enrich it with further de-
velopments connected with the admixture testing problem including the above mentionned topics
but also the concordance testing problem happening in the z-scores analysis, see Lai et al. [11],
which is part of an ongoing work.
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Appendix A. Proofs

Proof of Lemma 1. For simplicity matters, let us denote ñ = n1n2/(n1 + n2). To prove
the wanted result it is equivalent to prove that P(S(n1, n2) ≥ 2) vanishes as n1, n2 → +∞. By

definition of S(n1, n2), using the positivity of T̂1, we have

P(S(n1, n2) ≥ 2) = P
(

max
2≤k≤d(n1,n2)

{ñs−1T̂k − k log ñ} ≥ ñs−1T̂1 − log ñ

)
= P

(
∃k, 2 ≤ k ≤ d(n1, n2) : ñs−1T̂k − k log ñ ≥ ñs−1T̂1 − log ñ

)
= P

(
∃k, 2 ≤ k ≤ d(n1, n2) : ñs−1(T̂k − T̂1) ≥ (k − 1) log ñ

)
= P

(
∃k, 2 ≤ k ≤ d(n1, n2) :

k∑
j=2

ñs(R̂j)
2/d̂[j] ≥ (k − 1) log ñ

)
.
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Since d̂j = max(ŵj, e(n1, n2)) we get

P(S(n1, n2) ≥ 2) ≤ P

(
∃k, 2 ≤ k ≤ d(n1, n2) :

k∑
j=2

ñs(R̂j)
2 ≥ e(n1, n2)(k − 1) log ñ

)
.

We now use the fact that if a sum of positive terms, say
∑k

j=2 rj is greater than a constant r, then
necessarily there exists a term rj such that rj > r/(k − 1), to get that

P(S(n1, n2) ≥ 2) ≤ P
(
∃k, 2 ≤ k ≤ d(n1, n2),∃j, 2 ≤ j ≤ k, ñs(R̂j)

2 ≥ e(n1, n2) log ñ
)

≤ P

d(n1,n2)∑
k=2

ñs(R̂k)
2 ≥ e(n1, n2) log ñ

 .

Now decomposing R̂k as follows:

Rk = ĥ1,kp̂2 − ĥ2,kp̂1
= (ĥ1,k − p1α1,k)p̂2 − (ĥ2,k − p2α2,k)p̂1 + α1,kp1(p̂2 − p2) + α2,kp2(p̂1 − p1),

where αi,k =
∫
RQk(z)hi(z)ν(dz), we combine twice the inequality (a + b)2 ≤ 2(a2 + b2), for all

(a, b) ∈ R2, with P(U2+V 2 ≥ z) ≤ P(U2 ≥ z/2)+P(V 2 ≥ z/2), for any couple of random variables
(U, V ), we deduce that

P(S(n1, n2) ≥ 2) ≤ P

d(n1,n2)∑
k=2

ñs(ĥ1,k − p1α1,k)
2p̂22 ≥ e(n1, n2) log ñ/16


+ P

d(n1,n2)∑
k=2

ñs(ĥ2,k − p2α2,k)
2p̂21 ≥ e(n1, n2) log ñ/16


+ P

d(n1,n2)∑
k=2

ñsα2
1,kp

2
1(p̂2 − p2)2 ≥ e(n1, n2) log ñ/16


+ P

d(n1,n2)∑
k=2

ñsα2
2,kp

2
2(p̂1 − p1)2 ≥ e(n1, n2) log ñ/16

 .

We study now these four quantities separately. First, using the Markov inequality, we obtain

P

d(n1,n2)∑
k=2

ñs(ĥ1,k − p1α1,k)
2p̂22 ≥ e(n1, n2) log ñ/16

 ≤ 16ñs

e(n1, n2) log ñ

d(n1,n2)∑
k=2

n1∑
j=1

V(Qk(Xj))

n1

≤ 16M1d(n1, n2)n1
s−1

e(n1, n2) log ñ

(
n2

n1 + n2

)s
,
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which tends to zero as n1, n2 tend to infinity. Similarly,

P

d(n1,n2)∑
k=2

ñs(ĥ2,k − p2α2,k)
2p̂21 ≥ e(n1, n2) log ñ/16

 → 0,

as n1, n2 tend to infinity. We now consider the two last quantities. Since in addition we have

p2iα
2
i,k ≤ p2i

∫
R
Qk(z)2hi(z)ν(dz)

= pi

(∫
R
Qk(z)2fi(z)ν(dz)− (1− pi)

∫
R
Qk(z)2gi(z)ν(dz)

)
≤

∫
R
Qk(z)2fi(z)ν(dz ≤M1,

it comes that

P
(∑d(n1,n2)

k=2 ñsα2
1,kp

2
1(p̂2 − p2)2 ≥ e(n1, n2) log ñ/16

)
≤ P

(
(p̂2 − p2)2 ≥

e(n1, n2) log ñ

16M1d(n1, n2)ñ2
s

(
n1

n1 + n2

)−s)
,

which tends to zero since (p̂2 − p2)2 = oa.s.(n
1/2+α
2 ) for all α > 0, see Bordes and Vandekerkhove

[2]. The same conclusion holds for the last quantity, which is

P

d(n1,n2)∑
k=2

ñsα2
2,kp

2
2(p̂1 − p1)2 ≥ e(n1, n2) log ñ/16

→ 0,

and leads us to the wanted result P(S(n1, n2) ≥ 2)→ 0 as n1, n2 → +∞.

Proof of Lemma 2. Recall that n1/(n1 +n2)→ a as n tends to infinity and that each sample is
split into two sub-samples of size n1/2 and n2/2 respectively. From Lemma 1, under H0 the statistic

TS(n1,n2) has the same limiting distribution as T̂1. Combining the independence of p̂1, p̂2, ĥ1,1 and

ĥ2,1 with their asymptotic normality we have the following convergence in law:

√
n1n2

n1 + n2


p̂1 − p1
p̂2 − p2
ĥ1,1 − h1,1
ĥ2,1 − h2,1

 L−→ N (0,Σ),

where Σ = 2 diag ((1− a) Vp̂1 , a Vp̂2 , (1− a) V1, a V2), where Vp̂1 and Vp̂2 are the asymptotic vari-
ances of

√
n1p̂1 and

√
n2p̂2, respectively, V1 = V(Q1(X)) and V2 = V(Q1(Y )). The factor 2

which multiplies the diagonal matrix is due to the splitting procedure. Write L(x, y, z, w) =
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y(z− (1− x)g1,1)− x(w− (1− y)g2,1). Under the null, (5) implies that L(p1, p2, h1,1, h2,1) = 0 and
then we have

R̂1 = L(p̂1, p̂2, ĥ1,1, ĥ2,1) = L(p̂1, p̂2, ĥ1,1, ĥ2,1)− L(p1, p2, h1,1, h2,1).

By applying the Delta method we get the following convergence in law√
n1n2

n1 + n2

(
L(p̂1, p̂2, ĥ1,1, ĥ2,1)− L(p1, p2, h1,1, h2,1)

)
L−→ N (0, w1),

where w1 = V >ΣV , with V the gradient vector of L. We obtain:

V > = (p2g1,1 − (h2,1 − (1− p2)g2,1),−p1g2,1 + (h1,1 − (1− p1)g1,1), p2,−p1),
w1 = 2(1− a) Vp̂1

(
p2g1,1 − (h2,1 − (1− p2)g2,1)

)2
+ 2(1− a) V1 p

2
2

+2a Vp̂2
(
p1g2,1 − (h1,1 − (1− p1)g1,1)

)2
+ 2a V2 p

2
1,

that can be consistently estimated by replacing p1, p2 by p̂1, p̂2, Vp̂1 and Vp̂2 by their estimators
given in [2], and replacing V1, V2 and h1,1, h2,1 by their empirical estimators. We finally obtain,
according to the Slutsky’s theorem, the wanted convergence in law

T̂1 =
n1n2

n1 + n2

R̂2
1/d̂1

L−→ χ2
1,

where d̂1 expression is given in (10).

Proof of Theorem 1. Since T (n1, n2) = T̂S(n1,n2), the proof follows directly from Lemmas 1
and 2 .

Proof of Proposition 1. We first prove that under H1(q) we have P(S(n1, n2) < q)→ 0 when
n1 and n2 tend to infinity. We denote again ñ = n1n2/(n1 + n2).

P (S(n1, n2) = k) ≤ P
(
ñs−1T̂k − k log(ñ) ≥ ñs−1T̂q − q log(ñ)

)
= P

(
ñs−1T̂q − ñs−1T̂k ≤ (q − k) log(ñ)

)
= P

(
ñs

q∑
j=k+1

R̂2
j/d̂j ≤ (q − k) log(ñ)

)
≤ P

(
ñsR̂2

q/d̂q ≤ (q − k) log(ñ)
)

= P

 √
ñs|R̂q|√
d̂q log(ñ)

≤
√

(q − k)


with 0 < s < 1/2. We can now apply the following decomposition

√
ñsR̂q√

d̂q log(ñ)
=

1√
ñ1−s log(ñ)

×
√
ñ√
d̂q

(
R̂q − δ(q)

)
+

√
ñs

d̂q log(ñ)
δ(q)

= A+B,
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where δ(q) is defined in (13) and d̂q is a consistent estimator of the q-th diagonal term of variance

matrix D given in (10). Mimicking the proof of Lemma 2 we can show that
√
ñ
(
R̂q − δ(q)

)
is

asymptotically Gaussian and then A converges to a Dirac at point zero. Moreover B converges to
+∞ since δ(q) > 0. Then for all k < q, we have

P (S(n1, n2) = k)→ 0,

along with Tq > ñR̂2
q/d̂q → +∞ as n1, n2 tend to infinity.

Appendix B. Estimation of the asymptotic variance of R̂k

To overcome the complex dependence between the estimators of p1, p2 and the estimators of the
coefficients associated with h1 and h2, we split each sample into two independent sub-samples of
size n′1, n

′′
1 for X and n′2, n

′′
2 for Y , with n′1+n′′1 = n1 and n′2+n′′2 = n2, respectively. We then use the

first sub-samples to estimate the coefficients of h1 and h2, and the second sub-samples to estimate
the proportions p1 and p2. For simplicity we fix with n′1 = n′′1 = n1/2 and n′2 = n′′2 = n2/2,
respectively. Write ñ = (n1n2)/(n1 + n2) and recall that n1/(n1 + n2) → a. We then use the
following convergences in law (due accordingly to the central limit theorem or to the asymptotic
normality of the Bordes and Vandekerkhove [2] estimators):

√
ñ(ĥ1,k − h1,k)

L−→ 2bN(0, V1,k),
√
ñ(ĥ2,k − h2,k)

L−→ 2bN(0, V2,k),√
ñ(p̂1 − p1)

L−→ 2aN(0, Vp̂1),
√
ñ(p̂2 − p2)

L−→ 2aN(0, Vp̂2),

where b = 1− a, V1,k = V(Qk(X)), V2,k = V(Qk(Y )), and Vp̂1 , Vp̂2 are the asymptotic variances of√
n1p̂1 and

√
n2p̂2, respectively. To estimate V1,k and V2,k, we use the following empirical estimators:

V̂1,k =
1

n′1

n′
1∑

i=1

Qj(Xi)
2 −

 1

n′1

n′
1∑

i=1

Qj(Xi)

2

,

V̂2,k =
1

n′2

n′
2∑

i=1

Qj(Yi)
2 −

 1

n′2

n′
2∑

i=1

Qj(Yi)

2

.

Combining the independence of the basic estimators (obtained by the splitting step) and the Delta
method we finally get the convergence in law:

√
ñR̂k

L−→ N(0,Wk),

where

Wk = 2bV1,kp
2
2 + 2bVp̂1 ((h2,k − (1− p2)g2,k)− p2g1,k)2 + 2aV2,kp

2
1

+2aVp̂2 ((h1,k − (1− p1)g1,k)− p1g2,k)2 .
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The variances Vp̂1 and Vp̂2 and their estimators are entirely described in Appendix A of Bordes

and Vandekerkhove [2]. These estimators are denoted by V̂p̂1 and V̂p̂2 . Finally we get the following

estimator ŵk of
√
ñR̂k:

ŵk = 2bV̂1,kp̂
2
2 + 2bV̂p̂1

(
(ĥ2,k − (1− p̂2)g2,k)− p̂2g1,k

)2
+ 2aV̂2,kp̂

2
1

+2aV̂p̂2

(
(ĥ1,k − (1− p̂1)g1,k)− p̂1g2,k

)2
.
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Appendix C. Additional tables on Monte Carlo experiments

Appendix C.1. Empirical levels

Appendix C.1.1. Symmetric case based on Bordes and Vandekherkove [2] estimators

Table C.5: Parameters corresponding to Tab. 1 and Fig. 1.

Case a) Case b) Case c) Case d)
f N (1, 1) N (1, 1) N (1, 1) N (1, 1)
g1 N (5, 0.5) N (2, 0.5) N (−2, 0.5) N (2, 0.5)
g2 N (5, 0.5) N (2, 0.5) N (3, 0.5) N (5, 0.5)
p1 50% 50% 50% 50%
p2 50% 50% 50% 50%

Table C.6: Parameters corresponding to Tab. 2, in case d).

Student t Laplace L Uniform U
parameters E Var parameters E Var parameters E Var

f t(ν = 4) 0 2 L(0, 1) 0 2 U(0, 1) 0.5 1/12
g1 N (0, 1) 0 1 N (0, 1) 0 1 N (0, 1) 0 1
g2 N (5, 0.5) 5 0.25 N (5, 0.5) 5 0.25 N (5, 0.5) 5 0.25

Appendix C.1.2. Extended study based on Patra and Sen [18] estimators

Let us stress out that our testing methodology is based on
√
n-consistent estimators of p1 and

p2, but this is not the case anymore when considering the relaxed shape constraints in Patra and
Sen [18]. However, in practice and due to the fact that Lemma 1 remains valid under this last
framework (the almost sure rates in Patra and Sen [18] insure the correct rank selection under H0),
it is interesting to look at our test performances in setups different than those studied until now,
especially for practical applications. Tab. C.7 summarizes some results obtained when considering
different types of distribution supports (R+, N, and [0, 1]).
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Table C.7: Empirical level (in %) of the test corresponding to case d), identified as the situation providing the worst
results whatever the support. Parameters are given in Tab. C.8 below.

Support: R+? N [0, 1]

p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 12 10 15 6 8 9 6 10 9
n = 1, 000 p1 0.25 13 19 10 8 9 9 9 8 4

0.7 22 26 21 7 7 8 5 4 4

0.1 8 3 8 9 12 3 4 2 5
n = 4, 000 p1 0.25 3 2 1 12 8 3 4 2 7

0.7 18 12 11 5 11 6 4 2 5

0.1 5 8 6 6 3 6 5 4 3
n = 10, 000 p1 0.25 3 6 5 4 3 6 4 2 7

0.7 7 3 6 2 1 4 7 5 7

Table C.8: Parameters corresponding to Tab. C.7, in case d). Notations used: G = Gamma, E = Exponential, P =
Poisson, BN = Negative Binomial, and U = Uniform.

Support R+ Support N Support [0, 1]
parameters E Var parameters E Var parameters E Var

f G(16, 4) 4 1 BN (1, 10) 1 1.1 Beta(1.2, 5) 0.2 0.02
g1 E(1/4) 4 16 P(1) 1 1 U(0, 0.4) 0.2 0.013
g2 E(2) 0.5 0.25 P(4) 4 4 U(0.05, 1) 0.55 0.075

Appendix C.2. Empirical powers

We first give here the parameters involved in the simulations for the symmetric case, see Tab.
C.9 and C.10. Then, in the spirit of the previous section, we investigate the power of the test in
nonsymmetric cases, see Tab. C.11, and provide the corresponding distributions along with their
associated parameters in Tab. C.12.

Appendix C.2.1. Symmetric case based on Bordes and Vandekherkove [2] estimators

Table C.9: Parameters corresponding to Tab. 3, for cases e), f), g) and h) in the Gaussian case.

e) 6= means f) very 6= variances g) slightly 6= variances h) 6= distributions
g1 = g2 N (5, 0.5) N (5, 0.5) N (5, 0.5) N (5, 0.5)

f1 N (1, 1) N (1, 1) N (1, 1) N (1,
√

2)

f2 N (2, 1) N (1, 3) N (1,
√

2) Laplace(1, 1)
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Table C.10: Parameters corresponding to Tab. 4 (Student (t), Laplace (L) and Uniform (U) distributions).

e) 6= means f) very 6= variances g) slightly 6= variances h) 6= distributions
g1 = g2 N (5, 0.5) N (5, 0.5) N (5, 0.5) N (5, 0.5)
f1 − t(4) t(8) t(3)

f2 − t(3) t(7) N (0,
√

3)

f1 L(1,
√

0.5) L(1, 0.5) L(1,
√

0.5) L(0, 1)

f2 L(3,
√

0.5) L(1, 1) L(1,
√

0.6) t(4)
f1 U(0, 5) U(0, 5) U(0, 5) U(0, 5)
f2 U(0, 10) U(1, 4) U(0.2, 4.8) L(2.5, 1)

Appendix C.2.2. Extended study based on Patra and Sen [18] estimators

Tab. C.11 shows that similar conclusions hold in comparison with the symmetric case when
changing the support and the distributions of the mixture components. Some slight differences are
very likely to come from the choice of the parameters and the types of the component distributions
(see Tab. C.12 below), but results are mainly in line with our expectations. Moreover, Tab. C.11
gives additional information about a sort of lower bound on the powers relatively to the studied
cases. Indeed, the sample size n chosen here is equal to 1, 000 which turns out to be the poorest
informed case over our simulations setups.

Table C.11: Empirical power of the test (n = 1, 000); depending on the support, the weights and the order of the
moment differentiating f1 from f2. Parameters are stored in Tab. C.12.

Case e) Case f) Case g) Case h)

p2 p2 p2 p2
0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7 0.1 0.25 0.7

0.1 58 75 85 29 28 33 9 7 5 8 7 9
R+ p1 0.25 82 100 100 60 92 98 3 6 7 11 5 10

0.7 84 100 100 61 100 100 8 14 17 9 4 6

0.1 22 26 27 14 22 43 5 11 7 14 5 5
N p1 0.25 30 73 94 18 76 96 6 6 19 5 10 6

0.7 43 97 100 16 91 100 12 11 78 12 4 14

0.1 16 22 30 19 45 43 6 5 10 10 7 8
[0, 1] p1 0.25 26 72 95 45 100 100 16 33 62 9 20 20

0.7 37 90 100 38 100 100 7 60 100 12 34 83
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Table C.12: Parameters corresponding to Tab. C.11. Notations: G = Gamma, E = Exponential, P = Poisson,
BN = Negative Binomial, and U = Uniform, LogN = Logit Normal, Go = Gompertz.

Support R+ Support N Support [0, 1]
e) f) e) f) e) f)

f1 G(16, 4) G(8, 2) BN (1, 10) BN (2, 10) Beta(0.8, 5) Beta(12, 50)
g1 E(1/1.1) E(1/1.1) P(5) P(5) U(0, 1) U(0, 1)
f2 G(16, 5) N (32, 8) BN (2, 10) BN (2, 0.5) Beta(1.2, 5) Beta(1.2, 5)
g2 E(1/1.1) E(1/1.1) P(5) P(5) U(0, 1) U(0, 1)

g) h) g) h) g) h)

f1 G(8, 2) G(1.47, 0.56) BN (2, 10) BN (3, 100) Beta(1.2, 5) Beta(5, 2)
g1 E(1/1.1) E(1/1.1) P(5) P(3) U(0, 1) U(0, 1)
f2 G(10, 2.5) Go(0.1, 0.3) BN (2, 2) B(50, 0.06) Beta(2.4, 10) LogN (0.9, 0.8)
g2 E(1/1.1) E(1/1.1) P(5) P(3) U(0, 1) U(0, 1)
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