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Abstract 6	
	7	
Although	emission	models	have	been	designed	using	vehicle	data	over	driving	cycles	of	a	 few	8	
minutes,	they	are	often	applied	at	large	scale	to	estimate	total	emission	(inventories).	In	between,	9	
there	 is	a	range	of	scales	 in	use	 in	traffic	and	environmental	studies	(road	sections,	sub-areas,	10	
etc.).	Coupling	a	traffic	microsimulation	with	COPERT	emission	factors	at	different	scales	reveals	11	
scaling	biases.	We	compare	network	fuel	consumption	(FC)	and	nitrogen	oxide	(NOx)	emissions	12	
resulting	from	emission	calculations	based	on	different	spatial	decompositions.	The	results	show	13	
that	for	an	area	of	Paris	covering	3	km2,	the	differences	due	to	the	aggregation	scale	for	emissions	14	
range	from	5	to	17%	depending	on	the	pollutant,	spatial	partitioning	and	traffic	conditions.	These	15	
discrepancies	 can	 be	 reduced	 using	 a	 distance-weighted	 mean	 speed,	 which	 is	 not	 a	 scale-16	
consistent	definition	of	mean	travel	speed.	They	can	almost	be	cancelled	by	using	a	correction	17	
term	derived	analytically	in	this	paper,	thus	consistency	can	be	guaranteed	between	emissions	18	
assessed	at	different	scales.	Finally,	a	case	study	shows	that	it	is	possible	to	evaluate	FC	and	NOx	19	
emissions	 on	 a	 large-scale	 network	 from	 a	 sample	 of	 traffic	 data	 (probes),	 and	 obtain	 the	20	
corrective	 term	 to	 be	 applied	 to	 remove	 scaling	 bias.	 The	 most	 critical	 step	 is	 the	 accurate	21	
estimation	of	the	total	travel	distance.	The	gaps	were	successfully	reduced	to	a	maximum	of	8%	22	
in	congestion	for	a	penetration	rate	of	about	20%.	23	

Keywords: Average speed model, emission factors, COPERT, scale consistency, driving cycle, mean 24	
speed. 25	
	26	

Highlights 27	
• Highlighting	the	scaling	inconsistency	of	emission	laws	due	to	the	definition	of	mean	speed	 28	
• A	corrective	term	is	derived	to	estimate	the	biases	of	different	aggregation	scales 29	
• Floating	car	data	is	simulated	to	estimate	unbiased	global	emissions 30	
  31	
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1. Introduction 32	
	33	
Road	traffic	is	a	major	source	of	air	quality	deterioration	in	large	cities.	Despite	the	advances	made	34	
in	vehicle	technologies	and	traffic	management	policies,	travel	needs	are	increasing	and	the	road	35	
sector	remains	a	major	contributor	to	air	pollution,	with	significant	effects	on	public	health.	These	36	
effects	on	both	health	and	climate	change	are	well	established	(EEA,	2017;	WHO,	2013).	Policy-37	
makers	are	looking	for	solutions	to	reduce	greenhouse	gases	and	pollutant	emissions.	To	this	end,	38	
efforts	in	recent	years	have	focused	on	the	rigorous	assessment	of	emission	reduction	measures	39	
(Fontes	et	al.,	2015;	York	Bigazzi	and	Rouleau,	2017).	40	
	41	
The	 challenging	 issue	 is	 therefore	 to	 produce	 a	 robust	 "traffic-emission"	modeling	 chain	 and	42	
assess	 the	 corresponding	 uncertainties	 (Fallah	 Shorshani	 et	 al.,	 2015).	 In	 particular,	 in	 urban	43	
areas,	periods	of	congestion	contribute	significantly	to	fuel	consumption	and	pollutant	emissions,	44	
which	 is	 why	 traffic	 dynamics	 should	 be	 estimated	 accurately	 (Lejri	 et	 al.,	 2018).	 Traffic	45	
microsimulators	are	typically	used	to	provide	relevant	traffic	data	for	emission	calculations.		46	
	47	
Another	issue	to	be	addressed	is	the	way	emissions	are	calculated.	Initially,	the	microscopic	scale,	48	
which	provides	the	most	detailed	information	seems	to	be	the	most	appropriate.	Indeed	micro-49	
emission	models	such	as	CMEM	(Barth	et	al.,	2001),	PHEM	(Zallinger,	2009)	and	CRUISE	(AVL,	50	
2018),	provide	instantaneous	consumption	and	emission	data	from	vehicle	trajectories	measured	51	
or	supplied	by	a	microscopic	traffic	simulator.	On	a	large	urban	scale,	this	modeling	chain	is	time	52	
and	data	consuming;	moreover,	it	does	not	guarantee	an	experimentally	validated	evaluation	of	53	
emissions.		54	
	55	
Consequently,	aggregate	emission	models	are	widely	used	for	the	environmental	assessment	of	56	
traffic-related	 emissions.	 Macroscopic	 emission	 models	 such	 as	 COPERT	 (Ntziachristos	 et	 al.,	57	
2009)	 and	 HBEFA	 (Hausberger	 et	 al.,	 2009)	 require	 only	 two	 traffic	 variables	 as	 inputs:	 a	58	
description	of	the	mean	travel	speed	of	the	vehicle	flow	and	the	corresponding	travel	distance.	59	
Moreover,	 the	COPERT	model	has	 shown	 that	 it	 is	 capable	of	 integrating	 traffic	dynamics	and	60	
particularly	 the	 effects	 of	 congestion	 through	 average	 speed	 or	 a	 derived	 indicator	 (speed	61	
distribution)(Lejri	et	al.,	2018;	Samaras	et	al.,	2017).	The	accuracy	of	emissions	in	fact	depends	62	
on	the	accuracy	of	traffic	variables	estimates.	63	
	64	
In	 this	paper,	we	 focus	on	 the	COPERT	aggregate	emission	model,	which	 is	usually	 applied	at	65	
different	 scales.	 This	macroscopic	model	 is	mainly	 applied	 at	 a	 large	urban	 scale	 to	 carry	 out	66	
emission	inventories.	In	this	case,	highly	aggregated	traffic	variables	(i.e.		total	travel	distance	and	67	
a	uniform	mean	travel	speed	over	the	whole	city)	are	used	to	estimate	traffic	conditions.	In	order	68	
to	estimate	emissions	more	locally,	the	city	can	be	divided	into	several	sub-areas	characterized	69	
by	different	traffic	conditions.	In	this	case,	the	related	emissions	are	then	evaluated	separately	for	70	
each	sub-area.	More	recently,	given	the	growing	impact	of	congestion	on	emissions,	COPERT	has	71	
also	been	used	at	the	link	level	(road	sections)(Borge	et	al.,	2012;	Christos	Samaras	et	al.,	2014).	72	
In	this	case,	the	traffic	variables	should	be	specifically	estimated	for	each	link	in	order	to	derive	73	
the	corresponding	emissions.	Finally,	with	more	probe	and	GPS	data	available,	 the	question	of	74	
applying	COPERT	to	a	vehicle	fleet	arises.	This	last	scale	is	used	to	estimate	the	average	emissions	75	
over	 a	 trip,	 which	 is	 the	 closest	 to	 the	 design	 of	 the	 model.	 	 Indeed,	 the	 emission	 laws	 are	76	
established	 on	 the	 basis	 of	 measurements	 made	 over	 specific	 driving	 cycles,	 including	 the	77	
ARTEMIS	database	(André,	2004;	Boulter	and	McCrae,	2007).	The	set	of	cycles	corresponding	to	78	
traffic	conditions	 in	dense	urban	areas	has	 the	 following	characteristics:	a	duration	of	5min,	a	79	
length	of	6km,	an	average	speed	of	22km/h	and	a	speed	standard	deviation	of	around	14km/h.	80	
	81	
As	noted,	 to	perform	emission	calculations,	spatial	decompositions	are	often	used.	At	all	 these	82	
scales,	the	results	obtained	from	COPERT	are	usually	considered	valid	as	soon	as	mean	speed	and	83	
travel	distance	are	deemed	accurate.	 In	 terms	of	emissions,	 the	 relation	between	 the	 scales	 is	84	
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obvious:	emissions	are	additive.	Then,	to	move	from	a	smaller	to	a	larger	scale,	sub-area	emissions	85	
simply	need	to	be	added	together	to	obtain	the	overall	emission.	86	
However,	it	is	well	known	in	traffic	theory	that	mean	travel	speed,	the	variable	at	the	center	of	the	87	
emission	calculations,	is	not	easily	transferable	from	one	spatial	partitioning	to	larger	one.	Mean	88	
travel	speed	is	the	ratio	of	travel	distance	over	travel	time,	which	are	also	both	additive	variables.	89	
But,	the	mean	travel	speed	of	an	area	is	neither	the	sum,	nor	the	average	of	the	sub-areas	mean	90	
travel	 speeds.	 	Therefore,	 the	 following	questions	 arise:	Could	emission	 laws	based	on	a	non-91	
scalable	variable,	provide	scale-consistent	results?	Are	COPERT	emission	calculations	consistent	92	
from	one	spatial	partitioning	to	another?		93	
	94	

	95	
	96	

Figure	1	Various	spatial	decompositions	for	emission	calculations	97	

	98	
This	work	seeks	to	highlight	the	discrepancies	observed	in	terms	of	emissions	for	different	spatial	99	
decompositions.	Four	examples	of	frequent	spatial	decompositions	in	emission	calculations	are	100	
shown	in	Figure	1.	What	are	the	differences	on	overall	emissions	between	a	calculation	at	a	city	101	
scale	(IIa.)	and	at	link	level	(IIb.)?		This	paper	points	out	biases	induced	by	mean	speed	emission	102	
functions	when	emission	calculation	scales	are	different.	It	focuses	on	COPERT	emission	laws,	but		103	
the	issue	of	scale-inconsistency	occurs	more	generally	for	any	model	that	uses	either	non	scalable	104	
variables,	e.g.	mean	speed,	or	non-linear	emission	functions.	105	
	106	
The	article	is	organized	as	follows.	The	issue	is	first	stated	for	theoretical	and	measured	driving	107	
cycles	(section	3).	Then,	fuel	consumptions	(FC)	and	nitrogen	oxide	(NOx)	emission	scaling	biases	108	
are	evaluated	for	the	6th	district	of	Paris	(see	section	4).	This	case	study	focuses	on	a	dynamic	109	
traffic	 microsimulation,	 which	 is	 used	 to	 calculate	 emissions	 according	 to	 different	 spatial	110	
decompositions	 (individual	 road	 sections	 and	 individual	 vehicles).	 Traffic	 microsimulation	111	
provides	 all	 vehicle	 trajectories.	 This	 detailed	 information	 is	 convenient	 for	 performing	 all	112	
possible	 aggregations	 and	 then	 comparative	 analyses.	 After	 highlighting	 the	 scaling	 bias	113	
associated	with	the	emission	calculations	and	proposing	a	method	for	reducing	it,	we	focus	on	a	114	
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practical	case	for	real	application	(see	section	5).	The	issue	addressed	here	is	to	evaluate	network	115	
emissions	with	 only	 partial	 local	 traffic	 data.	We	 show	how	 it	 is	 possible	 to	 achieve	 network	116	
emissions	consistent	with	local	scale	from	a	sample	of	probe	vehicles	(e.g.	GPS	data).	The	paper	117	
ends	with	a	conclusion	(section	6)	and	a	discussion	(section	7).	118	
	119	
	120	

2. Material 121	
	122	
This	section	 is	devoted	 to	analyzing	 the	way	emissions	are	calculated	using	COPERT	emission	123	
functions,	depending	on	the	spatial	partitioning	chosen.	We	first	propose	an	overview	of	mean	124	
speed	definitions	in	order	to	facilitate	understanding	of	the	following	paragraphs	and	then	recall	125	
how	average	speed	is	involved	in	the	emission	calculations.	126	
	127	

2.1. Mean speed flow 128	
	129	
In	traffic	theory,	it	is	known	that	the	mean	speed	of	the	vehicle	flow	is	not	transferable	from	one	130	
spatial	decomposition	to	another.	Basically,	this	means	that	the	mean	speed	for	a	set	of	vehicles	is	131	
not	the	average	of	the	mean	speed	per	vehicle,	similarly	the	mean	speed	for	an	aggregate	of	sub-132	
regions	is	not	the	average	of	the	mean	speed	per	region.	A	proper	calculation	of	the	mean	speed	133	
requires	 the	 estimation	 of	 related	 travel	 distance	 and	 travel	 time.	 These	 variables	 are	 both	134	
additive	and	can	be	easily	transferred	from	one	scale	to	another.	135	
	136	
Let	us	consider	a	region	[r,	r+Δr]	with	n	vehicles.	Each	vehicle	j	(j=1...n)	is	travelling	a	distance	dj	137	
and	stays	τj	in	this	region	during	a	given	interval	[t;	t+∆t].	An	empirical	definition	of	the	spatial	138	
mean	speed	in	the	region	of	the	space-time	diagram	of	size	∆t	∆r	is	given	by	(Edie,	1965).		It	is	139	
relevant	when	∆t	and	∆r	are	large.	140	
	141	

		 𝑉 =
∑ $%&
%'(
∑ )%&
%'(

	 (1)	142	

	143	
In	the	next	sections,	the	space-time	regions	explored	are,	for	example,	the	network	road	sections	144	
and	6min	time	periods.	By	 introducing	the	vehicular	mean	speed	vj,	 formula	(1)	becomes	 	𝑉 =145	
∑(𝜏,𝑣,) ∑ 𝜏,⁄ ,	that	is	why	the	spatial	mean	speed	can	be	considered	as	the	time-weighted	average	146	
of	 vehicle	 mean	 speeds,	 and	 will	 therefore	 be	 noted	 Vt.	 This	 spatial	 mean	 speed	 definition	147	
(Lagrangian	approach)	includes	all	vehicle	entries	and	exits	in	the	study	region,	and	captures	all	148	
the	dynamics	of	the	vehicles	(Lejri	et	al.,	2018).	This	is	the	speed	relevant	for	estimating	emissions.	149	
However,	other	definitions	exist	and	will	be	explored	later	(section	3.2).	The	most	common	is	the	150	
distance-weighted	average	of	vehicle	mean	speeds	(noted	Vd),	also	named	punctual	mean	speed.	151	
It	corresponds	to	observations	made	at	a	point	in	the	road	section	(Eulerian	approach),	that	is	152	
why	it	cannot	capture	all	the	dynamics	of	the	vehicles.	Therefore,	it	is	not	a	suitable	choice	for	153	
calculating	emissions.		154	
Similarly,	when	considering	a	region	decomposed	in	m	sub-areas,	the	mean	speed	V	of	the	whole	155	
region	is	related	to	the	total	travel	distance	di	and	the	total	travel	time	τi	of	the	sub-areas	(i=1...m).	156	
Spatial	and	punctual	global	mean	speed	are	defined	as	the	time-	and	distance-weighted	average	157	
of	sub-area	mean	speeds	𝑣0 .	158	
Both	these	definitions	are	linked	together	by	the	Wardrop	formula	(Wardrop,	1952):	159	

𝑉$ = 	𝑉2 +	
456

75
	,	with	𝜎29 =

:
∑ );

	∑ 𝜏0	(𝑣0 	−	𝑉2)9			 (2)	160	
Whatever	the	spatial	decomposition	considered,	when	it	comes	to	characterizing	a	region	mean	161	
speed,	the	right	definition	is	the	time-weighted	average	of	the	sub-regions	mean	speeds	Vt.	In	this	162	
case,	the	vehicles’	total	travel	distances	and	total	travel	times	are	properly	aggregated	at	a	higher	163	
scale	without	any	loss	of	information.	On	the	other	hand,	the	distance-weighted	mean	speed	Vd,	164	



	 5	

depends	on	the	decomposition	considered,	as	suggested	in	formula	(2),	since	it	depends	on	𝜎2	,	165	
the	time-weighted	standard	deviation	of	local	speeds.	This	relationship	has	been	verified	using	166	
experimental	 data	 (Knoop	 et	 al.,	 2009).The	 way	 these	 mean	 speed	 definitions	 interact	 with	167	
emission	calculations	is	highlighted	in	section	3.		168	
	169	
	170	

2.2. COPERT construction 171	
	172	
COPERT	IV	has	been	widely	used	 in	most	European	Countries	 for	compiling	national	emission	173	
inventories	(EMEP/EEA,	2016),	but	it	is	also	increasingly	used	for	emission	modeling	at	the	street	174	
level	(Borge	et	al.,	2012).		175	
	176	
This	method	relies	on	the	fact	that	average	emissions	over	a	trip	vary	according	to	the	average	177	
travel	speed.	Hot	exhaust	emissions	have	been	examined	on	the	basis	of	measurements	in	several	178	
research	 programs	 (COST319,	 FP4	 MEET,	 FP6	 ARTEMIS).	 These	 measurements	 were	 mainly	179	
conducted	on	a	chassis	dynamometer	on	which	the	test	vehicle	is	run	over	a	specific	driving	cycle	180	
while	its	emissions	were	collected	and	analyzed.	The	emission	level	was	then	associated	with	the	181	
mean	travel	speed	over	the	cycle.		182	
The	driving	cycle	should	represent	real	driving	conditions	and	must	therefore	be	carefully	chosen.	183	
The	 New	 European	 Driving	 Cycle	 (NEDC),	 a	 synthetic	 type-approval	 driving	 cycle,	 has	 been	184	
replaced	 since	 2017	 by	 the	 World	 Harmonized	 Light	 Vehicles	 Test	 Procedures	 (WLTC),	 to	185	
overcome	the	shortcomings	of	the	previous	test	procedure.	The	Common	Artemis	Driving	Cycle	186	
(CAdC)	(André,	2004)	has	also	been	proposed	as	being	more	representative	of	the	behavior	of	187	
vehicles	 in	 real	 conditions	 (André	and	Rapone,	2009).	All	 of	 these	 cycles	 are	used	 to	 feed	 the	188	
European	experimental	database	that	has	been	developed	and	examined	within	the	ERMES	group	189	
for	emission	modeling.		190	
	191	
The	emission-average	speed	relationship	is	established	by	combining	the	results	of	tests	using	192	
cycles	with	different	average	speeds.	Unitary	emission	factors	(EF)	consist	of	continuous	speed	193	
functions	designed	using	regression	analysis	to	associate	the	emission	level	per	km	with	travel	194	
speed.	These	speed	curves	are	drawn	for	each	pollutant	and	each	vehicle	class	(e.g.	passenger	cars,	195	
light	duty	vehicles,	buses	and	heavy-duty	vehicles)	and	technology	(diesel	or	gasoline,	Euro	1	to	196	
Euro	6).		197	
	198	
To	 our	 knowledge,	 the	 emission	 factor	 values	 are	 not	 established	 for	 a	 unique	 length	 but	 on	199	
driving	cycles	with	various	characteristics	(especially	various	lengths).	This	means	that	(i)	mean	200	
emission	 laws	 integrate	 a	 potential	 internal	 bias	 related	 to	multiple	 (and	 inconsistent)	mean	201	
speed	values	being	used,	and	that	(ii)	we	are	actually	missing	a	clear	reference	scale	(resolution	202	
at	which	the	relationship	between	average	speed	and	emission	rates	are	established).	203	
In	(Papadopoulos	et	al.,	2018),	the	authors	describe	how	the	resolution	affects	EF	derived	from	204	
PEMS	data	and	finally	propose	to	establish	EF	on	the	basis	of	a	500m	resolution.	It	also	highlights	205	
that	the	extensive	use	of	PEMS	data	may	lead	to	heterogeneous	methodologies	for	developing	EF.	206	

2.3. Using COPERT in the framework  207	

2.4. of an evaluation 208	
 209	
Thus,	the	COPERT	model	is	based	on	unit	emission	factors	per	vehicle	and	per	km	travelled.	It	is	210	
therefore	possible	to	estimate	the	emissions	of	a	vehicle	trip	knowing	its	mean	travel	speed	and	211	
its	travel	distance.	However,	the	methodology	was	designed	to	produce	emission	inventories,	i.e.	212	
to	 assess	 emissions	 from	 a	 set	 of	 vehicles	 or	 trips.	 It	 therefore	 assumes	 that	 the	 relationship	213	
remains	valid	at	the	scale	of	a	vehicle	flow	and	that	the	determination	of	the	average	speed	and	214	
the	total	distance	travelled	by	these	vehicles	makes	it	possible	to	assess	the	associated	emissions.	215	
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Defining	the	most	appropriate	scale	for	conducting	an	environmental	assessment	with	COPERT	is	216	
a	challenging	issue.	(C.	Samaras	et	al.,	2014)	considers	that	segments	in	the	order	of	400	m	provide	217	
good	 spatial	 resolution	 to	 model	 emissions	 in	 a	 street	 network,	 in	 relation	 to	 the	 scale	 for	218	
establishing	EFs.	219	
	220	
In	 practice,	 COPERT	 methodology	 is	 applied	 to	 various	 scales	 and	 can	 even	 be	 extended	 to	221	
evaluating	very	large	scales	such	as	national	inventories	over	a	year.	In	this	case,	traffic	conditions	222	
(average	speed)	are	characterized	on	a	much	larger	scale	than	the	driving	cycle.	However,	behind	223	
this	average	traffic	situation	lie	very	varied	traffic	conditions,	characterized	by	different	average	224	
speeds.	This	is	the	case	in	dense	urban	conditions,	where	localized	congestion	phenomena	occur.	225	
Therefore,	 it	 seems	appropriate	 to	propose	 a	 spatial	 disaggregation,	 allowing	 a	more	detailed	226	
description	of	traffic	conditions	(and	associated	emissions),	even	in	case	of	monitoring	network	227	
emissions.	Traffic	simulations	and	measurements	generally	explore	two	different	scales:	the	road	228	
section	level	and	the	vehicle	level	(trajectories).	Unlike	the	global	scale,	these	local	scales	make	it	229	
possible	to	differentiate	between	streets	or	routes	in	terms	of	traffic	and	emissions.	230	
However,	if	we	do	so,	what	will	be	the	impact	of	spatial	partitioning	on	the	emissions?	Are	the	231	
total	emissions	resulting	from	various	spatial	decompositions	still	consistent?	232	
 233	

3. Problem statement 234	

3.1. Simple example 235	
	236	
Although	it	is	unusual	to	work	at	the	vehicle	scale	with	COPERT,	it	seems	necessary	to	start	from	237	
the	operating	conditions	of	 the	bench	measurements	used	to	 feed	the	model.	This	will	help	 to	238	
better	highlight	the	key	roleplayed	by	the	speed	definition.	239	
For	instance,	if	we	consider	a	vehicle	trip	of	distance	D	and	divide	it	into	two	sub-trips	of	distances	240	
d1	and	d2,	we	can	specify	the	total	emission	Etot	as	the	sum	of	sub-trip	emissions	e1	and	e2,	because	241	
the	emissions	are	cumulative	quantities.	Knowing	the	mean	speeds	of	(i)	the	total	trip	(V)	and	(ii)	242	
the	 two	 sub-trips	 (𝑣: 	and	v9 ),	 these	 emissions	 can	 be	 assessed	 using	 the	 COPERT	 emission	243	
function	𝑓.	244	

						𝐸2A2 = 𝑒: + 𝑒9													 	 	245	
𝐷	𝑓(𝑉) = 	𝑑:	𝑓(𝑣:) +	𝑑9	𝑓(𝑣9)										 (3)	246	
	247	

Assuming	 that	 the	 emission	 function	𝑓 	can	 be	 approximated	 with	 a	 third	 order	 polynomial,	248	
relation	(3)	becomes:	249	
	250	

											𝑎:𝐷𝑉 +	𝑎9𝐷𝑉9 + 𝑎G𝐷𝑉G = 	𝑎:(𝑑:𝑣: + 𝑑9𝑣9) + 𝑎9(𝑑:𝑣:9 + 𝑑9𝑣99) + 𝑎G(𝑑:𝑣:G + 𝑑9𝑣9G)	251	
with	𝑓(𝑣) ≈ 𝑎I +	𝑎:𝑣 +	𝑎9𝑣9 + 𝑎G𝑣G			252	
	253	
Equality	is	verified	if	these	three	conditions	are	verified:	254	

J
		𝑉	 = 	 (𝑑:𝑣: + 𝑑9𝑣9) 𝐷⁄
	𝑉9 = 	 (𝑑:𝑣:9 + 𝑑9𝑣99) 𝐷⁄
	𝑉G = 	 (𝑑:𝑣:G + 𝑑9𝑣9G) 𝐷⁄

	256	

	255	
In	fact,	these	conditions	cannot	be	verified	simultaneously	except	if	𝑣: = 	𝑣9	.	This	underlines	the	257	
fact	 that	 emissions	 are	 dependent	 on	 the	 spatial	 decomposition	 considered	when	 calculating	258	
them.	 It	 is	 directly	 related	 to	 the	 definition	 of	 emission	 functions.	 Indeed,	 COPERT	 emission	259	
factors	have	been	designed	according	to	a	traffic	variable	that	is	not	transferable	from	one	scale	260	
to	another:	the	average	travel	speed.	This	effect	is	enhanced	by	the	convexity	of	emission	function	261	
f	(Fig.	2).	Indeed,	if	f	is	convex,	then	 .	262	
	263	
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Also,	the	second	conclusion	that	can	be	drawn	is	that	defining	the	global	mean	speed	as	a	distance-264	
weighted	average	(first	condition)	reduces	the	gap	between	the	total	trip	emission	and	the	sum	265	
of	sub-trip	emissions,	by	cancelling	one	of	the	three	terms.	This	result	is	interesting	because	it	is	266	
not	the	correct	definition	of	the	average	speed	of	the	trip,	which	is	distance	over	time.	But	it	is	a	267	
first	step	towards	achieving	consistency	between	the	emission	calculation	scales.	268	
	269	

	270	
	271	

Measured	driving	cycle	272	
We	now	illustrate	these	effects	based	on	real	data.	The	equipped	vehicle	was	driven	in	an	urban	273	
area	in	the	eastern	part	of	Lyon	(Fig.	3	-	left).	The	speed	profile	was	recorded	using	GPS	for	over	274	
an	hour	(Fig.	3	-	right).		275	
	276	

Figure	3:	Left:	route	of	the	equipped	vehicle	in	the	Tonkin	district	of	Lyon.		277	
Right:	Speed	profile	measured	with	GPS	for	4000s.	278	

Fuel	consumption	and	NOx	emissions	associated	with	the	whole	trip	are	evaluated	using	COPERT	279	
emission	functions.	This	assessment	relies	on	global	traffic	variables	(V;	D).	On	the	other	hand,	280	
the	driving	cycle	was	split	into	sub-trips.	The	proposed	decomposition	leads	to	the	definition	of	281	
sub-cycles	 lasting	several	minutes.	For	each	sub-cycle,	 the	emission	assessment	relies	on	 local	282	
traffic	variables	(vi;	di).	The	sum	of	these	local	emissions	is	compared	to	the	global	emission.	As	283	
discussed	previously,	in	order	to	assess	the	global	emission,	we	can	use	the	proper	mean	spatial	284	
speed,	i.e.	the	time-weighted	average	of	sub-cycle	speeds	(Vt)	or	the	distance-weighted	average	285	
(Vd),	which	 is	meant	to	 limit	the	 interscale	gap.	The	global	distance	D	 is	simply	the	sum	of	the	286	
distances	of	the	sub-cycles	(di).		287	

Figure	2	Convexity	property	of	fuel	consumption	function	for	Passenger	Cars	
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Four	decompositions	were	considered:	15min,	6min,	3min	and	1min	sub-cycles.	Table	1	shows	288	
for	each	sub-cycle	decomposition,	(i)	the	global	mean	speeds	Vt	and	Vd	and	(ii)	the	associated	gaps	289	
∆	between	the	global	emission	and	the	sum	of	the	local	emissions.	The	discrepancies	are	expressed	290	
as	a	relative	deviation	from	the	sum	of	local	emissions.	291	

With	the	distance-weighted	mean	speed	Vd,	the	discrepancies	between	both	scales	are	lower	and	292	
of	the	opposite	sign.	In	that	case,	local	emissions	are	higher	than	the	global	emission	(Fig.	4).	This	293	
plot	also	exhibits	the	fact	that	the	time-weighted	mean	speed	Vt	and	the	associated	emission	are	294	
insensitive	to	temporal	partitioning.	295	
It	 finally	 appears	 that	 the	 shorter	 the	 sub-cycle,	 the	 larger	 the	 gap,	which	 is	 explained	by	 the	296	
greater	 heterogeneity	 of	 local	 speeds.	 Thus,	 for	 FC	 assessments,	 the	 global/local	 gaps	 vary	297	
between	 -1.1%	 to	 -3.3%,	while	 time	periods	 are	 becoming	 smaller.	 For	NOx	 assessments,	 the	298	
discrepancies	are	a	little	smaller,	varying	between	-0.8%	and	-1.8%.	299	

	300	
	301	

	
Driving	cycle	

	

Vt	
(km/h)	

Vd	
(km/h)	

∆(Vt)	
(g)	

∆(Vd)	
(g)	

15	min	 FC	

12.51	

13.04	 14.22	 1.4%	 -10.94	 -1.1%	
NOX	 0.12	 1.2%	 -0.08	 -0.8%	

	

6min	 FC	 15.21	 49.8	 5.0%	 -22.91	 -2.3%	
NOX	 0.42	 4.5%	 -0.14	 -1.5%	

	 FC	 16.05	 70.00	 7.2%	 -25.19	 -2.6%	

V	;	D	

vi	;	di	

GLOBAL		

LOCAL		

E	=	D	f(V)	

∑ei	=	∑	di	f(vi)	

	
	∆	=	E	–	∑ei	

	

Figure	4	:	Fuel	consumption	and	NOx	emissions	for	various	
temporal	decompositions	(from	1	to	15min):	sum	of	the	local	

estimations	and	global	estimations	with	Vt	and	Vd.		
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3min	 NOX	 0.59	 6.4%	 -0.15	 -1.6%	

1min	 FC	 18.52	 107.02	 11.4%	 -30.50	 -3.3%	
NOX	 0.93	 10.3%	 -0.16	 -1.8%	

Table	1:		Fuel	consumption	and	emission	gaps	∆	for	various	temporal	partitions	(from	1	to	15min)		302	
and	two	different	global	mean	speed	definitions	(distance-	or	time-weighted).	303	

Here,	 the	 differences	 of	 emissions	were	 highlighted	 for	 a	 driving	 cycle.	 By	 adopting	 the	 same	304	
method	 in	 the	next	 paragraph,	 these	 gaps	 are	 evaluated	 at	 the	 level	 of	 a	 vehicle	 flow	passing	305	
through	a	network.	306	
	307	

3.2. From cycles to traffic flow 308	
	309	
The	construction	of	the	COPERT	calculation	scale	comprises	a	vehicle	and	driving	cycle	lasting	310	
several	minutes.	 In	practice,	 the	model	 is	 applied	more	extensively	 to	 traffic	 flow	 (i.e.	 various	311	
vehicle	 technologies	 and	 driving	 cycles),	 especially	 for	 emission	 inventories.	 In	 terms	 of	312	
kinematics,	the	average	flow	speed	is	then	used	as	an	indicator	of	the	amount	of	emission	emitted	313	
per	km.	 	The	 total	emissions	are	calculated	as	 the	product	of	 the	 total	 travel	distance	and	 the	314	
unitary	emission	factors.		315	
In	 terms	 of	 fleet	 composition,	 unitary	 emission	 factors	 for	 each	 vehicle	 class	 are	 defined	 as	 a	316	
weighted	 average	 of	 vehicle	 technology	 unitary	 emission	 functions.	 Here,	 we	 will	 focus	 on	317	
passenger	cars.	The	fleet	composition	chosen	is	the	French	urban	fleet	for	the	year	2015	obtained	318	
from	the	IFSTTAR	fleet	updated	in	2013.	This	passenger	car	fleet	is	composed	of	30%	EURO	5	319	
diesel	vehicles	and	24%	EURO	4	diesel	vehicles.	320	
Knowing	that	the	emission	curves	associated	with	each	vehicle	technology	hide	a	wide	range	of	321	
measured	emissions,	this	large	scale	is	often	considered	more	valid	because	it	is	meant	to	reduce	322	
the	uncertainty	on	emissions.	In	this	article,	whatever	the	scale,	an	average	vehicle	is	considered	323	
in	the	sense	that	the	fleet	composition	is	assumed	to	be	homogeneous.	On	the	other	hand,	dynamic	324	
traffic	simulation	is	used	to	estimate	the	traffic	variables	needed	to	calculate	emissions	at	all	scales	325	
in	an	accurate	and	consistent	way.	326	
	327	
Considering	an	urban	network,	the	total	emission	EPQRSTQfor	pollutant	k	related	to	the	traffic	flow,	328	
can	be	assessed	as	follows:	329	

𝐸UVAWXVY = 𝐷	𝒇Y(𝑉2)			 	 	 	 	 	 	330	
where	331	
𝒇Y	is	the	COPERT	unitary	emission	factor	(g/km)	of	pollutant	k,	𝐷		the	total	travel	distance	(km)	332	
and		V[ 	the	mean	travel	speed	(spatial	mean	speed,	see	section	2.1).	333	
	334	
From	more	detailed	traffic	data	it	is	possible	to	determine	local	emissions.	The	simplest	and	most	335	
natural	way	to	partition	a	network	is	by	road	sections.	Emissions	are	then	determined	for	each	336	
link	from	the	local	traffic	variables:	di	and	vi.	The	total	emissions	are	then	evaluated	by	summing	337	
the	estimated	emissions	on	each	link	𝐸VA]XVY = ∑ 𝑑00 𝒇Y(𝑣0).		338	
	339	
Thus,	the	gap	in	emissions	between	a	calculation	at	the	network	scale	(global)	and	a	calculation	340	
with	spatial	decompositions	(local)	can	be	formulated	as	follows,	by	including	the	mean	speed	Vd:	341	

	342	
	343	
(4)	344	
	345	

	346	
	347	
The	bias	∆	is	proportional	to	the	total	travel	distance	D	and	can	be	seen	as	a	combination	of	two	348	
terms:	349	

Δ = Eglobal − Elocal = D ⋅ ( f (Vt )−
di f (vi )∑
D

)

= D ⋅ ( f (Vt )− f (Vd ))+D ⋅ ( f (Vd )−
di f (vi )∑
D

)
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i. The	first	term	quantifying	the	impact	of	the	mean	speed	definition.	This	term	is	positive,	350	
because	𝑉$ 		is	greater	than	V[		and	f	is	decreasing	at	low	speeds.	351	

ii. The	second	term	quantifying	the	convexity	of	the	emission	functions	is	negative.	352	
	353	
Using	a	distance-weighted	average	speed	𝑉$ 	as	an	indicator	of	the	mean	flow	speed,	the	first	term	354	
is	null.	This	speed	definition	is	not	the	right	speed	definition,	but	it	cancels	the	first	term,	which	355	
certainly	has	a	positive	impact	on	the	result.	356	
	357	
Moreover,	if	we	assume	that	function	f	can	be	approximated	by	a	polynomial	of	order	three,	the	358	
emission	gap	can	then	be	approached	as	follows:	359	
	360	
Δ	(𝑉$	) ≈ Δ∗	362	
													= 	 𝑎9	𝐷	 a𝑉$9 − ∑

$;b;
6

c0 d + 𝑎G	𝐷	 a𝑉$G − ∑
$;b;

e

c0 d	 	 	 	361	
													= 	𝐷	⌈(−𝑎9 − 3𝜇𝑎G)𝜇9 − 𝑎G𝜇G⌉		 	 	 (5)	363	
	364	
	365	
With	the	 	centered	moments:	366	

	367	
This	scaling	bias	therefore	characterizes	the	heterogeneity	of	local	variables	with	respect	to	the	368	
global	 scale.	 In	 this	paper,	we	discuss	 two	 implementations	of	 these	scale	 transformations:	 (i)	369	
from	local	to	global	and	(ii)	from	global	to	local.	In	each	case,	the	same	theoretical	background	as	370	
described	above	is	involved.	371	
Case	(i)	is	discussed	in	section	4.	We	assume	that	we	have	access	to	all	local	traffic	data	thanks	to	372	
microsimulation.	When	an	emission	calculation	 is	needed	at	 larger	scale	 (e.g.	area,	city),	 there	373	
might	 be	 a	 temptation	 to	 aggregate	 traffic	 data	 to	 calculate	 global	 emissions	 (e.g.	 inventory	374	
compilation).	The	scaling	bias	introduced	when	performing	a	single	emission	calculation	at	higher	375	
scale	is	shown.	Then,	a	methodology	for	consistent	global	emissions	assessment	is	proposed.	376	
Case	(ii)	is	addressed	in	section	5.	This	direction	is	more	challenging.	We	assume	that	we	have	a	377	
correct	information	on	traffic	variables	at	large	scale,	on	which	we	intend	to	conduct	an	emission	378	
calculation.	This	 scale	 is	not	consistent	with	 the	reference	scale.	 Indeed,	 the	reference	scale	 is	379	
unknown	but	we	believe	 it	 is	rather	 local.	Thus,	 the	results	at	 large	scale	will	be	affected	by	a	380	
scaling	bias.	The	objective	is	to	estimate	the	total	emission	that	correspond	to	the	integration	of	381	
local	 (close	 to	 the	 reference)	 emissions.	 But	 we	 do	 not	 have	 access	 to	 all	 local	 data.	 This	 is	382	
especially	the	case	when	using	innovative	data	as	floating	car	data.	These	partial	traffic	data	are	383	
quite	efficient	for	deriving	mean	speed	accurately,	but	they	make	the	estimation	of	travel	distance	384	
challenging.	We	are	therefore	faced	with	two	issues:		non	scalability	and	total	distance	estimation.	385	
	386	

4. Results 387	
	388	
In	the	context	of	urban	scale	inventories	and	monitoring,	it	is	relevant	to	perform	a	single	emission	389	
calculation	 for	 a	 whole	 network.	 This	 global	 scale	 is	 sometimes	 also	 chosen	 by	 default,	 i.e.	390	
according	to	the	traffic	data	available.	However,	if	traffic	information	is	available	locally,	it	may	be	391	
interesting	to	make	several	emission	calculations	locally,	to	obtain	the	emission	distribution	over	392	
the	network.	393	
	394	

Vd
µ =Vd

µ2 =σ d
2 =

1
di∑

di (vi −Vd )
2∑

µ3 =
1
di∑

di (vi −Vd )
3∑
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In	the	following	sections,	the	traffic	simulation	under	study	is	described,	as	are	the	space-time	395	
decompositions	used	to	calculate	emissions.	Finally,	the	biases	between	scales	are	assessed	and	396	
analyzed.	397	
	398	

4.1. Traffic simulation 399	
	400	
The	network	presented	in	Figure	4	is	in	the	6th	district	of	Paris.	It	is	composed	of	234	links,	93	401	
crossroads,	19	entries,	21	exits,	4	parking	areas	and	27	traffic	lights.	The	traffic	microsimulation	402	
was	 implemented	 on	 the	 Symuvia	 platform1 ,	 which	 gives	 access	 to	 the	 position,	 speed	 and	403	
acceleration	of	each	vehicle	on	the	network	with	a	1s-resolution.	Vehicle	routing	choices	were	404	
governed	by	a	dynamic	traffic	assignment	model,	which	guided	each	vehicle	in	the	network	on	the	405	
route	that	minimized	its	travel	time	to	its	initially	assigned	destination.	Vehicle	movements	at	the	406	
microscopic	scale	were	governed	by	a	set	of	rules,	including	car-following	modelling	(Leclercq,	407	
2007a,	2007b),	lane-changes	(Laval	and	Leclercq,	2008)	and	specific	movements	at	intersections	408	
(Chevallier	and	Leclercq,	2007).	The	question	of	using	the	platform	outputs	for	pollutant	emission	409	
estimations	was	addressed	in	(Vieira	da	Rocha	et	al.,	2013).	410	
	411	
The	simulation	consists	of	3	hours	representing	the	morning	rush	hour.	The	Origin-Destination	412	
matrix	was	 calibrated	with	 hourly	 traffic	 flow	 rates	measured	 on	 typical	weekdays.	 The	 total	413	
demand	evolved	by	15-minute	steps	(Fig.5).	414	
The	traffic	outputs	are	the	vehicle	trajectories,	which	were	aggregated	into	traffic	variables	(mean	415	
speeds	 and	 travel	 distances)	 to	 correspond	 to	 the	 required	 COPERT	 inputs,	 according	 to	 the	416	
observation	scale	considered.		417	
	418	
	419	

4.2. Defining the observation scale 420	
	421	

	
1 http://www.licit-lyon.eu/themes/realisations/plateformes/symuvia/ 

Figure	5:	Traffic	microsimulation	of	the	6th	district	of	Paris:	evolution	over	time	of	normalized	input	flow	
(left)	and	the	main	peak	input	flows	(right)	
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The	purpose	of	this	study	is	to	evaluate	emissions	obtained	from	a	dynamic	traffic	simulation	by	422	
performing	COPERT	calculations	 for	different	 spatial	 decompositions.	Detailed	 traffic	data	 are	423	
available	 (i.e.	 1Hz	 vehicle	 trajectories)	 and	 can	 be	 aggregated	 spatially	 and	 temporally.	 This	424	
section	highlights	how	vehicle	trajectories	are	split	and	how	traffic	data	are	then	combined	before	425	
computing	the	emissions.		426	
	427	
Regarding	 the	 traffic	 microsimulation,	 the	 decision	 was	 made	 to	 set	 6-minute	 time	 periods	428	
throughout	the	study.	This	temporal	dynamic	allows	observing	the	occurrence	of	congestion	and	429	
its	evolution.	A	description	of	 this	phenomenon	 is	 required	 to	accurately	assess	 traffic-related	430	
emissions.		It	is	also	typical	of	traffic	measurements.	431	
On	the	one	hand,	the	emissions	were	determined	at	the	global	scale	(i.e.	one	calculation	for	the	432	
whole	network).	On	the	other	hand,	two	local	spatial	decompositions	were	defined:	(i)	individual	433	
road	 sections	 SDA,	 (ii)	 individual	 vehicles	 SDB.	 These	 are	 related	 to	 the	 two	 types	 of	 traffic	434	
measurements:	 stationary	 measurements	 (electromagnetic	 loops)	 and	 mobile	 ones	 (probe	435	
vehicles).	In	each	case,	the	sum	of	local	emissions	is	compared	with	global	emissions	(all	links	or	436	
vehicles	 combined)	 in	a	more	or	 less	 congested	situation,	without	 favoring	one	scale	over	 the	437	
other.	438	
	439	
The	 vehicle	 decomposition	 SDB	 is	 close	 to	 the	 scale	 at	 which	 the	 chassis	 dynamometer	440	
measurements	were	taken.	In	this	case,	the	driving	cycles	are	6	min	long	at	most	but	can	also	be	441	
shorter	because	they	depend	on	the	time	the	vehicle	entered	the	network	and	the	time	period	442	
considered.	This	coupling	does	not	aim	to	provide	an	estimate	of	the	emission	associated	with	a	443	
specific	 vehicle	 but	 to	 describe	 the	 emission	 of	 an	 average	 vehicle	 (respecting	 the	 average	444	
specifications	associated	with	the	fleet	under	consideration)	presenting	such	a	speed	profile.	445	
	446	
The	road	section	decomposition	SDA	is	based	on	a	driving	cycle	per	link,	combining	the	trajectories	447	
of	 the	vehicles	 located	on	 this	 link	 for	a	given	6min	 time	period.	These	 speed	profile	 features	448	
(mean	travel	speed	and	travel	distance)	are	used	to	determine	the	associated	emissions.		449	
	450	
Similarly,	the	overall	calculation	is	equivalent	to	establishing	a	driving	cycle	based	on	the	speed	451	
profiles	 of	 all	 the	 vehicles	 on	 the	 network	 for	 a	 given	 period,	which	 can	 be	 used	 to	 evaluate	452	
emissions.	Thus,	 for	each	emission	calculation	resolution	 investigated,	 the	cycle	characterizing	453	
the	 traffic	 conditions	 must	 be	 constructed	 by	 splitting	 and/or	 combining	 the	 individual	454	
trajectories.	455	
	456	

4.3. Interscale bias for both spatial decompositions 457	
	458	
This	section	presents	the	results	in	terms	of	traffic	and	emissions	for	the	different	scales.	459	

4.3.1. Traffic variables 460	
	461	
For	each	spatial	decomposition,	the	global	network	traffic	variables	required	to	calculate	global	462	
emissions	(mean	travel	speeds	and	total	travel	distance)	were	determined	over	the	thirty	6-min	463	
time	periods.	As	discussed	in	section	2,	the	mean	travel	speed	is	not	transferable	from	one	spatial	464	
partitioning	to	another.	In	order	to	observe	scale	consistency,	the	right	definition	of	global	mean	465	
travel	 speed	 appears	 to	 be	 the	 time-weighted	 average	 of	 local	 mean	 speeds.	 𝑉2 =466	
∑𝑑0 ∑ 𝜏0 = ∑(𝜏0𝑣0) ∑ 𝜏0⁄⁄ ,	 where	𝑑0 	and	𝜏0	are	 the	 cumulative	 travel	 distance	 and	 travel	 time	467	
variables	associated	with	the	ith	element	(a	link	or	a	vehicle)	and	𝑣0 ,	the	corresponding	mean	travel	468	
speed.	The	distance-weighted	average	speed	𝑉$ 	will	also	be	evaluated,	because	it	is	assumed	to	469	
reduce	the	emission	gaps	between	the	global	and	local	calculation	scales,	see	section	3.1.	470	
	471	
The	temporal	evolution	of	these	global	traffic	variables	is	shown	in	Figure	6.	We	observe	that	the	472	
time-weighted	 speed	 is	 lower	 than	 the	 distance-weighted	 speed,	 especially	 when	 subject	 to	473	
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congestion	 (around	 period	 19).	 Indeed,	 this	 speed	 definition	 captures	 the	 traffic	 dynamics	474	
correctly.	On	the	other	hand,	Figure	5	shows	that	the	distance-weighted	speed	depends	on	the	475	
local	 scale:	 the	global	 speed	evaluated	 from	 the	 links	 (SDA)	 is	higher.	This	 is	 explained	by	 the	476	
Wardrop	 relationship	 (formula	 (2))	 and	 the	 fact	 that	 local	 speed	variance	between	 individual	477	
vehicles	 is	 smaller	 than	 the	 speed	 variance	 between	 individual	 road	 sections.	 Thus,	 during	478	
congestion	the	average	network	speed	varies	between	7.5	and	16.6	km/h,	depending	on	the	speed	479	
definition.	480	

	481	
Figure	7	illustrates	the	distribution	of	both	traffic	variables	over	both	spatial	decompositions.	The	482	
results	are	presented	for	a	congested	time	period,	for	which	the	discrepancies	are	obviously	more	483	
significant.	Regarding	speeds,	the	wide	dispersion	of	values	on	the	road	section	decomposition	484	
SDA	is	highlighted,	which	leads	to	a	higher	global	mean	speed	Vd	(16.8km/h	versus	7.9km/h	for	485	
Vt).	For	 vehicle	decomposition	SDB,	 the	 speeds	 are	 less	heterogeneous,	which	 leads	 to	 a	 lower	486	
global	mean	speed	Vd	(12.2	km/h).	As	far	as	the	total	travel	distance	is	concerned,	it	is	on	average	487	
2.7	km	for	the	road	sections	(SDA),	versus	0.41	km	for	the	vehicles	(SDB).	488	
	489	
	490	
	491	
	492	
	493	
	494	
	495	
	496	
	497	
	498	
	499	
	500	
	501	
	502	

Figure	7:	Distributions	of	local	mean	speeds	subject	to	congestion		503	
for	both	spatial	decompositions	(left:	SDA;	right:	SDB).	504	

	505	

4.3.2. Fuel consumption and NOx emissions 506	
	507	

VEHICLES	
SDB	

LINKS	
SDA	

Figure	6:	Time	evolution	of	global	traffic	variables		
(left:	global	mean	speeds;	right:	total	travel	distance)	
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Regarding	the	environmental	assessments,	 fuel	consumption	and	NOx	emissions	are	evaluated	508	
and	presented	in	each	case.	The	local	traffic	variables	described	in	the	previous	section	were	used	509	
(i)	to	assess	the	associated	local	emissions,	(ii)	to	evaluate	the	global	traffic	variables	needed	to	510	
assess	the	global	emissions,	and	(iii)	to	estimate	the	interscale	bias	Δ*	using	formula	(5).	511	
Both	global	mean	speed	definitions	were	tested.	The	corresponding	global	emissions	E(Vt)	and	512	
E(Vd)	were	evaluated,	such	as	 the	gaps	Δ	(Vt)	and	Δ	(Vd).	The	discrepancies	are	expressed	as	a	513	
relative	deviation	from	the	sum	of	local	emissions.	514	
Table	 2	 summarizes	 the	 results	 for	 a	 congested	 6min	 time	 period.	 After	 removing	Δ*,	 i.e.	 the	515	
interscale	bias	estimated	from	μ,	μ2,	μ3,	the	relative	gaps	are	lower	than	1%.		516	
	517	
	518	

	
	

Vt	
(km/h)	

Vd	
(km/h)	

μ2	(Vd)	 μ3	(Vd)	 Δ	(Vt)	 Δ	(Vd)	 Δ	(Vd)	–	Δ*	

	
SDA	
	

FC	
7.3	 16.8	 174.0	 1445.9	

17.1%	 -6.2%	 0.9%	

NOX	 15.6%	 -3.2%	 0.7%	

	
SDB	

FC	
7.3	 11.9	 51.2	 450.6	

9.5%	 -1.0%	 1.1%	

NOX	 8.0%	 -0.2%	 0.9%	

Table	2	Comparison	of	global	mean	speeds,	aggregated	from	both	spatial	decomposition	(SDA	and	SDB)	for	a	519	
congested	time	period.	When	estimating	FC	and	NOx	at	both	local	and	global	scales,	the	scaling	bias	𝚫	is	520	

alleviated	by	using	𝑽𝒅	instead	of	𝑽𝒕,	and	is	almost	cancelled	by	using	the	extensive	formulation	𝚫∗	521	

This	means	 that	by	 integrating	 the	effect	of	 spatial	decomposition	on	emissions	 in	 traffic	data	522	
processing,	 it	 is	 possible	 to	 significantly	 reduce	 the	 differences	 between	 emission	 calculation	523	
scales.	To	do	this,	it	is	necessary	to	use	the	definition	of	the	average	speed	weighted	by	distances	524	
and	to	evaluate	the	interscale	bias	Δ*.	For	spatial	decomposition	SDA,	the	gap	is	reduced	from	17%	525	
for	FC	(16%	for	NOx)	to	less	than	1%	and	for	SDB,	from	11%	for	FC	(5%	for	NOx)	to	less	than	0.1%.		526	
Figure	 8	 shows	 the	 temporal	 evolution	 of	 these	 deviations	 for	 the	 two	 spatial	 partitions	527	
considered	(SDA	and	SDB).		528	
	529	
	530	
	531	
	532	
	533	
	534	
	535	
	536	
	537	
	538	
	539	
	540	
	541	
	542	
	543	
	544	
	545	
	546	
	547	
	548	
	549	
	550	

Figure	8	Relative	gaps	of	consumptions	and	emissions		551	
with	the	links	(top)	and	probes	(bottom)	approach.	552	
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	553	
It	can	be	seen	that	with	Vt,	the	gaps	are	particularly	visible	in	congestion	and	can	reach	10%	and	554	
more.	On	the	other	hand,	with	Vd	the	gaps	are	reduced	and	have	opposite	signs.	They	are	also	more	555	
or	less	constant	regardless	the	traffic	conditions.	Finally,	after	removing	the	estimated	bias,	the	556	
gaps	between	the	scales	are	almost	null	(under	1%)	whatever	the	traffic	conditions.	557	
	558	
Thus,	based	on	a	global	emission	calculation	and	knowledge	of	the	heterogeneity	of	speeds	on	the	559	
local	 elements,	 it	 is	 possible	 to	 retrieve	 the	 emissions	 evaluated	 using	 a	 local	 approach	 and	560	
thereby	ensure	consistent	results	between	scales.	To	alleviate	the	scaling	bias,	we	can	simply	use	561	
the	distance-weighted	average	of	local	speeds.	An	extensive	formulation	of	the	scaling	bias	is	also	562	
proposed	to	restore	consistency.	563	
	564	
Lastly,	final	objective	is	to	ensure	that	emissions	are	consistent	with	the	COPERT	reference	scale.	565	
As	noted	in	section	2.2,	we	do	not	have	exact	knowledge	of	the	reference	scale	for	the	COPERT	566	
laws	and	thus	require	access	to	traffic	information	at	that	scale.	In	the	following	section,	we	place	567	
ourselves	 in	this	particular	case,	knowing	that	we	have	partial	 local	 traffic	data.	The	reference	568	
scale	 is	 unknown,	 but	 we	 believe	 it	 is	 rather	 local.	 	 We	 assume	 that	 6min	 probe	 data	569	
(corresponding	to	driving	cycles	of	an	average	length	of	400m)	represent	our	reference	scale.	570	
	571	

5. Practical application: estimating global emission from a sample of probe vehicles 572	
	573	
After	 having	 highlighted	 the	 scaling	 bias	 associated	 with	 the	 calculation	 of	 emissions	 and	574	
proposed	a	method	for	reducing	this	bias	based	on	a	traffic	simulation,	we	now	focus	on	applying	575	
the	method	to	a	real	situation.	In	this	case,	our	objective	is	to	characterize	the	emissions	associated	576	
with	a	network	(neighborhood,	city	area,	etc.)	using	a	new	data	source,	namely	a	sample	of	vehicle	577	
trajectories.	This	 type	of	data	 is	becoming	 increasingly	available	 thanks	 to	 tracking	devices	 in	578	
vehicles	(in	particular	GPS).		579	
We	then	have	two	options:	(i)	that	of	determining	the	global	traffic	variables	and	the	associated	580	
emissions,	 or	 (ii)	 that	 of	 determining	 the	 local	 emissions	 (i.e.	 of	 each	 vehicle)	 and	 add	 them	581	
together.	582	
	583	

	584	
In	case	(i),	we	make	an	error	on	network	emission	due	to	the	introduction	of	a	scaling	bias.	In	case	585	
(ii),	the	scale	is	in	better	accordance	with	the	reference	scale.	However,	we	do	not	have	access	to	586	
all	 vehicle	 data,	 so	 we	 need	 to	 shift	 from	 the	 emissions	 of	 partial	 observations	 to	 the	 full	587	
population	 emissions.	 Determining	 this	 emission	 scaling	 factor	 is	 very	 challenging	 and	 will	588	
certainly	introduce	large	uncertainties.	That	is	why	this	alternative	is	not	the	most	reliable	and	589	
thus	not	considered	here.	Finally,	option	(i)	is	selected:	the	emissions	are	estimated	on	a	global	590	
scale,	 and	 then	 corrected	 using	 the	 scaling	 bias	 estimates.	 In	 this	 way,	 the	 corrected	 global	591	
emissions	are	rather	close	to	local	emissions.		592	
In	addition	to	this	scale	inconsistency	issue,	we	are	faced	with	the	issue	of	accurate	assessment	of	593	
global	 traffic	variables	needed	 for	calculating	emissions	 from	probe	samples.	Here,	we	draw	a	594	
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random	sample	of	vehicles	from	the	simulation	to	represent	floating	car	data.	We	can	therefore	595	
test	various	penetration	rates	of	the	probe	vehicles	(i.e.,	the	ratio	between	the	number	of	probes	596	
and	the	total	number	of	vehicles	on	the	network)	and	evaluate	the	quality	of	the	estimates.		597	
	598	

5.1. Mean speed estimation  599	
	600	
(Leclercq	et	al.,	2014)	compared	the	methods	to	estimate	the	overall	mean	speed	Vt	from	loops	or	601	
probe	samples.	This	study	showed	that	an	optimal	probe	sampling	rate	of	20%	allows	efficiently	602	
capturing	the	mean	spatial	speed,	with	an	error	of	less	than	10%.		But	as	mentioned	above,	it	is	603	
more	appropriate	to	evaluate	emissions	from	an	estimate	of	the	distance-weighted	speed	Vd	 in	604	
order	 to	 reduce	 the	 scaling	bias.	We	propose	here	 to	evaluate	 the	 relevance	of	new	statistical	605	
indicators,	weighted	by	distances.	606	
	607	
The	 penetration	 rate	𝜏 	(i.e.,	 the	 ratio	 between	 the	 number	 of	 probes	 and	 the	 total	 number	 of	608	
vehicles	 on	 the	network)	will	 be	 considered	 constant	 over	 time.	This	 is	 a	 simplification,	 as	 in	609	
reality	 the	 data	 collected	 do	 not	 represent	 a	 constant	 penetration	 rate.	 The	 effect	 of	 variable	610	
penetration	rate	has	been	discussed	in	(Lejri	et	al.,	2014).	For	each	period	and	penetration	rate,	611	
100	probe	samples	are	drawn	randomly	in	the	traffic	microsimulation	and	the	estimators	of	the	612	
variables	of	interest	are	assessed	for	each	sample.	Their	quality	is	evaluated	in	comparison	to	the	613	
variable	of	the	total	population	(all	vehicles).		614	
	615	
The	 variability	 of	 the	 results	 obtained	 for	 100	 probe	 samples	 is	 represented	 in	 the	 following	616	
figures	by	the	median	value	(solid	line)	and	the	1st	and	9th	deciles	(dotted	lines).	Thus,	80%	of	the	617	
data	is	between	the	dotted	lines.	The	variables	are	all	expressed	as	a	relative	error	to	the	variable	618	
of	the	total	population:	(𝑥̅ − 𝑥) 𝑥	 × 	100⁄ .	619	
	620	

	621	
Figure	9	Relative	errors	on	mean	speeds	Vt	and	Vd	depending	on	the	penetration	rate		622	

in	(a)	free	flow	conditions	and	(b)	congested	conditions	623	

Figure	9	confirms	previous	works:	mean	speeds	may	be	assessed	from	probes	with	good	accuracy,	624	
whatever	the	traffic	conditions.	Thus,	with	a	penetration	rate	of	20%,	we	can	estimate	Vrwith	an	625	
error	of	less	than	+/-	5.7%	for	80%	of	the	samples	in	free	flow	and	between	-4.5%	and	+3.8%	in	626	
congestion.	627	

	628	
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5.2. Total travel distance estimation 629	
	630	
The	second	variable	to	be	assessed	is	the	total	travel	distance.	The	distance	travelled	by	a	sample	631	
of	vehicles	is	available,	but	we	must	determine	a	scaling	factor	to	obtain	the	distance	travelled	by	632	
all	the	vehicles	during	the	time	period.	In	contrast	to	mean	speed	estimation,	this	issue	is	quite	633	
challenging.	 In	 the	 first	 approximation,	 this	 distance	 scaling	 factor	 can	 be	 derived	 from	 the	634	
penetration	rate	𝜏,	which	is	reached	during	the	random	draw.	The	total	travel	distance	D	is	then	635	
assessed	by	𝑑stAWuv 𝜏⁄ 	,	 assuming	 that	 the	number	ratio	 is	 relevant	 for	estimating	 the	distance	636	
ratio.		637	
	638	
But	in	a	real	case,	this	rate	is	variable	over	time	and	above	all	unknown.	That	is	why	it	will	also	be	639	
estimated	by	the	“probe	fishing”	method	first	proposed	in	(Geroliminis	&	al.,	2008).			In	addition	640	
to	the	probes,	this	method	requires	a	minimal	number	of	loop	detectors	that	permit	measuring	641	
the	flows.	The	penetration	rate	is	then	estimated	as	the	ratio	of	probes	crossing	the	loops	over	the	642	
total	observed	flow,	see	eq.	(6).		643	

𝜏∗(𝑇) = 	
∑ xyz{|}~	

�
� (�)

∑ x�}�;��}~	
� (�)�

	 	 	 	 	 (6)	644	

where	𝑁stAWuv	Y (𝑇)		is	the	number	of	probes	seen	on	loop	k,	during	time	period	T	and	𝑁bu�0]Vuv	Y 		the	645	
number	of	vehicles	seen	on	loop	k,	during	time	period	T.		646	
	647	
Note	that	the	 loop	requirement	 is	not	an	issue	in	practice	as	 loop	data	are	usually	available	 in	648	
urban	areas,	at	least	in	minimal	quantity.	We	identified	around	twenty	detector	loops	on	the	real	649	
network	 (Fig.	 10),	 which	 represents	 about	 10%	 of	 the	 links.	 For	 each	 time	 period,	 using	650	
microsimulation,	we	are	able	to	identify	the	route	of	the	probe	vehicles	and	therefore	the	loops	651	
they	cross.	We	can	then	estimate	the	ratio	between	the	number	of	probe	vehicles	and	the	total	652	
number	of	vehicles	seen	on	the	loops	during	a	given	period.	With	on-field	data,	it	is	also	very	easy	653	
to	know	which	loop	is	crossed	by	vehicles	based	on	their	GPS	coordinates.	654	

	655	
	656	

Figure	10	Location	of	major	loops	in	the	sixth	district	of	Paris2	657	

	658	
Then,	 the	 distance	 scaling	 factor	will	 be	 used	 and	 its	 impact	 on	 reducing	 scaling	 bias	will	 be	659	
assessed.	 Using	 the	 fishing	method,	 the	 penetration	 rate	𝜏 	is	 estimated	 quite	 precisely	 during	660	
congestion,	whereas	in	free	flow	the	errors	range	from	7%	to	13%	for	a	10%	sample	and	from	661	
15%	to	24%	for	a	20%	sample	(Fig.	11).	This	is	simply	because	fewer	vehicles	are	traveling	in	the	662	
network	in	free-flow,	rendering	the	estimate	less	robust.	663	

	
2 https://opendata.paris.fr/explore/?sort=modified&q=trafic    (accessed 2019/09/06) 
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	664	

	665	
Figure	11	Time	evolution	of	penetration	rates:	𝝉		and	the	estimate	𝝉	*	(fishing).	666	

	667	
The	penetration	rate	is	then	used	to	infer	the	total	travel	distance,	which	is	a	critical	parameter	668	
for	estimating	emissions.		Figure	12	highlights	the	relative	errors	on	total	travel	distance	assessed	669	
from	 the	 sample	 travel	 distance	 and	 the	 vehicle	 number	 ratio	 (penetration	 rates 	τ 	and 	𝜏∗) .	670	
Obviously,	these	estimates	are	better	when	the	penetration	rate	increases.	We	can	first	observe	a	671	
break	for	a	penetration	rate	of	20%,	beyond	which	the	relative	errors	decrease	significantly.	Using	672	
the	fishing	method	and	20%	probe	samples,	it	is	possible	to	assess	the	total	travel	distance	with	673	
an	error	of	+/-15%	in	free	flow	and	+/-6%	in	congestion.	674	
	675	

	676	
Figure	12	Relative	errors	on	total	travel	distance	with	a	known	penetration	rate	𝝉		677	

and	an	estimated	penetration	rate	𝝉∗	in	(a)	free	flow	conditions	and	(b)	congested	conditions	678	

	679	

5.3. Scaling bias estimation 680	
	681	
Once	the	global	traffic	variables	have	been	assessed,	it	is	possible	to	evaluate	the	global	emissions.	682	
This	estimate	will	be	subject	to	the	scaling	bias	described	in	section	3.2.	The	next	step	is	therefore	683	
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to	evaluate	the	bias	to	be	removed	in	order	to	better	estimate	the	results	corresponding	to	the	684	
integration	of	local	emissions,	which,	here,	are		assumed	to	be	close	to	the	reference	scale.	The	685	
variables	Vd,	μ2	and	μ3	and	D	are	first	estimated	from	the	probe	samples.	We	then	evaluate	the	686	
scaling	bias	Δ*	using	formula	(5).	In	order	to	distinguish	the	influence	of	sampling	on	the	speed	687	
and	travel	distance	assessment,	the	total	travel	distance	per	time	period	is	first	assumed	known.	688	
Figure	13	presents	the	relative	errors	on	the	scaling	bias	Δ*.	In	free	flow,	with	20%	probe	samples,	689	
the	errors	are	 in	 the	range	of	 -29%	to	26%	and	 -12%	to	11%	in	congestion.	These	errors	are	690	
significant	and	equivalent	for	fuel	consumption	and	NOx	emissions.		691	

	692	
Figure	13	Relative	errors	on	scaling	bias	Δ*	depending	on	the	penetration	rate		693	

in	(a)	free	flow	conditions	and	(b)	congested	conditions,	assuming	the	total	travel	distance	is	known.	694	

When	total	travel	distance	is	estimated	by	the	fishing	method	(Fig.	14),	the	gaps	increase	even	695	
further,	in	the	range	of	-37%	to	26%	and	+/-15%	in	congestion.	We	note	that	the	outcomes	are	696	
worse	than	for	speed	estimation.	A	40%	sample	is	required	to	estimate	the	bias	with	an	accuracy	697	
of	about	10%.	698	

	699	
Figure	14	Relative	errors	on	scaling	bias	Δ*	depending	on	the	penetration	rate		700	

in	(a)	free	flow	conditions	and	(b)	congested	conditions,	assuming	the	total	travel	distance		701	
is	assessed	using	the	fishing	method.	702	

	703	



	 20	

5.4. Corrected emission estimation 704	
	705	
Finally,	 the	 global	 emissions	 are	 corrected	 by	 removing	 the	 scaling	 bias	 (𝐸(𝑉$) − Δ∗) 	and	706	
compared	 to	 the	 sum	 of	 local	 emissions.	 These	 results	 are	 first	 analyzed	 as	 a	 function	 of	 the	707	
penetration	 rate.	 The	 estimation	 of	 corrected	 emissions	 is	 quite	 accurate	 when	 total	 travel	708	
distance	is	assumed	to	be	known	(Fig.	15).	Indeed,	the	errors	here	decrease	sharply	to	the	range	709	
of	-3%	to	2%	in	free	flow	and	even	less	in	congestion.	This	can	be	explained	by	the	fact	that	the	710	
imprecise	estimation	of	Vr	induces	errors	both	on	global	emissions	E(Vr)	and	on	the	error	on	bias	711	
Δ*,	that	counterbalance	each	other.		712	

	713	
Figure	15	Relative	errors	on	corrected	emissions	E	(Vd)-	Δ,	depending	on	the		714	
penetration	rate	in	(a)	free	flow	conditions	and	(b)	congested	conditions,		715	

assuming	the	total	travel	distance	is	known.	716	

Consequently,	when	total	travel	distance	is	assessed	by	fishing,	the	relative	errors	are	of	the	same	717	
order	as	those	made	on	total	travel	distance	(Fig.	16).	Again,	they	are	almost	similar	for	both	fuel	718	
consumption	and	NOx	emissions.	These	results	confirm	that	the	challenging	issue	is	definitively	719	
the	estimation	of	 total	 travel	distance.	The	fishing	method	makes	 it	possible	to	have	a	relative	720	
error	 on	 the	 residual	 gap	within	 the	 range	 of	 10%	with	 20%	probe	 samples	 in	 loaded	 traffic	721	
conditions.	722	

	723	
Figure	16	Relative	errors	on	corrected	emissions	E	(Vd)-	Δ*,	depending	on	the		724	
penetration	rate	in	(a)	free	flow	conditions	and	(b)	congested	conditions,		725	
assuming	the	total	travel	distance	is	assessed	using	the	fishing	method.	726	
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Finally,	residual	errors	are	on	average	very	low,	even	when	the	distance	is	approximated:	errors	727	
are	less	than	4%	on	average	for	10%	probe	samples	and	less	than	2%	for	20%	probe	samples.	728	
This	study	shows	that	in	a	real	case,	the	ability	to	reduce	bias	depends	on	our	ability	to	accurately	729	
estimate	total	travel	distance.		730	
	731	
	732	

6. Conclusion  733	
	734	
To	 the	 question	 “Are	 average	 speed	 emission	 functions	 scale-free”,	 the	 answer	 is	 clearly	 no.		735	
Basically,	the	scaling	issues	occur	(i)	because	of	the	convexity	of	the	emission	law	and	(ii)	because	736	
of	the	non-scalability	of	the	mean-speed	definition.	This	work	pointed	out,	that	the	second	effect	737	
can	be	minored	if	distance-weighted	speed	definition	is	used.	But	this	is	not	the	correct	definition	738	
of	mean	speed,	which	should	be	distance	over	time	at	all	scales.	739	
More	 generally,	 the	 inconsistency	 issue	 is	 not	 specific	 to	 average	 speed	 emission	models.	We	740	
focused	here	on	COPERT,	an	average	speed	model,	because	its	use	is	very	widespread,	particularly	741	
at	various	spatial-temporal	scales.	However,	inconsistency	issues	occur	for	any	model	that	either	742	
use	non	scalable	variable,	e.g.	mean	speed,	or	non-linear	emission	functions.	743	
	744	
The	purpose	of	this	paper	was	to	make	emission	modelers	aware	of	the	scale-inconsistency	 in	745	
emission	 calculations	 and	 to	provide	 them	with	 a	method	 to	 restore	 consistency	between	 the	746	
reference	scale	(resolution	at	which	the	relationship	between	average	speed	and	emission	rates	747	
are	 established)	 and	 the	 emission	 calculation	 scale	 (spatial	 decomposition	on	which	 emission	748	
factors	are	implemented).	We	must	specify	that	the	reference	scale	is	not	yet	properly	defined.	To	749	
our	knowledge,	emission	laws	are	developed	at	local	scale	(driving	cycles)	but	are	not	established	750	
for	a	unique	travel	length.	The	reference	scale	should	be	related	with	the	scale	at	which	emission	751	
laws	are	designed,	because	it	is	the	scale	at	which	mean	speed	is	measured.	While	we	think	that	752	
new	emission	laws	should	be	determined	based	on	a	clear	definition	of	a	reference	scale	(see	the	753	
discussion),	we	currently	consider	that	the	local	scale	is	the	more	reliable	because	it	is	closer	to	754	
the	actual	driving	scale.	755	
In	this	paper,	we	discuss	two	implementations	of	these	scale	transformations:	(i)	from	local	to	756	
global	and	(ii)	from	global	to	local.	In	each	case,	the	same	theoretical	background	as	described	757	
above	is	involved.	In	case	(i),	we	focused	on	two	spatial	decompositions	of	a	network:	individual	758	
road	sections	and	vehicles	(local	scales).		If	traffic	data	are	aggregated	to	calculate	emissions	on	a	759	
larger	scale	(e.	g.	district),	interscale	(local	vs	global)	biases	are	introduced.	This	occurs	even	if	760	
traffic	data	are	properly	aggregated	(using	time-weighted	mean	speed).	From	the	case	study,	the	761	
biases	 range	 from	 5%	 to	 17%,	 depending	 on	 the	 pollutant,	 spatial	 partitioning	 and	 traffic	762	
conditions.	These	discrepancies	can	be	reduced	using	a	distance-weighted	mean	speed,	which	is	763	
not	a	scale-consistent	definition	of	mean	 travel	speed.	They	can	almost	be	cancelled	using	 the	764	
extensive	 formulation	 proposed	 in	 this	 paper,	 thus	 consistency	 can	 be	 guaranteed	 between	765	
emissions	assessed	at	different	scales.	766	
In	 case	 (ii),	 we	 assumed	 that	 traffic	 variables	 can	 only	 be	 estimated	 at	 large	 scale.	 Thus,	 we	767	
performed	 the	 emission	 calculations	 at	 that	 global	 scale.	 As	 the	 emission	 calculations	 are	 not	768	
undertaken	at	a	scale	consistent	with	the	reference	scale,	we	then	introduced	a	bias.	By	reversing	769	
the	method	presented	in	this	paper,	we	significantly	reduced	this	scaling	bias	and	obtained	better	770	
total	emission	predictions.	This	 second	study	 is	based	on	probe	data.	The	 results	are	 strongly	771	
dependent	on	the	probe	sample	and	the	penetration	rate,	which	should	be	high	enough	in	practice	772	
to	properly	estimate	all	 the	variables.	The	most	critical	step	 is	 the	accurate	estimation	of	 total	773	
travel	distance.	A	“fishing”	method	was	applied	to	this	end	to	improve	the	estimate	of	this	variable.	774	
We	finally	managed	to	reduce	the	gaps	to	a	maximum	of	8%	in	congestion	for	a	penetration	rate	775	
of	about	20%.	776	
	777	
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7. Discussion 778	
	779	

Aggregate	 emission	models	 are	 commonly	 used	 to	 calculate	 total	 emission	 at	 different	 scales	780	
across	a	country,	a	region,	a	city	and	road	sections.	The	lack	of	consistency	between	scales	is	often	781	
attributed	to	the	lack	of	completeness	and/or	accuracy	of	input	data.	With	regard	to	traffic	data,	782	
it	was	shown	here	that	accurate	and	consistent	traffic	information	between	emission	calculation	783	
scales	may	lead	to	different	results.	This	is	not	satisfactory	and	we	believe	that	it	can	be	improved.		784	
	785	
As	working	with	nuclear	information	like	emission	per	second	is	not	possible	in	practice,	the	only	786	
option	to	alleviate	scaling	issues,	is	(i)	to	properly	define	the	reference	scale	(where	we	know	that	787	
no	error	occurs	because	the	model	has	been	designed	on	this	particular	scale)	and	then	(ii)	to	find	788	
numerical	transformations	that	reduce	the	scaling	bias.	This	is	what	we	tried	to	do	here	with	the	789	
average	speed	models	despite	the	absence	of	a	clear	reference.	This	should	be	the	next	step	and	790	
requires	reshaping	existing	emission	laws.	We	would	recommend	to	this	end,	to	set	emission	laws	791	
on	driving	cycles	of	same	distances.	Defining	the	right	distance	is	out	of	the	scope	of	this	study	but	792	
the	values	found	in	the	literature	(400	–	500m)	seem	rather	reasonable	to	us.	793	
	794	
A	 review	 of	macroscopic	 emission	models	 is	 currently	 being	 undertaken	 in	 order	 to	 develop	795	
emission	laws	that	are	more	representative	of	real	driving	situations	(slope,	intersections,	etc.)	796	
and	 traffic	 conditions	 (free,	 charged,	 congested,	 etc.).	 Previous	 works	 showed	 the	 need	 for	797	
integrating	 representative	 real-world	 driving	 cycles	 in	 the	 development	 of	 emission	 models	798	
(Fontaras	et	al.,	2017;	Franco	et	al.,	2013).	Among	other	 issues,	 the	resolution	for	establishing	799	
emission	 laws	 is	 quite	 challenging.	 (Papadopoulos	 et	 al.,	 2018)	 described	 how	 the	 resolution	800	
affects	emission	factors.	This	study	also	confirms	that	the	extensive	use	of	PEMS	data	can	enhance	801	
the	 inherent	 bias	 of	 emission	 functions.	 Indeed,	 setting	 EFs	 on	 different	 lengths	means	 using	802	
multiple	and	inconsistent	average	speed	values.	That	is	we	recommend	working	with	cycles	of	the	803	
same	 distance,	 in	 order	 to	 average	 observations	 that	 are	 consistent	 in	 terms	 of	 mean	 speed	804	
definition.	When	applying	these	new	emission	laws	at	other	scales,	we	would	be	able	to	remove	805	
the	scale	bias	by	determining	the	appropriate	corrective	factors.		806	
	807	
Finally,	through	this	study,	we	mainly	focused	on	emission	calculations	at	large	scale.	We	did	not	808	
directly	address	the	issue	of	calculating	emissions	at	the	link	level.	However,	calculating	emissions	809	
at	this	scale	attracts	more	and	more	attention	as	it	allows	(i)	obtaining	the	distribution	of	local	810	
emissions	 over	 the	 network	 and	 (ii)	 establishing	 links	 with	 traffic	 model	 output	 data	 and	811	
dispersion	models.	However,	links	obviously	do	not	have	equal	lengths	over	the	network.	Then,	812	
even	if	a	clear	reference	scale	is	established,	using	emission	laws	directly	on	links	would	create	a	813	
new	scale	problem.	We	therefore	recommend	partitioning	the	network	into	virtual	links	of	same	814	
length	as	the	reference	scale.	Then,	emission	calculations	could	be	done	without	scaling	bias.	The	815	
emissions	related	to	the	real	links	can	finally	be	evaluated	in	proportion	to	the	distance	travelled	816	
in	each	link.	Such	a	method	should	be	carefully	investigated	in	a	future	study.	817	
	818	
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