
Parallel Processing Letters
c World Scientific Publishing Company

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0∗

ROBERTO DI COSMO, ZHENG LI†

Laboratory “Preuves, Programmes et Systémes”, University of Paris VII
175, rue du Chevaleret, F-75013 Paris France

e-mail:{Roberto.DiCosmo,Zheng.Li}@pps.jussieu.fr

SUSANNA PELAGATTI

Dipartimento di Informatica, University of Pisa
Largo B. Pontecorvo, 3 I-56127 Pisa Italy e-mail:susanna@di.unipi.it

PIERRE WEIS

Project “Crystal” – INRIA Rocquencourt France e-mail:Pierre.Weis@inria.fr

Received (received date)
Revised (revised date)

Communicated by (Name of Editor)

ABSTRACT
Parallel programming has proven to be an effective technique to improve the perfor-

mance of computationally intensive applications. However, writing parallel programs is
not easy, and activities such as debugging are usually hard and time consuming. To cope
with these difficulties, skeletal parallel programming has been widely explored in recent
years with very promising results. However, prototypal skeletal systems developed so
far tend to be rather inflexible and difficult to adapt to many practical parallelization
scenarios. For instance, many systems restrict all the sub structures inside a parallel
application to be encapsulated together in term of possibly nested skeletons, which may
be cumbersome when parallelizing some large and complex applications. Moreover, it is
usually difficult to share resources among different skeleton instances and to reuse the
same instance of a skeleton in different parts of the code. This paper reports on the
current status of the OcamlP3l (2.0) systems, which sensibly changes the skeletal model
of the previous versions, to make it more usable and flexible. In particular, we describe
the new skeletons, the new skeletal execution model as well as related issues on design
and implementation, and we conclude with some small examples and preliminary results.

1. Introduction and Overview

Many parallel applications achieve high speedups at the price of software quality and
maintainability. Programmers are asked to handle explicitly a number of activities
related to communication/synchronization of the parallel activities and resource
management. The choices made are usually hard wired in the program using low
level libraries such as MPI. This makes software development a complex task, and

∗OcamlP3l has been partially funded by a Galileo bilateral France-Italy project and by CARAML,
a project in the French ACI-GRID Programme.
†Di Cosmo and Li participate also to Project Crystal – INRIA Rocquencourt

Parallel Processing Letters

the resulting programs are difficult to maintain, port and prove correctness against
specifications.

In a skeleton-based parallel programming model[6,11,2], the programmer is not
forced to program every single process interaction or to devise resource allocation
and data distribution strategies. Such models provide typical organization patterns
of parallel programs as high order constructors or library functions (i.e. skeletons).
A programmer uses skeletons and their combinations to give parallel structure to
an application, and uses a plain sequential language to present the activities inside
each processing unit, as parameters to the skeletons.

In recent years, many researchers have explored the potential of skeletons in both
parallel and grid environments and have reported some important benefits of this
model [15,10,1,16,14,8,19]. When the application structure naturally fits into some
combination of available skeletons, programming is amazingly simple and concise.
It is also very easy to port skeletal programs from one parallel platform to another.
Sophisticated implementation techniques can be developed for each single skeleton,
and, thanks to the structural nature of skeletal programming, global optimization
can be simply automated with cost models [18,15].

Our contribution is this field is the OcamlP3l system [8], a programming en-
vironment that provides a skeletal model and at the same time provides seamless
integration of parallel programming and functional programming with advanced
features like sequential logical debugging (i.e. functional debugging of a parallel
program via execution of all parallel code onto a sequential machine) and strong
typing, useful both as a testbed for innovative parallel programming style and a
practical tool in building full-scale applications for scientific computation.

Despite these encouraging features, skeletal systems have not become main-
stream in the real parallel world so far: they have been around for a decade now,
but most parallel application developers still use low level libraries and models.
From our experience with OcamlP3l (1.0) when working in multidisciplinary teams
to apply skeletal programming to large real world applications [5], we had the im-
pression that part of the problem could be caused by the over-restrictive nature
that exists in several aspects in many of the skeletal systems.

To face the problem, We have taken into account the desiderata that emerged
from users in the field of applied mathematics, without sacrificing the elegance of
the skeleton model, by extending our skeleton set and defining a new execution
model, which is the heart of OcamlP3l (2.0) .

This paper describes the current stable status in the evolution of the OcamlP3l
skeleton-based functional parallel programming system, and is structured as fol-
lows. Section 2 and 3 review our motivations and introduce the new skeletal mode.
Section 4 gives two introductory small examples. Detailed syntax, semantics and
typing issues are mainly addressed in Section 5. Section 6 and 7 give a brief account
on some implementation stuff and present a few results. Section 8 concludes.

2. Motivations

2.1. Mixing sequential and parallel code

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

The first version of OcamlP3l (1.0) [8] imported the skeletal model proposed
by P3L [2,18] with some minor changes due to the functional nature of the sys-
tem. According to this model, a programmer can structure parallelism by nesting
task parallel skeletons (farm and pipe) and data parallel skeletons (map, reduce
and scan). Moreover, any skeletal structure can be iterated using the loop con-
trol skeleton and sequential code can be encapsulated using the seq skeleton. For
instance, a typical structure for a P3L program is depicted below.

s
t
a
g
e
1

s
t
a
g
e
2

farm network

finsec

initsec work

data flow

pipe network

pipe
seq

farm pipe seq

seq

seq seq

map reduce

initsec

work

f g

finsec

(a)
(b)

Here, on the left hand side (a) we can see a typical skeleton nesting and on the
right hand side (b) there is the corresponding process network. Our application is
a pipeline of four stages in which the first and the last stage are sequential stream
processes and the other two are further parallelized using a farm and a pipeline
respectively. The process network (b) works on a stream of input data produced by
the initial stage initsec and produces a steam of output data from finsec.

From the picture, we can see that a P3L program is clearly stratified into two
levels: there is a skeleton cap (in bold in the picture) which describes all the parallel
structure in the application. The cap can be composed of an arbitrary number of
skeleton combinators, but as soon as one goes outside this cap, passing into the
sequential code through the seq combinator, there is no way for the sequential code
to call a skeleton. To say it briefly, the entry point of a P3L program must be a
skeleton expression, and no skeleton expression is allowed anywhere else in the code.

This stratification is quite reasonable when the goal is to build a single stream
processing network described by the skeleton cap. However, it has several drawbacks
in the general case:

breaks uniformity : Though the skeletons look like ordinary functions, they are
actually in different classes and can never been uniformly mixed together;
hence, the programmers have to program in a style that strictly conforms
with the two-level style, especially, the skeletons cannot be invoked as ordinary
functions from sequential code, even if they could have appropriate types.

may produce contrived programs : many applications boil down to simple
nested loops, some of which can be easily parallelized, and some cannot; in
some cases, like the numerical algorithms described in [5], what the user was

Parallel Processing Letters

really asking for, is the possibility of just parallelizing a particular very heavy
matrix computation deep inside the sequential code, while our old model en-
forced the user to rewrite all the program logic in a very unnatural way with
the control parallel skeletons like loop;

prevents sharing : in various numerical algorithms, some operation, like multi-
plying some vector v by the very same large matrix A, may be performed at
different places of the sequential algorithm, and the user naturally wants to
a way to assure that this computation be performed by the same processing
resources (sharing the large matrix A). The P3L skeleton cap does not allow
the user to specify this sharing.

To overcome all these difficulties and limitations, the 2.0 version of OcamlP3l
introduces the new parfun skeleton, the very dual of the seq skeleton. In simple
words, one used to warp a regular function to be a skeleton unit with seq, now one
can also wrap a full skeleton expression inside a parfun to obtain a regular stream
processing function, usable with no limitations in any sequential piece of code‡. A
parfun encapsulated skeleton function behaves exactly as a normal function that
receives a stream as input value, and returns a stream as output value. Under
the parallel semantics, an actual implementation for the structure inside a parfun
combinator then turns out to be a parallel network, to which the parfun provides
an interface.

Since many parfun expressions may occur in a OcamlP3l program, there may
be several disjoint parallel processing networks at runtime. This implies that, in
contrast with P3L, the OcamlP3l model of computation requires a main sequential
program (modeled by the pardo skeleton). This main program is responsible for
information interchange among the various parfun encapsulated skeletons. For
instance, in our new model we can express the structure in Fig. 1.

pardo
(a)

init

dfarm

hfun dpipe
dfarm

final

work

(b)

init

hfun

final

pardo

dpipe

parfun

pipe

dfarm

parfun

farm

seq

f

seq seq

gr

s
t
a
g
e
2

s
t
a
g
e
1

farm network

pipe network

dataflow

Figure 1: A parallel structure mixing sequential and parallel execution

‡Actually, in any sequential code that is not used in building a skeleton.

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

Here, we have two skeleton instances dfarm and dpipe which have been defined
once and for all using a parfun skeleton. The main pardo skeleton is executed
by a root node which first deploys all the parallel networks (farm network and
pipe network in our case) and then orchestrates the computation alternating the
execution of sequential functions (init, hfun and final) with the communication
of data to the parallel networks. In this case, the function init may generate a
stream of data, which is then passed to the farm network for processing. Then, the
root node receives the stream of results produced and applies to them the sequential
function hfun before feeding the results into the pipe network. The stream of results
coming out of the pipe is then sent again to the same farm network for further
processing. When the root node gets the output from the dfarm skeleton for another
time, the final function will be invoked for the last sequential elaboration which
usually involves some finalization and output tasks.

2.2. Skeleton specialization

Another problem which we encountered repeatedly in our real-world application
experiences was the need of using a set of skeletons which are parallel in structure
but slightly different in function. Typically these skeletons are specialized versions
of a same skeleton which instantiate the working function with different data bases.
For instance, each worker skeletons nesting inside the same farm skeleton may
need to hold some sizable local data (e.g. some huge matrices as the basic for the
computation over each items inside the incoming streams) which could be different
from one another on each worker, though the parallel structures’ behavior itself
remains identical.

The original P3L model did not allow this kind of specialization, all the parallel
sub-structures have to be absolutely the same. The working functions holding dif-
ferent data bases will have to be considered as different ones. So the implementation
of such a farm skeleton would involve a large amount of data replication (i.e., to
employ just one same worker function, each worker will have to get all the huge
matrices as a whole to cover everyone’s needs, but may only touch one of them).

Instead, we wanted to offer the user the freedom to finely describe where and
when the data are used and to limit unnecessary replication as much as possible.
This turned out to be possible at the price of a slightly more complicated but still
comprehensible refinement of skeleton types that we detail in Section 5.

3. The OcamlP3l 2.0 computing model

3.1. Skeletons

OcamlP3l provides three kinds of skeletons: task parallel skeletons, data par-
allel skeletons and control skeletons. Each skeleton is a stream processor, i.e. a
function which transforms an input stream of incoming data into an output stream
of outgoing data. Skeletons can be composed to define the parallel behavior of
programs.

Task parallel skeletons model the parallelism of independent processing activ-
ities related to different input data. In this set, we have pipe and farm. Both

Parallel Processing Letters

skeletons transform a stream of independent input data into a stream of results.
The farm replicates a skeleton into a pool of identical copies (the farm workers)
each one computing independent data items in the input stream. The pipe exploits
parallelism in the execution of a sequence of skeletons defining independent stages
of a computation. Both correspond to the usual task parallel skeletons appearing in
P3L and in other skeleton models [12]. Data parallel skeletons exploit parallelism
in the computation of different parts of the same input data. In this set, we provide
mapvector and reducevector. Both work on dense one-dimensional arrays. The
mapvector skeleton models the parallel application of a generic function f to all
the items of a vector data structure, whereas the reducevector skeleton models a
parallel computation that folds the elements of a vector with a commutative and
associative binary operator. Those two skeletons are simplified versions of their
respective map and reduce analogies in P3L. They provide a functionality quite
similar to the map(∗) and reduce (/) functions of the Bird-Meertens formalism dis-
cussed in [4]. Control skeletons are combinators which do not express parallelism
per se, but orchestrate the interaction and control flow among the sequential and
parallel parts of an application. We have three kinds of control skeletons:

• the iteration skeleton (loop), that iterates the execution of inside skeleton
over any items in the incoming stream, until they finally meet some given
condition.

• the data interface skeletons (seq and parfun) that provide a way to pass from
the sequential to the parallel world and vice versa. seq converts a sequential
function into a stream processing unit which is necessary for instantiating any
of the skeletons inside a parallel network, and parfun turns a parallel network
defined via a skeleton expression into a standard Ocaml function.

• the parallel execution scope delimiter skeleton (pardo) which encapsulate all
the parallel code, i.e. the code that invokes the parfun networks.

3.2. Parallel execution model

A parallel computation in OcamlP3l is defined by three components: (1) a set
of plain sequential Ocaml functions (CF, common functions in Figure 2); (2) a set
of parallel clusters, each one defined by a suitable composition of skeleton combi-
nators enclosed in a parfun (SF, skeleton functions in Figure 2) and (3) a pardo
application. Each definition of a parfun(h) function will create a corresponding
network of processes according to the skeleton composition in h. Each network
transforms a stream of independent input data . . . x1, x0 in a stream of output data
. . . h(x1), h(x0) according to h.

When a pardo is evaluated, applications of common functions boil down to
normal sequential evaluation, while applications of skeletal functions feed arguments
data to the corresponding skeletal process network and are evaluated in parallel. In
practice, a pardo defines a network built out of all the processes in skeletal networks
(parfun defined functions) plus a root process orchestrating all the computation.
Both the root node and the common nodes run in SPMD model. Initially, the root

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

Figure 2: Parallel execution model: the role of parfun and pardo skeleton

specializes all the common nodes by sending information on the actual process to
be executed (e.g., a farm dispatcher, a farm worker, a mapvector worker etc). Then,
the root process starts executing the pardo. The usual sequential code is executed
locally on the root node. Instead, when a call to functions that have been defined
via a parfun function is encountered, the root node just passes the argument stream
of the function to the corresponding network and returns as a result the stream of
data produced by the network. The same network can be activated many times,
each time a call of the corresponding parfun function is encountered.

Notice that the execution model so far implicitly assumes an unlimited number
of homogeneous processors. In practical situations, processors will be less than
processes and have heterogeneous performance. It is then necessary to reasonably
arrange the mapping relation from the virtual resources implied by the program
into the actual resources at hand. The support, possibly with some help from the
programmer (using colors [17], see Sec. 5.5), is in charge of performing the mapping
task appropriately, with the possibilities of choosing from either an automatic or an
explicit manner on their respective advantages.

4. A simple example: farming out square computation

It is now time to discuss a simple but complete OcamlP3l program. The following
program uses a farm to compute a very simple function over a stream of floats

(* computes x square *)

1. let farm_worker _ = fun x -> x *. x;;

(* prints a result *)

2. let print_result x =

3. print_float x; print_newline();;

4. let compute =

Parallel Processing Letters

5. parfun (fun () -> (farm (seq(farm_worker),4)));;

6. pardo(fun () ->

7. let is = P3lstream.of_list [1.0;2.0;3.0;4.0;5.0;6.0;7.0;8.0] in

8. let s’ = compute is in P3lstream.iter print_result s’;

9.);;

We have two standard Ocaml functions (1–3): farm_worker which simply computes
the square of a float argument and print_result which dumps results on the standard
output. Notice that the farm_worker has two parameters instead of one as it would seem
reasonable. The extra parameter (_) is required by the seq skeleton type and is used
in general to provide local initialization data (for instance, an initialization matrix, some
initial seed or the like). This optional initialization is provided for all OcamlP3l skeletons
(see Section 5). In this simple case, initialization data is not needed and the parameter is
just ignored by farm_worker. Function compute (4–5) uses a parfun skeleton to define a
parallel network built by a single farm, in particular:

seq(farm_worker)

turns the sequential farm_worker function into a ‘stream processor’ applying it to a stream
of input values. Then, an instance of the farm skeleton is defined with

farm (seq(farm_worker),4)

which spawns four workers. Finally,
parfun (fun () -> (farm (seq(farm_worker),4)));;

encapsulates the skeleton network into a standard Ocaml function.
The last pardo (6–9) defines how sequential functions and parallel modules are inter-

connected. In this case, we have a single parallel module (compute) and two sequential
parts. The first sequential part builds up the data stream, using the standard OcamlP3l
function

P3lstream.of_list [1.0;2.0;3.0;4.0;5.0;6.0;7.0;8.0]

which turns a list into a stream. The second sequential part applies the sequential func-
tion (print_result) to all the elements in the stream (using an iterator P3lstream.iter

provided by the standard stream module). The global structure of the network is shown
in Figure 3. Here, arrows show the data flow among processes.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

P3lstream.of_list...

P3lstream.iter...

compute

pardo

farm_worker

Figure 3: Overall process network of the simple farm example.

4.1. A PDE solver on multiple domains

Our second example is a parallel PDE solver which works on a set of subdomains. On
each subdomain it applies a fast Poisson solver written in C. A fragment of the code is

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

1. let solver =

2. parfun (fun () ->

3. (loop ((fun (v,continue) -> continue),

4. seq(fun _ -> fun (v,_) -> v)

5. ||| mapvector(seq(fun _ -> calcul_sous_domaine),3)

6. ||| seq(fun _ -> projection)

7. ||| seq(fun _ -> bicgstab)

8. ||| seq(fun _ -> plot)

9.))) ;;

10. pardo(fun () ->

11. List.iter print_result

12. (P3lstream.to_list (solver (P3lstream.of_fun generate_input_stream)))

);;

Figure 4: Code fragment from a Poisson solver.

shown in Fig. 4. We only show and discuss the parallel structure. Here, we have a five
stage pipeline (4–8) seq|||mapvector||| . . . ||| seq which computes a single iteration of
the method and a loop skeleton which iterates the computation until continue is true.
Being the first skeleton in a loop, the first seq (4) receives a pair of data to be computed
and a termination flag and selects the first one for further computation discarding the
flag (which is used only by the loop controller. The data v is a vector defining the num-
ber and structure of subdomains to be computed in parallel. mapvector simply applies
calcul sous domaine to each subdomain, using 3 parallel workers. Each worker actually
spawns a Unix process implementing the fast C solver and then simply feeds it with the
subdomains to be computed until termination. When the computation on all subdomains
for a given data set is finished, mapvector glues the results together and propagates them
along the pipe. The subsequent pipeline stages (6–8) simply trim overlapping borders and
plot the result in a formatted way.

5. Skeleton syntax, semantics, and types

Here we describe the syntax, the informal semantics, and the types assigned to each
of the combinators of the skeleton language. Each skeleton is a stream processor, trans-
forming an input stream into an output stream and is equipped with three semantics:
a sequential semantics, a parallel semantics and a graphical semantics. The sequential
semantics is a suitable sequential Ocaml function f transforming all the elements x of
the input stream in the corresponding output f x. The parallel semantics is a process
network implementing the skeleton in parallel (the same skeleton can be implemented by
several different process networks, corresponding to different implementation templates).
The graphical semantics is a pictorial representation of the process network implementing
the skeleton.

This mapping of skeletons to stream processors is evident at the type level, since the
skeletons are all assigned types that reflect their stream processing functionality. Of course,
the compositional nature of skeletons is also clear in their implementation. According to
the parallel semantics, a skeleton is realized as a stream processor parameterized by some
other functions and/or other stream processors. For the sequential semantics implemen-
tation, we provide an abstract data type of streams (the polymorphic ’a stream data

Parallel Processing Letters

type constructor), and the sequential implementation of the skeletons is defined as a set
of functions over those streams.

5.1. On the type of skeleton combinators

First of all, let us explain why the actual Ocaml types of our skeleton combinators are
a bit more complex than those used by other skeleton systems (e.g.., [12]). In effect, our
types seem somewhat polluted by spurious additional unit types, compared to the types
one would expect.

For instance, consider the seq combinator. As informally discussed above, seq encap-
sulates any Ocaml function f into a sequential process which applies f to all the inputs
received in the input stream. This means that, writing seq f, the Ocaml function f with
type ’a -> ’b is wrapped into a parallel process that applies f pointwise to the stream
of input data of type ’a to produce a stream of outputs of type ’b (this is reminiscent of
the lift combinator used in many stream processing libraries of functional programming
languages). Hence, a straightforward type for seq would be

(’a -> ’b) -> (’a stream -> ’b stream)

However, in OcamlP3l, seq is declared as

seq : (unit -> ’a -> ’b) -> unit -> (’a stream -> ’b stream)

meaning that the lifted function argument f gets an extra unit argument. In effect, in
real-world application, the user functions may need to hold a sizable amount of local data
(e.g. some huge matrices that have to be initialized in a numerical application), and we
decided to have a type general enough to allow the user to finely describe where and when
those data have to be initialized and/or copied.

Similarly to what is done in partial evaluation and λ-lifting, we reuse the classical
techniques of functional programming to initialize or allocate data globally and/or locally
to a function closure. This is just a bit complicated here, due to the higher-order nature of
the skeleton algebra, that in turn reflects the inherent complexity of parallel computing.
We discuss both local and global initialization below.

global initialization: we want to initialize the data once and for all, and then replicate
it in every copy of the stream processor that a farm or a mapvector skeleton may create;
to achieve this result we can write

let f =

let localdata = do_huge_initialisation_step () in

fun () -> fun x -> compute (localdata, x);;

...

farm (seq f, 10)

This was also trivially possible in the previous versions of OcamlP3l, where we could
write (without the extra unit parameter)

let f =

let localdata = do_huge_initialisation_step () in

fun x -> compute (localdata, x);;

...

farm (seq f, 10)

local initialization: we want to initialize the data locally in each stream processor,
after the duplication has been performed by a farm or a mapvector skeleton; this was just
impossible in the previous versions of OcamlP3l; with the extra unit type parameters we
can now write:

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

let f = fun () ->

let localdata = do_huge_initialisation_step () in

fun x -> compute (localdata, x);;

...

farm (seq f, 10)

To understand why this works, we need to explain a bit the mechanics of the creation of
the process network: when the farm skeleton is created, it first creates 10 copies of seq f,
that contains the function f not yet applied to any parameter; only after the creation of
the processing node containing f the runtime passes () as argument to f to obtain the
function that will be applied at each stream element; the evaluation of f () then produces
the allocation of a different copy of localdata for each instance of the seq f skeleton§.

To sum up, the extra unit parameters give the programmer the ability to decide
whether local initialization data in his functions are shared among all copies or not. In
other words, we can regard the skeleton combinators in the current version of OcamlP3l as
“delayed skeletons”, or “skeleton factories”, that produce an instance of a skeleton every
time they are passed an () argument, and is reminiscent of the phase separation found in
languages like Klaim [3].

5.2. Task and data parallel skeletons

We can now detail the types and semantics of the remaining skeletons.

The farm skeleton computes in parallel a function f over different data items appearing
in its input stream. From a functional viewpoint, given a stream of data items x1, . . . , xn,
and a function f , the expression farm(f, k) computes f(x1), . . . , f(xn). Parallelism is
gained by having k independent processes that compute f on different items of the input
stream. If f has type (unit -> ’b stream -> ’c stream), and k has type int, then
farm(f, k) has type unit -> ’b stream -> ’c stream.

The pipeline skeleton is denoted by the infix operator |||; it performs in parallel
the computations relative to different stages of a function composition over different data
items of the input stream. Functionally, f1|||f2 . . . |||fn computes fn(. . . f2(f1(xi)) . . .)
over all the data items xi in the input stream. Parallelism is now gained by having n
independent parallel processes. Each process computes a function fi over the data items
produced by the process computing fi−1 and delivers its results to the process computing
fi+1. If f1 has type (unit -> ’a stream -> ’b stream), and f2 has type (unit -> ’b

stream -> ’c stream), then f1|||f2 has type unit -> ’a stream -> ’c stream.

The mapvector skeleton applies a function to all elements of a vector, generating
the (new) vector of the results. Therefore, for each vector X in the input data stream,
mapvector(f, n) computes [f(x1), . . . , f(xn)]. If f has type (unit -> ’a stream -> ’b

stream), and n has type int, then mapvector(f, n) has type unit -> ’a array stream

-> ’b array stream.

The reducevector skeleton folds a binary operator ⊕ over all the data items of a vector.
Therefore, reducevector(⊕, n) computes x1⊕x2⊕. . .⊕xn out of each the vector x1, . . . , xn

in the input data stream. If ⊕ has type (unit -> ’a * ’a stream -> ’a stream), and n
has type int, then reducevector(⊕, n) has type unit -> ’a array stream -> ’a stream.

5.3. The parfun skeleton

§In practice, the initialization step may do weird, non referentially transparent things, like opening
file descriptors or negotiating a network connection to other services: it is then crucial to allow the
different instances of the user’s function to have their own local descriptors or local connections
to simply avoid the chaos.

Parallel Processing Letters

One would expect parfun to have type (unit -> ’a stream -> ’b stream) -> ’a

stream -> ’b stream: given a skeleton expression with type (unit -> ’a stream -> ’b

stream), parfun returns a stream processing function of type ’a stream -> ’b stream.
However, parfun’s actual type introduces an extra level of functionality: the argument

is no more a skeleton expression but a functional that returns a skeleton:

val parfun :

(unit -> unit -> ’a stream -> ’b stream) -> ’a stream -> ’b stream

This is necessary to guarantee that the skeleton wrapped in a parfun expression will
only be launched and instantiated by the main program (pardo), not by all of the multiple
running copies of the SPMD binary, even though those copies may evaluate the parfun

skeletons; the main program will actually create the needed skeletons by applying its
functional argument, while the generic copies will just throw the functional away, carefully
avoiding to instantiate the skeletons.

5.4. The pardo skeleton: a parallel scope delimiter

Finally, the pardo combinator defines the scope of the expressions that may use the
parfun encapsulated expressions. The type is

val pardo : (unit -> ’a) -> ’a

pardo takes a thunk as argument, and gives back the result of its evaluation. As for
the parfun combinator, this extra delay is necessary to ensure that the initialization of the
code will take place exclusively in the main program and not in the generic SPMD copies
that participate to the parallel computation.

In order to have the parfun and pardo work correctly together the following parallel
scoping rule has to be followed:

• functions defined via the parfun combinator must be defined before the occurrence
of the pardo combinator,

• those parfun defined functions can only be executed within the body of the functional
parameter of the pardo combinator,

• no parfun can be used directly inside a pardo combinator.

Due to this scoping rule, the general structure of an OcamlP3l program is the one
shown in Figure 5.

5.5. Load balancing: the colors

The execution model of OcamlP3l assumes an unlimited number of virtual processors,
which are then allocated on the available physical machines. In the previous implemen-
tation, this mapping mechanics is simply a round robin, which roughly eliminates the
capability differences between physical servers. Though one can make some tricky ad-
justment, e.g. by providing a single physical machine as several independent instances in
the configuration, it’s still rather difficult to make the load balance particularly even in
many cases. Hence color, an integer parameter representing the relative weights of each
processor, is now introduced for both virtual processors and physical ones.

Let us consider as an example, the skeleton expression we discussed in the example
of section 4: parfun (fun () -> (farm (seq(farm worker), 4))) that corresponds to a
skeleton network of one emitter node, one collector node, and 4 worker nodes computing the
square function. Now we are allowed to add the optional color parameter to any skeleton
combinator in order to specify the relative weights of the exact part. The keyword col

is used, with a ~ precedent, following the Ocaml convention of optional argument. The
updated version of our example now becomes

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

(* (1) Functions defined using parfun *)

let f = parfun(skeleton expression)

let g = parfun(skeleton expression)

(* (2) code referencing these functions under abstractions *)

let h x = ... (f ...) ... (g ...) ...

...

(* NO evaluation of code containing a parfun is allowed outside pardo *)

(* (3) The pardo occurrence where parfun defined functions can be called. *)

pardo

(fun () ->

(* NO parfun combinators allowed here *)

(* code evaluating parfun defined functions *)

...

let a = f ...

let b = h ...

)

(* finalization of sequential code here *)

Figure 5: Generic structure of an OcamlP3l program

parfun (fun () -> (farm ~col:2 (seq(farm_worker), 4)))

which tells that all virtual nodes inside this farm structure (both the four worker nodes
and the emitter/collector nodes) have the ranks 2, and should accordingly be mapped to
some physical nodes with a capability ranking at least 2. The scope of a color specification
covers all the inner nodes of the structure it qualifies: unless explicitly specified, the color
of an inside expression is simply inherited from the outer layer (the outermost layer has a
default color value of 0 which means no special request). As in the following expression,

parfun (fun () -> (farm ~col:2 (seq ~col:7 (farm_work), 4)))

the emitter and collector nods are still of rank 2, while the four worker nodes are now
ranked to 7, which generally implies more computation power needed.

For farm, mapvector and reducevector, in addition to the color of the combinator
itself, there is an additional optional color parameter colv. A colv specification is a color

list (i.e. an int list) used to assign different weights for the inside parallel working
structures. For an example, the OcamlP3l expression

parfun (fun () -> farm ~col:2 ~colv:[3;4;5;6] (seq(farm_worker), 4))

assigns the emitter and collector rank 2, and the four worker nodes (four copies of seq)
with respective ranks 3, 4, 5, and 6.

On the other hand, in order to map the processors from the virtual side with the ma-
chines of real world, additional parameters for the physical machines are correspondingly
demanded. The configuration of physical nodes is still acquired through the launching
command as in previous implementation, with several additional parameters. The spec-
ification of each physical machine is comprised of four elements in the following format:
ip or name:port#color%volume, of which port, color and volume are all optional param-
eters with default values. The color parameter is defined with the same convention as the
virtual side. The volume parameter is an integer that stands for the maximum numbers
of virtual processors being allowed to map on current machine simultaneously. An typical

Parallel Processing Letters

command launching a OcamlP3l parallel application looks like the following example,

prog.par -p3lroot 192.168.0.1:4080#7%4 192.168.0.2#2%2 192.168.0.4 ...

where prog.par is the name of executable compiled with parallel semantics, and the
-p3lroot option states that current node is the root node of this SPMD computation.
The list follows that is the customized configuration of each physical machine for partici-
pating in the current round of computation.

We are left to explain the mechanics we used to pair virtual nodes with physical nodes.
Two different modes have been developed to satisfy different requirements: a strict mode
and a non-strict mode.

The strict mode is enabled by launch the computation with an extra -strict option.
In this case, the number of virtual nodes defined in the program must exactly match the
number of physical nodes provided on the command line, as well as their distribution
of colors. In brief, it’s a one-to-one relation based on color equivalence, so the mapping
mechanics is simply straightforward, and the programmer has full control over the map-
ping; the obvious disadvantage is that one has to manually adjust the color distribution
with patience until they finally fit, which can be quite boring for structurally complicated
applications.

On the other hand, the non-strict mode, which is enabled by default, performs mapping
in a mostly automatic way (except in some extreme cases where the condition provided
by the programmer is not satisfiable). We adopt the following algorithm for mapping: we
first sort the virtual nodes in decreasing order of their color values, to reflect the priority
in choosing a physical node — the nodes with higher ranks should have more privilege on
choosing their targets than the nodes with lower ones; then we begin to pair the virtual
nodes in order — for each virtual node x with color cx, we pick, among all physical nodes
with a color c ≥ cx, the one that has been assigned to the minimum number of virtual
processors but still under its volume¶; the pairing will continue until all virtual nodes in the
queue have been consumed in which case the mapping is successful, or there is no physical
nodes left satisfying the requirements of current virtual node in which case the mapping
fails.

The practical experience showed that the non-strict mode allows very flexible config-
urations without losing the convenience, but in a few cases the fine tuning provided by
the was necessary in order to achieve optimal performances. A general purpose suggestion
under the non-strict mode, is to configure those heavy working nodes (from both sides)
with highly distinct color values to ensure a fixed mapping relation as wanted, and leave
all other light-task nodes and coordination nodes automatically mapped.

All color related parameters are designed as optional: this saves unnecessary coding
effort at many positions where default values work just fine, and it guarantees full com-
patibility with the source code of former projects developed on OcamlP3l .

Notice that a color designs a computational class, qualitatively, and is not an exact
quantitative estimation of the computational power of the machine, as the current version
of OcamlP3l does not provide yet the necessary infrastructure to perform an optimized
mapping based on precise quantitative estimations of the cost of each sequential function
and the capabilities of the physical machines, so that we cannot guarantee our color-based
mapping algorithm to be highly accurate or highly effective. Still, the color approach has

¶In non-strict mode, a physical node without explicit volume argument are considered as “no
limitation on volume”, which is, by default, compatible with the concept in the previous round-
robin strategy. In strict mode, the bijection must be assured. A physical node without volume
argument is then considered as “no additional instances allowed” and therefore has a default
volume 1.

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

proved to be quite effective and practical language feature in the real-world cases.

6. Implementation

OcamlP3l is completely implemented in Ocaml and depending on the option used, it
executes source sequentially, produces a graphical output or carries on actual parallel
execution on different machines. We here focus on parallel execution, as the other two are
straightforward (see [7] for details).

In parallel execution, all the nodes in the network run the very same program, which
is the result of the compilation of the user code. One node, the root, will organize the
process network and provide the others with specialization parameters. At run time, each
generic copy just waits for instructions from the root node; the root node first evaluates
the arguments to the parfun combinators to build a representation of the needed skeletons;
then, upon encountering the pardo combinator, the root node initializes all the parallel
computation networks, specializing the generic copies by closure passing (as described
in details in [8] and [7]), connects these networks to the sequential interfaces defined in
the parfun’s, and then runs the sequential code in its scope by applying its function
parameter to ():unit. The whole picture is illustrated in Figure 2. The skeleton networks
are initiated only once but could be invoked many times during the execution of pardo.

In particular, during the execution of a pardo expression, the root node must accom-
plish the following activities: (1) maps virtual nodes to the processor pool given on the
command line, (2)initializes a socket connection with all the participating nodes, (3) gets
the port addresses from each of them (a fixed port number —p3lport— or some dynami-
cally generated number if more than one copy run on the same machine), (4) sends out to
each node the addresses of its connected neighbors (this step together with the previous
two provides an implementation of a centralized deadlock free algorithm to interconnect
the other nodes into the process network specified by the skeleton expression), (5) sends out
to each node the specialization information that consists of the function it must perform.

This very last task requires a sophisticated operation: sending a function (or a closure)
over a communication channel. This is usually not possible in traditional functional pro-
gramming languages, since sending an arbitrary function supposes that we are able to find
on the receiving side the code corresponding to the function name received or that we can
transfer executable code (a feature known as mobility today). Now, mobility is necessary
to send closures between arbitrary programs (since two different programs have no reason
to know each other’s function code), but not between two copies of the same program:
in the latter case, it suffices to send what essentially amounts to a code pointer. Starting
from version 1.06, Ocaml contains a modified marshaling library, originally designed for
the OcamlP3l system, that performs closure sending between copies of the same program
(this is checked by means of an MD5 signature of the program code). The ocaml run time
system takes care of dealing with differences in endianness and word size between com-
municating machines, as well as flattening tree-shaped data structures. On the other side,
all the other nodes simply wait for a connection to come in from the root node, then send
out the address of the port they allocate to do further communication, wait for the list of
neighbors and for the specialization function, then simply perform it until termination.

To summarize, in the implementation the possibility of sending closures allowed us to
obtain a kind of higher order distributed parametrization that kept the runtime code to a
minimum size.

6.1. Using the system

Parallel Processing Letters

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Processors

"farmshell"

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 1 2 3 4 5

S
pe

ed
up

Processors

"poisson"

Figure 6: Some results on a shared cluster with heterogeneous load

Once written, an OcamlP3l source file can be compiled using sequential, parallel and
graphical semantics (options -seq/par/gra). With sequential compilation, the executable
is a sequential one, which can be directly run on a single machine, tested and debugged
using the regular Ocaml source level debugger as any other sequential program. With
graphical compilation, we get an executable file whose launch displays the skeleton network
specified by the program. Finally, parallel compilation produces a ‘generic’ SPMD parallel
executable. One copy of this executable is launched on all the working machines, and
waits for configuration information which is sent by a designated root node, which will
also run the pardo encapsulated sequential code. The designated root node is just another
copy of the same executable that is simply run with the specific command line option
-p3lroot. In addition the root node receives a list of arguments that specifies all needed
information about the nodes involved in the computational network (their ip address or
name, their port and color), together with some other optional running parameters. An
example has already been given in Section 5.5 where we described how colors are assigned
to the physical nodes. More info on the system can be found in [7] or on the web site.‖

7. Some results

Figure 6 shows some results obtained with the two example programs: farmshell (left)
computes an embarrassingly parallel computation discovering prime numbers using a farm
and poisson (right) is the PDE solver described in Section 4. Programs were run during
busy working days in the student laboratory in Pisa, using a simple script to select a pool
of n machines available for ssh regardless of their load. All the machines have the same
configuration (AMD Athlon 2.3Ghz with 256 KB cache and 512MB RAM). The network
is a fast Ethernet shared by all the student labs (around 300 machines with typical Web,
mail, NFS etc. traffic). Results show the average measurements over multiple runs. Despite
of the unfriendly scenario, both programs show quite good speedups. farmshell had 16
workers with a stream of 100 tasks: when the number of tasks falls under 8/10 load
unbalance starts to show its effects where one single overloaded worker can slow down
all the rest. Regarding poisson, the heaviest task is performed by a mapvector with only
3 workers (one for each subdomain), which explains the saturation point at 3 machines.
Experiments with larger number of subdomains are on the way and we hope to include
them in the final version of the paper.

8. Conclusions and Future work

‖http://www.dicosmo.org/ocamlp3l/

SKELETAL PARALLEL PROGRAMMING WITH OcamlP3l 2.0

We summarized the main features of OcamlP3l 2.0. This new release radically changes
the execution model, adds skeletons, and makes skeleton types more flexible, encourag-
ing code conciseness and reuse. A few examples were discussed and some results given.
The new features were profitably and fruitfully exploited also for programming a real
size numerical application [5] which was then run successfully on the INRIA cluster at
Roquencourt. In this case, the ability to write the numerical code in a purely sequential
framework, then to quickly test and debug it while still running on small amount of data
was just mandatory to get the program correct in the first place. The additional benefit of
running the graphical semantics was a plus to understand and explain how the computa-
tion was preceding to get the final result. Finally the huge boost obtained by parallelizing
the program via a mere recompilation was just magic: the parallel executable ran just
correctly right out of the box the first time we had access to the cluster!

Our plan for future work is to proceed on the practical and theoretical levels as follows.
We intend to use OcamlP3l to program more complex numerical code. This will fertilize
our work suggesting new ideas and tuning points for the skeletal system. Then we intend
to enrich the the offer of OcamlP3l by providing a more general data parallel skeleton,
generalizing the original skeleton in P3L[9]. Preliminary work on this subject has shown the
potential of such an extension[17] particularly relevant to the huge matrices computation
that are typical of the numerical problems we have to solve. Moreover, we would like to
add to OcamlP3l more specific features for specific fields, for instance a general library or
programming platform to solve numerical code-coupling problems. Finally, we would like
to expand our theoretical work [13] to prove the prove the complete equivalence between
the sequential and parallel semantics of OcamlP3l programs.

References

[1] M. Alt, H. Bischof, and S. Gorlatch. Algorithm design and performance prediction in
a Java-based grid system with skeletons. In EuroPar 2002, pp. 899–906. 2002.

[2] B. Bacci, et al. . P3L: A Structured High level programming language and its structured
support. Concurrency Practice and Experience, 7(3):225–255, May 1995.

[3] L. Bettini, V. Bono, R. Nicola, G. Ferrari, D. Gorla, M. Loreti, E. Moggi, R. Pugliese,
E. Tuosto, and B. Venneri. The klaim project: Theory and practice, 2003.

[4] R. S. Bird. An introduction to the Theory of Lists. In Manfred Broy, editor, Logic of
programming and calculi of discrete design. NATO ASI Series, 1987.

[5] F. Clèment et al. Parallel programming with the system applications to numerical code
coupling. TR RR-5131, INRIA Rocquencourt, 2004

[6] M. Cole. Algorithmic Skeletons: Structured Management of Parallel Computations.
Research Monographs in Parallel and Distributed Computing. Pitman, 1989.

[7] R. Di Cosmo, Z. Li, M. Danelutto, S. Pelagatti, X. Leroy, and P. Weis. OcamlP3L 2.0:
User Manual, 2005. http://www.dicosmo.org/ocamlp3l/.

[8] M. Danelutto, R. Di Cosmo, X. Leroy, and S. Pelagatti. Parallel functional program-
ming with skeletons: the ocamlp3l experiment. The ML Workshop, 1998.

[9] M. Danelutto, F. Pasqualetti, and S. Pelagatti. Skeletons for data parallelism in P3L.
In C. Lengauer, M. Griebl, and S. Gorlatch, editors, Proc. of EURO-PAR ’97, Passau,
Germany, volume 1300 of LNCS, pages 619–628, Berlin, August 1997. Springer.

[10] M. Danelutto and M. Stigliani. SKElib: parallel programming with skeletons in C. In
Proc. EuroPar 2000, Munchen, volume 1900 of LNCS, pages 1175–1184, August 2000.

[11] J. Darlington, A. J. Field, P. G. Harrison, P. H. J. Kelly, D. W. N. Sharp, and Q. Wu.
Parallel Programming Using Skeleton Functions. In PARLE’93, pages 146–160. 1993.

[12] J. Darlington, Y. Guo, H. W. To, and J. Yang. Parallel Skeletons for Structured

Parallel Processing Letters

Composition. In Fifth ACM SIGPLAN PPoPP. ACM Press, July 1995.
[13] R. Di Cosmo, Z. Li, and S. Pelagatti. A calculus for parallel computations over multi-

dimensional dense arrays. Computer Languages, Systems and Struct., 2005. To appear.
[14] A. J. Dorta, J. A. Gonzales, C. Rodriguez, and F. De Sande. llc: a parallel skeletal

language. In Proc. HLPP 2003, Paris, 2003.
[15] K. Hammond and A.J. Rebon Portillo. HaskSkel: Algorithmic skeletons for Haskell. In

Proc. of IFL’99 Lochem, The Nederlands, volume 1868 of LNCS, september 1999.
[16] H. Kuchen. A skeleton library. In B. Monien and R. Feldmann, editors, Proc. of

EuroPar 2002, volume 2400 of LNCS, pages 620–629, August 2002.
[17] Z. Li. Efficient implementation of map skeleton for the ocamlp3l system. Master’s

thesis, Mèmoire de DEA, DEA Programmation, Université Paris VII, September 2003.
[18] S. Pelagatti. Structured development of parallel programs. Taylor&Francis, 1998.
[19] J. Sérot and D. Ginhac. Skeletons for parallel image processing: an overview of the

SKiPPER project. Parallel Computing, 28(12):1785–1808, December 2002.

